We consider the elliptic equation −∆u + u = 0 in a bounded, smooth domain Ω ⊂ R^2 subject to the nonlinear Neumann boundary condition ∂u/∂ν =|u|^{ p−1}u on ∂Ω and study the asymptotic behaviour as the exponent p → +∞ of families of positive solutions up satisfying uniform energy bounds. We prove energy quantisation and characterise the boundary concentration. In particular we describe the local asymptotic profile of the solutions around each concentration point and get sharp convergence results for the L^∞-norm.

Sharp boundary concentration for a two-dimensional nonlinear Neumann problem / DE MARCHIS, Francesca; Fourti, Habib; Ianni, Isabella. - In: NONLINEARITY. - ISSN 0951-7715. - 37:10(2024). [10.1088/1361-6544/ad7450]

Sharp boundary concentration for a two-dimensional nonlinear Neumann problem

Francesca De Marchis
;
Isabella Ianni
2024

Abstract

We consider the elliptic equation −∆u + u = 0 in a bounded, smooth domain Ω ⊂ R^2 subject to the nonlinear Neumann boundary condition ∂u/∂ν =|u|^{ p−1}u on ∂Ω and study the asymptotic behaviour as the exponent p → +∞ of families of positive solutions up satisfying uniform energy bounds. We prove energy quantisation and characterise the boundary concentration. In particular we describe the local asymptotic profile of the solutions around each concentration point and get sharp convergence results for the L^∞-norm.
2024
nonlinear boundary value problem; large exponent; asymptotic analysis; concentration of solutions
01 Pubblicazione su rivista::01a Articolo in rivista
Sharp boundary concentration for a two-dimensional nonlinear Neumann problem / DE MARCHIS, Francesca; Fourti, Habib; Ianni, Isabella. - In: NONLINEARITY. - ISSN 0951-7715. - 37:10(2024). [10.1088/1361-6544/ad7450]
File allegati a questo prodotto
File Dimensione Formato  
DeMarchis_Sharp-boundary_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 457.47 kB
Formato Adobe PDF
457.47 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1718349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact