Maximizing monotone submodular functions under cardinality constraints is a classic optimization task with several applications in data mining and machine learning. In this paper we study this problem in a dynamic environment with consistency constraints: elements arrive in a streaming fashion and the goal is maintaining a constant approximation to the optimal solution while having a stable solution (i.e., the number of changes between two consecutive solutions is bounded). We provide algorithms in this setting with different trade-offs between consistency and approximation quality. We also complement our theoretical results with an experimental analysis showing the effectiveness of our algorithms in real-world instances.

Consistent Submodular Maximization / Dutting, P.; Fusco, F.; Lattanzi, S.; Norouzi-Fard, A.; Zadimoghaddam, M.. - 235:(2024), pp. 11979-11991. (Intervento presentato al convegno International Conference on Machine Learning tenutosi a Vienna; Austria).

Consistent Submodular Maximization

Fusco F.
;
2024

Abstract

Maximizing monotone submodular functions under cardinality constraints is a classic optimization task with several applications in data mining and machine learning. In this paper we study this problem in a dynamic environment with consistency constraints: elements arrive in a streaming fashion and the goal is maintaining a constant approximation to the optimal solution while having a stable solution (i.e., the number of changes between two consecutive solutions is bounded). We provide algorithms in this setting with different trade-offs between consistency and approximation quality. We also complement our theoretical results with an experimental analysis showing the effectiveness of our algorithms in real-world instances.
2024
International Conference on Machine Learning
submodular maximization; consistency; approximation algorithms
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Consistent Submodular Maximization / Dutting, P.; Fusco, F.; Lattanzi, S.; Norouzi-Fard, A.; Zadimoghaddam, M.. - 235:(2024), pp. 11979-11991. (Intervento presentato al convegno International Conference on Machine Learning tenutosi a Vienna; Austria).
File allegati a questo prodotto
File Dimensione Formato  
Dutting_preprint_Consistent_2024.pdf

accesso aperto

Note: https://raw.githubusercontent.com/mlresearch/v235/main/assets/duetting24a/duetting24a.pdf
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Creative commons
Dimensione 670.58 kB
Formato Adobe PDF
670.58 kB Adobe PDF
Dutting_Consistent_2024.pdf

accesso aperto

Note: https://raw.githubusercontent.com/mlresearch/v235/main/assets/duetting24a/duetting24a.pdf
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 461.16 kB
Formato Adobe PDF
461.16 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1722008
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact