Currently, the identification of patient-specific therapies in cancer is mainly informed by personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treatment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, and patient-specific genomic and transcriptomic data with a prior knowledge signaling network using a Boolean-based formalism. By this approach, we derive personalized predictive models describing the signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combinatorial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work shows that patient-specific logic models have the potential to inform precision medicine approaches.

Unveiling the signaling network of FLT3-ITD AML improves drug sensitivity prediction / Latini, Sara; Venafra, Veronica; Massacci, Giorgia; Bica, Valeria; Graziosi, Simone; Pugliese, Giusj Monia; Iannuccelli, Marta; Frioni, Filippo; Minnella, Gessica; Marra, John Donald; Chiusolo, Patrizia; Pepe, Gerardo; Helmer Citterich, Manuela; Mougiakakos, Dimitros; Böttcher, Martin; Fischer, Thomas; Perfetto, Livia; Sacco, Francesca. - In: ELIFE. - ISSN 2050-084X. - 12:(2024). [10.7554/eLife.90532]

Unveiling the signaling network of FLT3-ITD AML improves drug sensitivity prediction

Venafra, Veronica;Pugliese, Giusj Monia;Iannuccelli, Marta;Frioni, Filippo;Fischer, Thomas;Perfetto, Livia
Penultimo
;
2024

Abstract

Currently, the identification of patient-specific therapies in cancer is mainly informed by personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treatment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, and patient-specific genomic and transcriptomic data with a prior knowledge signaling network using a Boolean-based formalism. By this approach, we derive personalized predictive models describing the signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combinatorial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work shows that patient-specific logic models have the potential to inform precision medicine approaches.
2024
Boolean model; acute myeloid leukemia; cancer biology; cancer therapy; computational biology; drug resistance; human; mouse; systems biology; tyrosine kinase
01 Pubblicazione su rivista::01a Articolo in rivista
Unveiling the signaling network of FLT3-ITD AML improves drug sensitivity prediction / Latini, Sara; Venafra, Veronica; Massacci, Giorgia; Bica, Valeria; Graziosi, Simone; Pugliese, Giusj Monia; Iannuccelli, Marta; Frioni, Filippo; Minnella, Gessica; Marra, John Donald; Chiusolo, Patrizia; Pepe, Gerardo; Helmer Citterich, Manuela; Mougiakakos, Dimitros; Böttcher, Martin; Fischer, Thomas; Perfetto, Livia; Sacco, Francesca. - In: ELIFE. - ISSN 2050-084X. - 12:(2024). [10.7554/eLife.90532]
File allegati a questo prodotto
File Dimensione Formato  
Latini_Unveiling _2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1718956
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact