Projection and equivalence concepts havebeen widely studied in the literature. In the presentpaper two nonlinear systems with the same numberof inputs, but not the same number of state variables,are considered. Under mild assumptions, necessary andsufficient conditions are given for the existence of asubmersion such that the higher dimensional systemprojects locally onto the other one. The solution tothis problem has relevant applications, for instance inrobotics. It includes as a special case the equivalenceof nonlinear systems with no particular structure.

Decomposition and equivalence of general nonlinear dynamical control systems / Aranda-Bricaire, E.; Califano, C.; Moog, C. H.. - In: NONLINEAR DYNAMICS. - ISSN 0924-090X. - 113:4(2025), pp. 3313-3322. [10.1007/s11071-024-10383-7]

Decomposition and equivalence of general nonlinear dynamical control systems

Califano, C.
;
2025

Abstract

Projection and equivalence concepts havebeen widely studied in the literature. In the presentpaper two nonlinear systems with the same numberof inputs, but not the same number of state variables,are considered. Under mild assumptions, necessary andsufficient conditions are given for the existence of asubmersion such that the higher dimensional systemprojects locally onto the other one. The solution tothis problem has relevant applications, for instance inrobotics. It includes as a special case the equivalenceof nonlinear systems with no particular structure.
2025
decomposition; projection; systems equivalence; accessibility distribution ; invariant submanifolds
01 Pubblicazione su rivista::01a Articolo in rivista
Decomposition and equivalence of general nonlinear dynamical control systems / Aranda-Bricaire, E.; Califano, C.; Moog, C. H.. - In: NONLINEAR DYNAMICS. - ISSN 0924-090X. - 113:4(2025), pp. 3313-3322. [10.1007/s11071-024-10383-7]
File allegati a questo prodotto
File Dimensione Formato  
ArandaBricaire_Decomposition_2025.pdf

accesso aperto

Note: https://link.springer.com/article/10.1007/s11071-024-10383-7
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 323.07 kB
Formato Adobe PDF
323.07 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1722649
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact