We consider a Serrin's type problem in convex cones in the Euclidean space and motivated by recent rigidity results we study the quantitative stability issue for this problem. In particular, we prove both sharp Lipschitz estimates for an L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-pseudodistance and estimates in terms of the Hausdorff distance.

Optimal quantitative stability for a Serrin-type problem in convex cones / Pacella, Filomena; Poggesi, Giorgio; Roncoroni, Alberto. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 307:4(2024). [10.1007/s00209-024-03555-z]

Optimal quantitative stability for a Serrin-type problem in convex cones

Pacella, Filomena;
2024

Abstract

We consider a Serrin's type problem in convex cones in the Euclidean space and motivated by recent rigidity results we study the quantitative stability issue for this problem. In particular, we prove both sharp Lipschitz estimates for an L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-pseudodistance and estimates in terms of the Hausdorff distance.
2024
Serrin's overdetermined problem; convex cones; symmetry; rigidity; integral identities; stability; quantitative estimates
01 Pubblicazione su rivista::01a Articolo in rivista
Optimal quantitative stability for a Serrin-type problem in convex cones / Pacella, Filomena; Poggesi, Giorgio; Roncoroni, Alberto. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 307:4(2024). [10.1007/s00209-024-03555-z]
File allegati a questo prodotto
File Dimensione Formato  
Pacella_Optimale-quantittative_2024.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 19.95 MB
Formato Adobe PDF
19.95 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1721544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact