The next-generation space robotic missions will require autonomous probes capable to carry out complex navigation tasks with limited human input. Innovative data-fusion techniques are currently under development to support real-time spacecraft navigation operations through a combined processing of multi-sensor datasets, including, for example, radio tracking and optical measurements. Image-based data can provide crucial information to improve the localization of orbiters through the detection of features displaced across planetary surfaces and their registration with an onboard database. In case of lunar missions, craters represent a key dataset to improve the reconstruction of the spacecraft trajectory. In addition to describing the machine vision techniques used to detect and identify craters in the onboard images, we present here numerical simulations based on a lunar orbiter to investigate the strengths of the multi-sensor orbit determination approach.

Precise orbit determination through a joint analysis of optical and radiometric data / Andolfo, Simone; Genova, Antonio; Federici, Pierluigi; Teodori, Riccardo; Cottini, Valeria. - (2024), pp. 28-35. (Intervento presentato al convegno 2024 International Conference on Space Robotics (iSpaRo) tenutosi a Lussemburgo; Lussemburgo) [10.1109/isparo60631.2024.10687705].

Precise orbit determination through a joint analysis of optical and radiometric data

Andolfo, Simone;Genova, Antonio;Federici, Pierluigi;Teodori, Riccardo;
2024

Abstract

The next-generation space robotic missions will require autonomous probes capable to carry out complex navigation tasks with limited human input. Innovative data-fusion techniques are currently under development to support real-time spacecraft navigation operations through a combined processing of multi-sensor datasets, including, for example, radio tracking and optical measurements. Image-based data can provide crucial information to improve the localization of orbiters through the detection of features displaced across planetary surfaces and their registration with an onboard database. In case of lunar missions, craters represent a key dataset to improve the reconstruction of the spacecraft trajectory. In addition to describing the machine vision techniques used to detect and identify craters in the onboard images, we present here numerical simulations based on a lunar orbiter to investigate the strengths of the multi-sensor orbit determination approach.
2024
2024 International Conference on Space Robotics (iSpaRo)
precise orbit determination; camera; crater detection; object detection; optical navigation; radio tracking
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Precise orbit determination through a joint analysis of optical and radiometric data / Andolfo, Simone; Genova, Antonio; Federici, Pierluigi; Teodori, Riccardo; Cottini, Valeria. - (2024), pp. 28-35. (Intervento presentato al convegno 2024 International Conference on Space Robotics (iSpaRo) tenutosi a Lussemburgo; Lussemburgo) [10.1109/isparo60631.2024.10687705].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1725058
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact