We consider a Serrin's type problem in convex cones in the Euclidean space and motivated by recent rigidity results we study the quantitative stability issue for this problem. In particular, we prove both sharp Lipschitz estimates for an L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-pseudodistance and estimates in terms of the Hausdorff distance.
Optimal quantitative stability for a Serrin-type problem in convex cones / Pacella, Filomena; Poggesi, Giorgio; Roncoroni, Alberto. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - 307:4(2024). [10.1007/s00209-024-03555-z]
Optimal quantitative stability for a Serrin-type problem in convex cones
Pacella, Filomena;
2024
Abstract
We consider a Serrin's type problem in convex cones in the Euclidean space and motivated by recent rigidity results we study the quantitative stability issue for this problem. In particular, we prove both sharp Lipschitz estimates for an L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-pseudodistance and estimates in terms of the Hausdorff distance.File | Dimensione | Formato | |
---|---|---|---|
Pacella_Optimale-quantittative_2024.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
19.95 MB
Formato
Adobe PDF
|
19.95 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.