Olivines are naturally occurring silicates consisting of isolated (SiO4)(4-) tetrahedra linked through M1O(6) and M2O(6) octahedra. In this study, we report the structural and crystal-chemical characterization of synthetic olivine crystals containing up to 25% Li-Fe3+ synthesized using the flux growth technique. Based on site scattering, and mean bond lengths, and charge neutrality of the chemical formula, we found a perfect ordering of Li and Fe(3+ )at the two distinct M1 and M2 sites. Unrestrained linear extrapolation to a hypothetical isostructural LiFe3+(SiO4) composition aligns well with the tabulated ionic radii of Li and Fe3+. Comparison made with the isostructural LiSc(SiO4) reveals that the Li-centered M2O(6) octahedron has a significant capacity to distort in order to accommodate structural stresses, due to the relatively weak Li-O bond, while still achieving a bond valence sum that closely matches the formal charge of Li+. This behavior suggests the potential feasibility of an extended Li + Fe3+ for 2 Mg coupled substitution within the olivine structure. The reported structure of the LiFe3+(SiO4) endmember in the literature, despite its apparent matching of cell dimensions and space group with olivine, exhibits extremely unconventional crystal chemical features, raising questions about its validity. Given the importance of the suitability of Li-insertion in LiFeSiO4 as electrodes in rechargeable Li-ion batteries, further studies are needed to investigate its crystal structure and crystal chemistry.
Crystal structure and Li–Fe order in synthetic Mg(2–2x)LixFe3+x(SiO4) olivine structure / Ballirano, Paolo; Celata, Beatrice; Pacella, Alessandro; Bloise, Andrea; Tempesta, Gioacchino; Sejkora, Jiří; Bosi, Ferdinando. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - 63:43(2024), pp. 20372-20379. [10.1021/acs.inorgchem.4c02611]
Crystal structure and Li–Fe order in synthetic Mg(2–2x)LixFe3+x(SiO4) olivine structure
Ballirano, Paolo
Membro del Collaboration Group
;Celata, BeatriceMembro del Collaboration Group
;Pacella, AlessandroMembro del Collaboration Group
;Bosi, FerdinandoMembro del Collaboration Group
2024
Abstract
Olivines are naturally occurring silicates consisting of isolated (SiO4)(4-) tetrahedra linked through M1O(6) and M2O(6) octahedra. In this study, we report the structural and crystal-chemical characterization of synthetic olivine crystals containing up to 25% Li-Fe3+ synthesized using the flux growth technique. Based on site scattering, and mean bond lengths, and charge neutrality of the chemical formula, we found a perfect ordering of Li and Fe(3+ )at the two distinct M1 and M2 sites. Unrestrained linear extrapolation to a hypothetical isostructural LiFe3+(SiO4) composition aligns well with the tabulated ionic radii of Li and Fe3+. Comparison made with the isostructural LiSc(SiO4) reveals that the Li-centered M2O(6) octahedron has a significant capacity to distort in order to accommodate structural stresses, due to the relatively weak Li-O bond, while still achieving a bond valence sum that closely matches the formal charge of Li+. This behavior suggests the potential feasibility of an extended Li + Fe3+ for 2 Mg coupled substitution within the olivine structure. The reported structure of the LiFe3+(SiO4) endmember in the literature, despite its apparent matching of cell dimensions and space group with olivine, exhibits extremely unconventional crystal chemical features, raising questions about its validity. Given the importance of the suitability of Li-insertion in LiFeSiO4 as electrodes in rechargeable Li-ion batteries, further studies are needed to investigate its crystal structure and crystal chemistry.| File | Dimensione | Formato | |
|---|---|---|---|
|
Ballirano_Crystal_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


