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Abstract

Maximizing monotone submodular functions under cardinality constraints is a classic opti-
mization task with several applications in data mining and machine learning. In this paper we
study this problem in a dynamic environment with consistency constraints: elements arrive in a
streaming fashion and the goal is maintaining a constant approximation to the optimal solution
while having a stable solution (i.e., the number of changes between two consecutive solutions is
bounded). We provide algorithms in this setting with different trade-offs between consistency
and approximation quality. We also complement our theoretical results with an experimental
analysis showing the effectiveness of our algorithms in real-world instances.

1 Introduction

Submodular optimization is a powerful framework for modeling and solving problems that exhibit
the widespread diminishing returns property. Thanks to its effectiveness, it has been applied across
diverse domains, including video analysis [Zheng et al., 2014], data summarization [Lin and Bilmes,
2011, Bairi et al., 2015], sparse reconstruction [Bach, 2010, Das and Kempe, 2011], and active
learning [Golovin and Krause, 2011, Amanatidis et al., 2022].

In this paper, we focus on submodular maximization under cardinality constraints: given a
submodular function f , a universe of elements V , and a cardinality constraint k, the goal is to find
a set S of at most k elements that maximizes f(S). Submodular maximization under cardinality
constraints is NP-hard, nevertheless efficient approximation algorithms exist for this task in both
the centralized and the streaming setting [Nemhauser et al., 1978, Badanidiyuru et al., 2014, Kazemi
et al., 2019].

One aspect of efficient approximation algorithms for submodular maximization that has received
little attention so far, is the stability of the solution. In fact, for some of the known algorithms, even
adding a single element to the universe of elements V may completely change the final output (see
Appendix A for some examples). Unfortunately, this is problematic in many real-world applications
where consistency is a fundamental system requirement. Indeed, a flurry of recent work has started to
explore various optimization problems under stability and consistency constraints such as clustering
[Lattanzi and Vassilvitskii, 2017, Cohen-Addad et al., 2022, Fichtenberger et al., 2021, Guo et al.,
2021,  Lacki et al., 2024], facility location [Cohen-Addad et al., 2019, Bhattacharya et al., 2022], and
online learning [Jaghargh et al., 2019].

Having solutions that evolve smoothly is central in many practical application of submodular
optimization. Consider, for example, the data summarization task in an evolving setting where
elements are added to the universe V . In this setting, having a stable summary that changes as
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little as possible from step to step is very important both for serving the summary to a user or for
using it in a machine learning model. In fact, in both settings a drastic change of the solution may
have negative impact on system usability, it could harm user attention, and adversely effect the
performance of the machine learning model.

For these reasons, in this paper we initiate the study of submodular maximization under
consistency constraints, where we allow the solutions to change only slightly after each element
insertion. More formally, consider a stream V of exactly n elements, chosen by an adversary. Denote
by Vt = {e1, . . . , et} ⊆ V the set of all elements inserted up to the t-th stream operation, and let
OPTt be an optimum feasible solution for Vt. Our goal is to design an algorithm with two key
properties. On the one hand, we want the algorithm to maintain, at the end of each operation t,
a solution St ⊆ Vt, with |St| ≤ k, of high value f(St). In particular, we say that an algorithm is
an α-approximation of the best solution if αf(St) ≥ f(OPTt), for all t = 1, . . . , n. On the other
hand, we want the dynamic solution to not change much after consecutive insertions: we say that an
algorithm is C-consistent if |St \ St−1| ≤ C for all t = 2, . . . , n. In general, we say that an algorithm
is consistent, without specifying C, when C is constant.

It is interesting to note that the Swapping algorithm by Chakrabarti and Kale [2015] already
conjugates constant approximation with constant consistency∗. Swapping maintains a dynamic
feasible solution and each new arriving element is added to the solution if either it fits into the
cardinality constraint or it is possible to swap it with some low-value element. It is well known that
Swapping achieves a 4-approximation, and from the previous description it is also clear that it is
1-consistent.†

Putting consistency aside, it is NP-hard to get an approximation guarantee better than e/(e−1)

[Feige, 1998], which can be achieved by recomputing a greedy solution [Nemhauser et al., 1978] from
scratch after every insertion. However, such approach is not consistent (see Appendix A).

A line of work that is related to our model is that of fully-dynamic submodular maximization
[e.g., Lattanzi et al., 2020, Monemizadeh, 2020, Dütting et al., 2023, Banihashem et al., 2024]. There,
the algorithm is given an arbitrary stream of insertions and deletions, and the goal is to maintain a
good dynamic solution with low amortized running time. While the constraint on running time
naturally induces algorithms characterized by solutions that do not change often, known algorithms
for fully dynamic submodular maximization are not consistent, as they all contemplate the possibility
of recomputing the solution from scratch from time to time.

Our Contribution. Given these considerations, it is natural to ask if it is possible to obtain a
better trade-off between quality and consistency. We answer this question positively:

• We first provide a (3.147 + O(1/k))-approximation algorithm that is 1-consistent, improving
on the guarantees of the Swapping algorithm.

• We then provide a (2.619 + ε)-approximation‡ algorithm that is Õ(1/ε)-consistent, where the
Õ notation hides poly-logarithmic factors in 1/ε.

We complement our positive results with a lower bound showing that for any constant C, no
deterministic algorithm can be C-consistent and return a better than 2 approximation. Since both

∗Following e.g., Dütting et al. [2022, 2023], we call Swapping the instantiation of the general framework by
Chakrabarti and Kale [2015] for the special case of matroid constraints. We refer to Appendix B for the pseudocode.

†It is possible to show that the 4 is tight for the approximation factor. For an example please refer to Appendix B.
‡As is common in the submodular maximization literature, the parameter ε is intended to be a small constant

that the algorithm designer can tune according to the application at hand: it is possible to attain an approximation
arbitrarily close to 2.619, at the cost of a worse consistency.
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our algorithms are deterministic, the lower bound shows that our algorithms obtain a near-optimal
quality-consistency tradeoff. We leave the resolution of the remaining gaps, and the study of
randomized algorithms as exciting directions for future work.

We also present extensive experiments with real-world data sets and a synthetic data set (Section 6
and Appendices B and C). The experiments show that our algorithms achieve comparable value
as Swapping and the non-consistent Sieve-Streaming [Badanidiyuru et al., 2014] on real-world
data sets; while achieving significant savings in the total number of changes. Furthermore, the
synthetic data set – constructed using a hard instance for Swapping presented in Appendix B –
confirms the improvements in the worst-case approximation guarantees relative to Swapping from
our theoretical analysis, showing that there too the gains can be significant (in the order of the
21.325% and 34.525% improvements that we show in our analysis).

Our Techniques. Our first algorithm, Encompassing-Set, maintains a benchmark set Bt that
is used to decide whether to add or discard any new element. More precisely, any arriving element
et is added to Bt−1 if, upon arrival,the marginal contribution of et to Bt−1, that is f(et | Bt−1), is
at least β/k · f(Bt−1). Here β is a judiciously chosen constant that is larger than 1, namely β = 1.14.
At any given time t, the solution St maintained by the algorithm consists of the last k elements
added to Bt.

This algorithm is 1-consistent by construction, while the approximation guarantee descends from
the following two properties of this algorithm. First, the (potentially infeasible) benchmark set Bt

achieves a (1 + β)-approximation to f(OPTt) (where 1 + β = 2.24 by the choice of β). Second, due
to the exponential nature of the condition by which elements are added to the benchmark set, the
elements in Bt that are not part of St only account for a small fraction of the value of Bt; namely,
f(Bt) ≥ (1 + β/k)kf(Bt \ St). Intuitively, the second property shows that St captures a significant
fraction of f(Bt), while the first property shows that f(Bt) is a good approximation to f(OPTt). A
careful analysis shows that the two properties lead to the claimed factor of 3.147 + O(1/k).

Our second algorithm, Chasing-Local-Opt, provides a better approximation guarantee at the
cost of possibly performing more than one swap per step (but still at most constantly many). Rather
than maintaining a benchmark set, this algorithm only maintains a solution St, and updates it via
local improvements. It applies a similar swapping condition as Encompassing-Set, by requiring
that the marginal value of an arriving element et to St−1 should be at least ϕ/k · f(St−1), where
ϕ ≈ 1.61 is the golden ratio. Other than Encompassing-Set, however, rather than swapping
out the oldest element that was added, it swaps out an element r whose marginal contribution
f(r | S − r)§ to the current solution S is less than a 1/k-fraction of the current solution’s value f(S).

Moreover, after the arrival of each element et and its possible addition to St, it performs up to
N = Õ(1/ε) additional swaps. For this it considers all elements that have arrived so far, which we
denote by Vt, and it tries to add them one-by-one by the same condition and procedure that is used
for newly arriving elements. The purpose of these extra swaps is to drive the maintained solution
St closer to a local optimum: a solution S ⊆ Vt such that there is no element x ∈ Vt such that
f(x | S) ≥ ϕ/k · f(S). The improved approximation guarantee then stems from the fact that either
the algorithm was at a local optimum in the not too distant past, or it performed many swaps since.

2 Preliminaries

We consider a set function f : 2V → R≥0 on a ground set V of cardinality n. Given two sets
X,Y ⊆ V , the marginal gain of X with respect to Y , f (X | Y ), quantifies the change in value of

§We use S − r instead of S \ {r} and S + x instead of S ∪ {x}.
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adding X to Y and is defined as

f (X | Y ) = f(X ∪ Y )− f(Y ).

When X consists of a singleton x, we use the shorthand f(x | Y ) instead of f({x} | Y ). Function f
is called monotone if f (e | X) ≥ 0 for each set X ⊆ V and element e ∈ V , and submodular if for
any two sets X ⊆ Y ⊆ V and any element e ∈ V \ Y we have f (e | X) ≥ f (e | Y ) .

Throughout the paper, we assume that f is monotone and that it is normalized, i.e., f(∅) = 0.
We model access to the submodular function f via a value oracle that computes f(S) for given
S ⊆ V . The problem of maximizing a function f under a cardinality constraint k is defined as
selecting a set S ⊆ V with |S| ≤ k that maximizes f(S).

3 Impossibility Result

Putting computational efficiency aside, it may be possible to design a consistent algorithm which
maintains the optimal solution, or an arbitrarily good approximation. We prove that this is not
the case: no deterministic algorithm with constant consistency enjoys an approximation guarantee
better than 2. We remark that this is an information-theoretical bound, and concerns the streaming
nature of the problem.

Theorem 3.1. Fix any constant C and precision parameter ε ∈ (0, 1). No C-consistent (determin-
istic) algorithm provides a (2− ε)-approximation.

Proof. Fix any constant C, precision parameter ε > 0, and a deterministic algorithm A that is
C-consistent, we construct a covering instance such that A does not maintain a (2−ε) approximation.
Let G = {g1, . . . , gn} be a ground set and V be a family of subsets of G such that V contains all
the subsets of G of cardinality 1 and k, with k = n/2. The covering function f is naturally defined
on V , and we consider the task of maximizing f with cardinality k.

Observe the behaviour of A on the sequence {g1}, . . . {gn}. At the end of this partial sequence
A maintains a certain solution S = {{gi1}, . . . , {giℓ}}, with ℓ ≤ k. Now suppose the next element to
arrive is {gi1 , . . . , giℓ , giℓ+1

, . . . , gik}, where giℓ+1
, . . . , gik are some arbitrary elements not covered by

S. The value of the optimal solution after this insertion is 2k − 1 (just take the last subset and
k − 1 non overlapping singletons). The value of S is ℓ ≤ k and, even if A adds to S the subset
{gi1 , . . . , giℓ , giℓ+1

, . . . , gik} and C − 1 other singletons, it cannot get a solution of value more than
k + C. The theorem follows by choosing appropriate values for k: k ≥ 3C/ε.

4 Encompassing-Set

In this section, we present the Encompassing-Set algorithm, which achieves an approximation
guarantee of 3.146 + O(1/k) and 1-consistency (changes at most one element for each insertion).
Encompassing-Set maintains a benchmark set Bt to which it adds all the elements that, upon
arrival, exhibit a marginal contribution to Bt that is at least β/k · f(Bt). At any given stream
operation t, the solution St is given by the last k elements added to Bt. We refer to the pseudocode
for further details. We prepare the analysis of the properties of Encompassing-Set with two
Lemmata. We start relating the value of the optimal solution with that of the benchmark.

Lemma 4.1. After each insertion et, the following holds:

f(OPTt) ≤ (1 + β) · f(Bt).
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Algorithm 1 Encompassing-Set

1: Environment: Stream V , function f , cardinality k
2: Threshold parameter β ← 1.14
3: B0 ← ∅, S0 ← ∅, and t← 1
4: for et new element arriving do
5: if f(et | Bt−1) ≥ β

k f(Bt−1) then
6: Bt ← Bt−1 + et
7: St ← St−1 + et
8: if |St| = k + 1 then
9: remove from St the element es with smallest s

10: t← t + 1

Proof. Consider any element that belongs to OPTt but not to the benchmark set Bt after the
computation following the insertion of et, i.e., es ∈ OPTt \Bt, with s ≤ t. Element es has not been
included to Bs (because it does not belong to Bt ⊇ Bs) upon its insertion, so the following holds:

f(es | Bt) ≤ f(es | Bs−1) (by submodularity)

≤ β
k f(Bs−1) (since es /∈ Bs)

≤ β
k f(Bt). (by monotonicity)

So, for any element es ∈ OPTt \Bt, it holds that

f(es | Bt) ≤ β
k f(Bt). (1)

The above inequality is the crucial ingredient of the proof:

f(OPTt) ≤ f(OPTt ∪Bt) (by monotonicity)

≤ f(Bt) +
∑

es∈OPTt \Bt

f(es | Bt)

≤ f(Bt) + |OPTt | · βk f(Bt) (by Ineq. 1)

≤ (1 + β)f(Bt). (because |OPTt | ≤ k)

Note, the second inequality comes from submodularity.

As a second preliminary step, we argue that the elements in Bt that are not included to the
current solution St only account for a small fraction of f(Bt).

Lemma 4.2. After each insertion et, the following inequality holds:

f(Bt) ≥
(

1 +
β

k

)k

f(Bt \ St).

Proof. The elements in the current solution are naturally sorted according to the order in which
they are inserted in the stream and then added to the solution: St = {st1 , st2 , . . . stℓ}. Element stℓ
is the last one added and, clearly, ℓ ≤ k and tℓ ≤ t. Each one of these eti elements has been added
to the solution because it passed the value test: f(sti | Bti−1) ≥ β

k f(Bti−1).
Now, set Bti−1 can be rewritten in terms of the current benchmark set Bt and the elements in

the solution St: Bti−1 = Bt \ {sti , . . . , stℓ}, so the previous inequality can be rewritten as

f(sti | Bt \ {sti , . . . , stℓ}) ≥
β
k f(Bt \ {sti , . . . , stℓ}).
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If we add to both sides of the above inequality the term f(Bt \ {sti , . . . , stℓ}), we get that

f(Bt \ {sti+1, . . . , stℓ}) ≥
(

1 +
β

k

)
f(Bt \ {sti , . . . , stℓ}).

Iterating the above argument we get the desired bound:

f(Bt) ≥
(

1 + β
k

)
f(Bt \ {stℓ}) ≥

(
1 + β

k

)2
f(Bt \ {stℓ−1

, stℓ}) ≥ · · · ≥
(

1 + β
k

)ℓ
f(Bt \ St).

The Lemma follows by recalling that ℓ ≤ k.

We now have all the ingredients to analyze Encompassing-Set.

Theorem 4.3. Encompassing-Set is 1-consistent and maintains a 3.147 + O(1/k) approximation.

Proof. First observe that the algorithm is indeed 1-consistent: every time the solution St changes,
exactly one element is inserted and exactly one is removed from it.

We move our attention to the approximation guarantee. We start by noting that

f(Bt) +
(

1 + β
k

)k
f(St) ≥

(
1 + β

k

)k
[f(St) + f(Bt \ St)] (Lemma 4.2)

≥
(

1 + β
k

)k
f(Bt). (by submodularity)

By rearranging terms and applying Lemma 4.1 we get:

f(St) ≥

(
1 + β

k

)k
− 1(

1 + β
k

)k
f(Bt) ≥

(
1 + β

k

)k
− 1(

1 + β
k

)k
(1 + β)

f(OPTt). (2)

We conclude the proof by providing a general lower bound for the multiplier of the right-hand side
of the last inequality. We know that the following simple chain of inequality holds:(

1 +
β

k

)k

≤ eβ ≤
(

1 +
β

k

)k (
1− β2

k

)−1

Plugging the above inequality into the multiplier in Equation (2), we have(
1 + β

k

)k
− 1(

1 + β
k

)k
(1 + β)

≥ eβ − 1

eβ(1 + β)
− β2

k(1 + β)
≥ 0.3178− 1

k
. (β = 1.14)

Taking the inverse yields the desired factor.

5 Chasing-Local-Opt

In this section we present and analyze the Chasing-Local-Opt algorithm, which exhibits a better
approximation factor than both Swapping and Encompassing-Set. We refer to the pseudocode
for further details. There are two differences with respect to Encompassing-Set. First, the way in
which elements in the solution are swapped out: it is not the “oldest” element to be removed, but
one with small enough value. This is formalized in the routine Min-Swap, which takes as input a
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Algorithm 2 Min-Swap(S, x)

1: Input: Set S and element x
2: Environment: Function f and cardinality k
3: if |S| < k, then return S + x
4: Let r ∈ S be any element s.t. f(r | S − r) ≤ f(S)/k
5: return S − r + x

Algorithm 3 Chasing-Local-Opt

1: Input: Precision parameter ε
2: Environment: Stream V , function f , cardinality k

3: ϕ←
√
5+1
2 , N ← ⌈1ε logϕ

12
ε ⌉

4: S0 ← ∅ and t← 1
5: for et new element arriving do
6: if f(et | St−1) ≥ ϕ

k f(St−1) then
7: St ←Min-Swap(St−1, et)
8: for i = 1, . . . , N do
9: if ∃x ∈ Vt such that f(x | St) ≥ ϕ

k f(St) then
10: St ←Min-Swap(St, x)
11: t← t + 1

set S and an element x, and is responsible for inserting x into S; if S already contains k elements,
then x is swapped with an element r in S with marginal value not larger than the average value of
S (so to maintain the cardinality of S bounded by k). Note, such an element r always exists by
submodularity and a simple averaging argument:

f(S) ≥
∑
x∈S

f(x | S − x) ≥ k ·min
x∈S

f(x | S − x) .

The second difference is that after the arrival of each element and possibly its addition to the current
solution, the algorithm performs up to N ∈ Õ(1/ε) additional swaps from Vt into the solution, using
the same rule and subroutine as for newly arriving elements. The additional swaps performed by
Chasing-Local-Opt drive the maintained solution closer to a local optimum defined as follows.

Definition 5.1. We say that a dynamic solution St is a local optimum if there exists no element x
in Vt such that f(x | St) ≥ ϕ

k f(St).

The improved approximation guarantee stems from the fact that at any point in time, either the
solution maintained by the algorithm was a local optimum not too far in the past, or many swaps
were performed since.

Theorem 5.2. Chasing-Local-Opt maintains a (ϕ + 1 + 9ε)-approximation, where ϕ ≈ 1.619 is
the golden ratio, and is Õ(1/ε)-consistent.

Before proving the theorem, we introduce a notational convention. During the execution of
the algorithm, elements may be added and removed multiple times from the dynamic solution.
Rather than thinking of such an element as one and the same element, it is convenient to think of
this happening to multiple distinct copies of the same element so that each element is added and
removed at most once. This allows us to work with sets instead of multi-sets in the analysis.

7



Proof of Theorem 5.2. The bound on the consistency is immediate, as for each insertion there are
at most N + 1 = ⌈1/ε logϕ 12/ε⌉+ 1 = Õ(1/ε) changes in the solution. The rest of the proof is devoted
to the analysis of the approximation guarantee, which we prove by induction on the number of
insertions. For the first element e1 of the stream there is nothing to prove, as S1 = V1 = {e1}. We
analyze now the generic insertion et, with t > 1, assuming that the desired approximation holds for
any previous insertion s < t. Let t′ be the last insertion index before t in which the solution St′ was
a local optimum (see Definition 5.1), and denote with τ the maximum between t′ and (t−⌈εk⌉). We
remark that t′ is at least 1, so τ is well defined. We have that OPTt is the optimum after insertion
et, and OPTτ is the optimum after insertion eτ . Sets Vt and Vτ , Vt and Vτ are defined in a similar
way. Consider how the solution changed between Sτ and St: some elements in Sτ were removed,
some were added and remained in St, while others were added and later removed, possibly multiple
times. To ease the analysis, we sort these inserted elements s1, s2, . . . , sL according to the order
in which they were added (recall that multiple “copies” of the same element may appear in this
sequence); this induces a natural sorting on the removed elements: we call rℓ the element that was
swapped out to make room for sℓ (to avoid confusion, if no element was swapped out, we let rℓ be a
dummy element with no value). We now define an auxiliary sequence of sets Aℓ that interpolates
between the solution at insertion τ and that at insertion t: Aℓ = Sτ ∪ {s1, . . . , sℓ} \ {r1, . . . , rℓ}.

It holds that Sτ = A0, while St = AL. Moreover, the definition of the auxiliary sets motivates
this relation:

Aℓ−1 + sℓ = Aℓ + rℓ. (3)

By a telescopic argument, the above relation and the design of Chasing-Local-Opt we have the
following claim.

Claim 5.3. The following inequality holds true:

f(St) ≥ f(Sτ ) + (ϕ− 1)
L∑

ℓ=1

f(sℓ | Aℓ−1 − rℓ).

Proof of Claim 5.3. The change in value between two consecutive auxiliary sets can be decomposed
as follows exploiting the relation in Equation (3):

f(Aℓ)− f(Aℓ−1) = f(sℓ | Aℓ−1)− f(rℓ | Aℓ). (4)

Now, the marginal value of sℓ with respect to Aℓ−1 is at least ϕ/k · f(Aℓ−1), by the swapping
conditions in lines 6 and 9 of Chasing-Local-Opt. Furthermore, by the design of Min-Swap, we
know that the element rℓ that is removed to make room for sℓ has small value. In formula,

f(sℓ | Aℓ−1) ≥ ϕ
k f(Aℓ−1) ≥ ϕf(rℓ | Aℓ−1 − rℓ) (5)

We can now prove directly the inequality in the statement:

f(St)− f(Sτ )

=
L∑

ℓ=1

f(Aℓ)− f(Aℓ−1) (telescopic argument)

=
L∑

ℓ=1

f(sℓ | Aℓ−1)− f(rℓ | Aℓ) (by Eqn. 4)

≥
L∑

ℓ=1

f(sℓ | Aℓ−1)− f(rℓ | Aℓ−1 − rℓ)

8



≥ (ϕ− 1)

L∑
ℓ=1

f(rℓ | Aℓ−1 − rℓ). (by Eqn. 5)

Note, the second to last inequality follows by submodularity and the fact that Aℓ−1−rℓ = Aℓ−sℓ ⊆ Aℓ,
due to the relation in Equation (3).

Denote now with I the set of elements that were inserted between eτ and et : I = Vt \ Vτ , and
with A the set of all the elements that were, at some point, in the solution between time τ and t:
A = ∪tℓ=τAℓ. It is possible to relate the value of St with that of the elements in I and A:

Claim 5.4. The following inequality holds true:

f(I ∪A) ≤ (1 + 4ε)f(St) +
L∑

ℓ=1

f(rℓ | Aℓ−1 − rℓ).

Proof of Claim 5.4. Consider any element g in I ∪A. We have three cases: either element g belongs
to St, g was added to the solution but was later swapped out, or it failed the swapping condition
in line 6 upon insertion. Now, sort these elements according to the order in which they were
discarded by the algorithm: (I ∪A) \ St = {g1, . . . , gJ} (g ∈ I \A is discarded upon insertion, while
g ∈ A \ (I ∪ St) is discarded when gets swapped out by the solution). For simplicity, denote with
Gj the set of the first j − 1 such elements, we have the following two facts: (i) if gj ∈ I \A, then it
means that gj = et′ for some t′ ∈ {τ, . . . , t}, and the solution St′ ⊆ St ∪Gj ; (ii) if gj ∈ A \ (I ∪ St),
then it means that gj = rℓ for some ℓ ∈ {1, . . . , L}, and it holds that Aℓ − rℓ ⊆ St ∪Gj .

Exploiting these two facts and submodularity, we have the following chain of inequalities:

f(I ∪A)− f(St) =

J∑
j=1

f(gj | St ∪Gj)

≤
∑

et′∈I\(St∪A)

f(et′ | St′−1) +
L∑

ℓ=1

f(rℓ | Aℓ−1 − rℓ)

≤ ϕ

k

∑
et′∈I\(St∪A)

f(St′−1) +

L∑
ℓ=1

f(rℓ | Aℓ−1 − rℓ)

≤ 4εf(St) +

L∑
ℓ=1

f(rℓ | Aℓ−1 − rℓ).

Note, the second inequality holds by the fact that ej failed the swapping condition in line 6 upon
insertion; while the third inequality follows by observing that the sequence of f(St′) is non-decreasing,
there are at most 2εk elements in I \ (St ∪A), and ϕ ∈ (1, 2).

Another useful property of the auxiliary sets Aℓ is to provide a clean way to formalize that
adding new elements to the solution multiplicatively improves the value of the solution.

Claim 5.5. The following inequality holds true:

f(St) ≥
(

1 +
ϕ− 1

k

)L

f(Sτ ).

9



Proof of Claim 5.5. Consider the generic subsequent terms ℓ− 1 and ℓ, for ℓ = 1, . . . , L. Starting
from rearranging Equation (4), we have the following:

f(Aℓ) = f(sℓ | Aℓ−1)− f(rℓ | Aℓ) + f(Aℓ−1)

≥ f(sℓ | Aℓ−1)− f(rℓ | Aℓ−1 − rℓ) + f(Aℓ−1)

≥ ϕ− 1

ϕ
f(sℓ | Aℓ−1) + f(Aℓ−1) (by Eqn. 5)

≥
(

1 +
ϕ− 1

k

)
f(Aℓ−1),

where the first inequality follows by submodularity and the relation in Equation (3), while the last
one by the design of Min-Swap: an element is added to the solution only if its marginal contribution
is at least a ϕ/k fraction of f(Aℓ−1). Applying iteratively the above argument from St = AL to
Sτ = A0 yields the desired result.

We now have all the ingredients to directly address the crux of the proof. We have two cases we
analyze separately: either Sτ is a local optimum, or it is not.

Sτ is a local optimum. If Sτ is a local optimum, then all the elements in OPTt that arrived
before eτ , i.e., OPTt ∩Vτ have low marginal contribution with respect to Sτ . Formally, we have the
following result.

Claim 5.6. If Sτ is a local optimum, then

(1 + 4ε)f(St) +

L∑
ℓ=1

f(rℓ | Aℓ−1 − rℓ) ≥ f(OPTt)− ϕf(Sτ ).

Proof of Claim 5.6. To prove this result, it suffices to argue that the right-hand side of the inequality
in the statement is at most f(I ∪A), as it is then possible to conclude the argument by combining
it with Claim 5.4. We have the following:

f(OPTt)− f(I ∪A)

≤ f(OPTt | I ∪A) (by monotonicity)

= f(OPTt ∩Vτ | I ∪A) (since I = Vt \ Vτ )

≤
∑

e∈OPTt ∩Vτ

f(e | Sτ )

≤ ϕf(Aτ ). (Aτ local optimum)

Note, the second inequality holds by submodularity as Sτ is contained into A. Reordering the terms
of the inequality we get the desired lower bound on f(I ∪A).

Summing the inequality in Claim 5.6 with ϕ times the inequality in Claim 5.3 yields the desired
bound, thus concluding the argument for the first case:

(1 + ϕ + 4ε)f(St) ≥ f(OPTt) + [ϕ(ϕ− 1)− 1]
L∑

ℓ=1

f(rℓ | Aℓ−1 − rℓ) = f(OPTt).

In the previous inequality we crucially used the definition of the golden ratio as the solution of
ϕ2 − ϕ− 1 = 0.
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Sτ is not a local optimum. If Sτ is not a local optimum, then it means that L, the total number
of swaps between insertion eτ and et, is at least ε · k ·N , where N is defined in the pseudocode as
⌈1/ε · logϕ 12/ε⌉. If we complement this with Claim 5.5 we get:

f(St) ≥ f(Sτ ) ·
(

1 +
ϕ− 1

k

)k logϕ 12/ε

≥ 12

ε
f(Sτ ) (because (1 + x

n)n ≥ 1 + x)

≥ 12

(1 + ϕ + 9ε)ε
f(OPTτ ),

where in the last inequality we crucially used the inductive assumption. By rearranging and using
that ε ∈ (0, 1) and ϕ ∈ (1, 2), we get the following simple relation, which proves that the value of
the elements arrived up to time τ can be safely ignored:

f(OPTτ ) ≤ εf(St). (6)

We have all the ingredient to deal with the last case:

f(OPTt) ≤ f(OPTt ∩Vτ ) + f(I) (by submodularity)

≤ f(OPTτ ) + f(I) (by optimality of OPTτ )

≤ εf(St) + f(I) (by Equation 6)

≤ εf(St) + f(I ∪A) (by monotonicity)

≤ (1 + 5ε)f(St) +

L∑
ℓ=1

f(rℓ | Aℓ−1 − rℓ) (by Claim 5.4)

≤
(

1 +
1

ϕ− 1
+ 9ε

)
f(St) (by Claim 5.3)

= (1 + ϕ + 9ε)f(St),

where in the last equality we used the definition of ϕ as the golden ratio. This last case concludes
the proof.

6 Experiments

In this section we evaluate the performance of our two algorithms on real-world data sets¶. We
report here three case studies, while we defer to Appendix C other (qualitatively analogous) results,
as well as further implementation details. We present additional experimental results that illustrate
the gains in worst-case approximation guarantee in Appendix B. As benchmarks we consider
the Swapping algorithm which provides a 4-approximation and is 1-consistent and the Sieve-
Streaming algorithm, a (2 + ε)-approximation that is not consistent (see Appendix A for further
details on the instability of the algorithm).

Influence Maximization. For our first case study we consider the problem of influence maxi-
mization on a social network graph [e.g., Norouzi-Fard et al., 2018, Halabi et al., 2020], where the
goal is to maintain a subset of the nodes to “influence” the rest of the graph. In such application,

¶The code of the experiments is available at https://github.com/fedefusco/Consistent-Submodular.
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(a) Influence Maximization on Facebook
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(b) k-medoid Clustering on RunInRome
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(c) LogDet Maximization on RunInRome
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(d) Influence Maximization on Facebook
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(f) LogDet Maximization on RunInRome

Figure 1: Experimental Results. The first row reports the objective values, the second one the cumulative consistency.

consistency is crucial as changing nodes may entail costs relative to terminating and issuing new
contracts. We use the Facebook dataset from McAuley and Leskovec [2012] that consists of 4039
nodes V and 88234 edges E and, as measure of influence we consider the monotone and submodular
dominating function:

f(S) = |{v ∈ V : ∃s ∈ S and (s, v) ∈ E}|.

Summarizing Geolocation Data. Our second and third case study concern the problem of
maintaining a stable and representative summary from a sequence of geographical coordinates
[e.g., Mirzasoleiman et al., 2017, Dütting et al., 2022]. We use the RunInRome dataset [Fusco,
2022], that contains 8425 positions recorded by running activity in Rome, Italy. We consider two
different objective functions used in geographical data summarization: the k-medoid and the kernel
log-det. Consider the k-medoid function on the metric set (V, d) L(S) = 1

|V |
∑

v∈V mine∈S d(e, v).
By introducing an auxiliary point e0 ∈ V we can turn L into a monotone submodular function
[Mirzasoleiman et al., 2013]:

f(S) = L(e0)− L(S + e0).

In our experiment we set e0 to be the first point of each dataset. For the second objective, consider

a kernel matrix K that depends on the pair-wise distances of the points, i.e. Ki,j = exp{−d(i,j)2

h2 }
where d(i, j) denotes the distance between the ith and the jth point in the dataset and h is some
constant. Following Krause and Golovin [2014], another common monotone submodular objective is
f(S) = log det(I + αKS,S), where I is the |S|−dimensional identity matrix, KS,S is the principal
sub-matrix corresponding to the entries in S, and α is a regularization parameter (that we set to 10
in the experiments).

Experimental Results. In Figure 1, we present the performance of our algorithms and the
benchmarks. The first row (Figures 1a to 1c) features the objective value of the dynamic solution
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maintained by the algorithms, while the second row (Figures 1d to 1f) reports the cumulative
number of changes in the solutions. The experiments show that our algorithms, Encompassing-Set
and Chasing-Local-Opt, achieve comparable value as Swapping and Sieve-Streaming; while
achieving notable savings in the total number of changes. For instance, in the setting of Figure 1d,
Swapping is significantly less consistent on aggregate than our algorithms (around a factor 25),
while Sieve-Streaming changes the solution about 3−4 times more often. The superior cumulative
consistency of our algorithms is also clear in the other experiments; in the settings of Figure 1e
and Figure 1f Sieve-Streaming performs order of magnitudes more changes than either of our
algorithms (about 500x and 10x), while Swapping performs between 50% and 100% more. The
strict “insertion rules” implemented by our two algorithms seem to guarantee that only the crucial
elements of the dataset are added to the solution. This phenomenon empirically induces a desirable
global stability over the entire stream – which goes beyond the theoretical per-round guarantees –
at the cost of possibly discarding moderately good elements.

7 Conclusion

In this paper, we initiate the study of consistency in submodular maximization. Consistency is
a natural measure of stability of the online solution maintained by an algorithm, and has been
extensively studied for clustering, facility location and online learning. We present two consistent
algorithms, Encompassing-Set and Chasing-Local-Opt, that exhibit a different approximation-
consistency trade off (3.147 + O(1/k) and 1-consistent vs. 2.619 + O(ε) and O(1/ε)-consistent).
They both substantially improve on the state of the art (a consistent 4-approximation), moving
the approximability boundary closer to the optimal approximation factor, as evidenced by the
information-theoretical lower bound of 2 that we prove to hold for any consistent deterministic
algorithm. Besides closing the remaining gap in the approximation factor, our work raises many
natural and compelling questions. First, the investigation of randomized algorithms may lead to
better results, even beyond the lower bound of 2. Second, while some known algorithms already
exhibit consistency, the explicit study of consistent algorithms for possibly non-monotone submodular
functions and more general constraints (e.g., matroids and knapsack) may lead to improved results.
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A Instability of known algorithms

We propose here two instances that highlight the instability of known algorithms. The instance
in Example A.1 is such that both the optimal solution and the output of the greedy algorithm
[Nemhauser et al., 1978] change entirely after every insertion. We then briefly discuss, in Example A.2,
a simple instance that forces the Sieve-Streaming algorithm [Badanidiyuru et al., 2014] and its
modified version Sieve-Streaming++ [Kazemi et al., 2019] to behave in a non-consistent way.

Example A.1. Let δ ∈ (0, 1) be a small parameter used to break ties, and consider the following
weighted covering instance, parameterized by an integer i and cardinality constraint k. The base set
E is given by the pairs {(a, b), for a, b ∈ {0, . . . , i}}. We refer to each pair (a, b) as an item. The
weights of the items are as follows: all items have unitary weight, but the following:

w(0,0) = 0

w(a,0) = δ · (2a + 1) for a ̸= 0

w(0,b) = δ · 2b for b ̸= 0

The weighted covering function is monotone submodular and is defined as follows:

f(S) =
∑

(a,b):∃s∈S,(a,b)∈s

w(a,b).

Note, f is defined over subsets of E, not on items. The subsets of E we consider in our instance are the
rows and columns of E: Ra is defined as {(a, 0), . . . , (a, i)}, while Cb is defined as {(0, b), . . . , (i, b)}.
The stream is constructed as follows: C1, R1, C2, R2, . . . , Cℓ, Rℓ, . . . , Ci, Ri. Consider now what
happens after 2k insertions. The optimal solution (which is the same output by running greedy
on the elements arrived so far) is as follows: if the last arrived element is a row, then the optimal
solution is given by the last k arrived rows; conversely, if the last arrived element is a column, then
the optimal solution is given by the last k arrived columns. This means that the k elements in the
dynamic solution change after each insertion! Note, the elements in the first row and first column
are only there for tie-breaking.

Example A.2. The Sieve-Streaming algorithms lazily maintains a set of geometrically increasing
active thresholds O (of the type τ = (1+ε)j , for some j ∈ Z and input parameter ε) and a candidate
solution for each one of them; then outputs the best of these candidates. In particular, when a new
element et arrives, with value way larger than all the previous ones, a new threshold is activated
and the corresponding candidate solution Sτ is initiated (Sτ = {et}). It is then clear that any
instance characterized by elements with dramatically increasing values would force the algorithm to
continuously change its solution. For instance, consider an additive function with f(et) = 2t: after
each insertion, the solution output by Sieve-Streaming would be the singleton {et}. Playing with
similar arguments, it is not hard to construct an instance that completely change solution every k
insertions (e.g., f(et) = k⌈t/k⌉).
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Algorithm 4 Swapping

1: Environment: stream π of elements, function f , cardinality k
2: S ← ∅
3: for each new arriving element e from π do
4: w(e)← f(e | S)
5: if |S| < k then
6: S ← S + e
7: else
8: se ← argmin{w(y) | y ∈ S}
9: if 2 · w(se) ≤ w(e) then

10: S ← S − se + e
11: Return S

B The analysis of Swapping is tight

The Swapping algorithm is known to provide a 4-approximation to the optimum [Chakrabarti and
Kale, 2015]. In this Section we first report the pseudocode for completeness, and then prove that the
analysis is tight, meaning that for any ε ∈ (0, 1), there exists an instance of the problem where the
solution computed by Swapping is at least a (4−ε) factor away from the optimal one (Example B.1).
Finally, in Figure 2 we report the empirical performances of Swapping, Sieve-Streaming, and
our algorithms on such hard instance.

Example B.1. Fix any ε ∈ (0, 1), and consider the following weighted covering instance, parameterized
by an integer i that we set later and the cardinality constraint k = 2i. The set of items is
E = {ejℓ | j ∈ {0, . . . , i}, ℓ ∈ {1, . . . , k}}. Consider the partition of E into i + 1 bundles of items

E0, E1, . . . , Ei, where each bundle has k items Ej = {ej1, . . . , e
j
k}. Let δ > 0 be a small positive

constant, which we will set later. The weight of the generic element ejℓ in E is wj
ℓ = 2j if j ̸= i

and wi
ℓ = 2i − δ otherwise. Now that we have the auxiliary set E, we can define the stream π of

subsets of E as follows. For 0 ≤ j < i, let πj be the subsequence {ej1}, . . . , {e
j
k}, E

j . Let πi be the
subsequence {ei1}, . . . , {eik} (without bundle Ei at the end). Then π is given by the concatenation
of π0, π1, . . . , πi.

Now, the behaviour of Swapping on π is clear: it maintains in the solution the last k singletons
that arrived up to bundle Ei−1 and ignores the elements in Ei (because of the small δ). In particular,
at the end of the stream outputs the solution S = {{ei−1

1 }, . . . , {e
i−1
k }}, for a value of

f(S) =

k∑
ℓ=1

wi−1
ℓ = k · 2i−1.

Consider now the optimal solution S⋆ given by the i bundles E0, . . . , Ei−1 and k − i singletons
from the last bundle, e.g., {ei1}, . . . , {eik−i}, for a value of

f(S⋆) =

i∑
j=0

k∑
ℓ=1

wj
ℓ −

k∑
ℓ=k−i+1

wi
ℓ ≥ k · (2i+1 − 1)− kδ − i · 2i.

Note, S⋆ is indeed the optimal solution because of our choice of k = 2i: the total weight of
the elements in E0 is k, while a singleton from Ei has weight 2i − δ. We can now focus on the
approximation factor, we have:

f(S⋆)

f(S)
≥ 4− 2

2i
(δ + 1 + i).
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Figure 2: Experimental results on the weighted covering instance of Example B.1, for δ = 0.01, i = 7, and ε = 0.1.

Now, the negative terms go to zero when i goes to infinity (and δ is small enough), thus for any
fixed precision ε it is possible to set i and δ so that f(S⋆)/f(S) ≥ 4− ε.

C Further Experimental Results

In our experiments, we set ε = 0.1 in Sieve-Streaming and Chasing-Local-Opt, while the
cardinality constraint k is consistently set to 20. The order of the stream of elements is the one
intrinsic in the dataset we consider. In Figure 3, we report three extra experimental case studies.
Besides studying the k-medoid and logdet objective on a random sample (10332 points) from the
Uber pickups dataset [Kaggle, 2020] (see the last two columns of Figure 3 for the results), we present
results for Personalized Movie Recommendation (first column of Figure 3).

Personalized Movie Recommendation. Movie recommendation systems are one of the common
experiments in the context of submodular maximization [e.g., Amanatidis et al., 2021, Dütting
et al., 2022, Halabi et al., 2023]. In this experiment, we have a large collection M of movies that
arrive online and we want to design a recommendation system that proposes movies to users. For
example, the summary may be a carousel of ‘recommended movies’ presented to a downstream user,
and we would like the selection to be fairly stable. We use the MovieLens 1M database [Harper and
Konstan, 2016], that contains 1000209 ratings for 3900 movies by 6040 users. Based on the ratings,
it is possible to associate to each movie m, respectively user u, a feature vector vm, respectively
vu. More specifically, we complete the users-movies rating matrix and then extract the feature
vectors using a singular value decomposition and retaining the first 30 singular values [Troyanskaya
et al., 2001]. Following the literature [e.g., Mitrovic et al., 2017], we measure the quality of a set of
movies S with respect to user u (identified by her feature vector vu), using the following monotone
submodular objective function:

fu(S) = (1− α)
∑
s∈S
⟨vu, vs⟩+ + α ·

∑
m∈M

max
s∈S
⟨vm, vs⟩,

where ⟨a, b⟩+ denotes the positive part of the scalar product. The first term is linear and sum the
predicted scores of user u (that is chosen as a random point in [0, 1]30 in our experiments) for the
movies in S, while the second term has a facility-location structure and is a proxy for how well S
covers all the movies. Finally, parameter α balances the trade off between the two terms; in our
experiments it is set to 0.95.
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(a) MovieLens Dataset
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(b) k-medoid Clustering on Uber Dataset
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(c) LogDet Maximization on Uber
Dataset
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(d) MovieLens Dataset

0 2000 4000 6000 8000 10000
Stream

0

100

200

300

400

500

Co
ns

ist
en

cy Sieve
Swapping
Chasing
Encompassing

(e) k-medoid Clustering on Uber Dataset
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(f) LogDet Maximization on Uber Dataset

Figure 3: Further Experimental Results. The first row reports the objective values, the second one the cumulative
consistency.
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