The problem of estimating the reaction coefficient of a system governed by a reaction-diffusion partial differential equation is tackled. An estimator relying on boundary measurements only is proposed. The estimator is based upon a setpoint regulation strategy and leads to an asymptotically converging estimate of the unknown reaction coefficient. The proposed estimator is combined with a state observer and shown to provide an asymptotic estimate of the actual system state. A numerical example supports and illustrates the theoretical results.

Parameter Identification for an Uncertain Reaction-Diffusion Equation via Setpoint Regulation / Besançon, Gildas; Cristofaro, Andrea; Ferrante, Francesco. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 8:(2024), pp. 1517-1522. [10.1109/lcsys.2024.3411836]

Parameter Identification for an Uncertain Reaction-Diffusion Equation via Setpoint Regulation

Cristofaro, Andrea
Membro del Collaboration Group
;
2024

Abstract

The problem of estimating the reaction coefficient of a system governed by a reaction-diffusion partial differential equation is tackled. An estimator relying on boundary measurements only is proposed. The estimator is based upon a setpoint regulation strategy and leads to an asymptotically converging estimate of the unknown reaction coefficient. The proposed estimator is combined with a state observer and shown to provide an asymptotic estimate of the actual system state. A numerical example supports and illustrates the theoretical results.
2024
Observers; Mathematical models; Regulation; Convergence; Parameter estimation; Hilbert space; Estimation; Adaptive systems; distributed parameter systems; observers for linear systems
01 Pubblicazione su rivista::01a Articolo in rivista
Parameter Identification for an Uncertain Reaction-Diffusion Equation via Setpoint Regulation / Besançon, Gildas; Cristofaro, Andrea; Ferrante, Francesco. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 8:(2024), pp. 1517-1522. [10.1109/lcsys.2024.3411836]
File allegati a questo prodotto
File Dimensione Formato  
Besançon_Parameter_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 602.19 kB
Formato Adobe PDF
602.19 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1721951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact