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Abstract
We consider the elliptic equation −∆u+ u= 0 in a bounded, smooth domain
Ω⊂ R2 subject to the nonlinear Neumann boundary condition ∂u/∂ν =
|u|p−1u on ∂Ω and study the asymptotic behaviour as the exponent p→+∞ of
families of positive solutions up satisfying uniform energy bounds. We prove
energy quantisation and characterise the boundary concentration. In particular
we describe the local asymptotic profile of the solutions around each concen-
tration point and get sharp convergence results for the L∞-norm.
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1. Introduction

LetΩ be a bounded domain inR2 with smooth boundary ∂Ω. This paper deals with the analysis
of solutions of the boundary value problem

∆u= u in Ω
u> 0 in Ω
∂u
∂ν = up on ∂Ω

(1.1)

where ν denotes the outer unit normal vector to ∂Ω and p> 1. Two dimensional elliptic
equations with nonlinear Neumann boundary conditions arise in many fields (conformal geo-
metry, corrosion modelling, etc.) see for instance [2, 3, 6–9, 16–18, 20–22, 29] and in partic-
ular, [4, 5, 15, 27] where problem (1.1) is considered.

Observe that solutions to (1.1) correspond to critical points in H1(Ω) of the free energy
functional

Ep (u) :=
1
2

ˆ
Ω

(
|∇u|2 + u2

)
dx− 1

p+ 1

ˆ
∂Ω

up+1 dσ,

and by the compact trace and Sobolev embeddings H1(Ω) ↪→ H
1
2 (∂Ω) ↪→ Lp(∂Ω), one can

derive the existence of at least a solution for any fixed exponent p> 1 by standard variational
methods (see for instance [27]). For multiplicity results for p large enough see Castro [4] and
for sign-changing solutions see for instance [20].

This paper is devoted to the study of the asymptotic behaviour, as p→+∞, of general
families of non-trivial solutions up to (1.1) under a uniform bound of their energy, namely we
assume

p
ˆ
Ω

(
|∇up|2 + u2p

)
dx→ β ∈ R, as p→+∞. (1.2)

In [27], and later in [5], this analysis has been carried out for the family of least energy
solutions. Note that these solutions satisfy the condition

p
ˆ
Ω

(
|∇up|2 + u2p

)
dx→ 2π e, as p→+∞,

which is a particular case of (1.2). In [27] it was proved that least energy solutions remain
bounded uniformly in p, and develop one peak on the boundary, whose location is controlled
by the Green’s function G for the Neumann problem{

∆xG(x,y) = G(x,y) in Ω,
∂G
∂νx

(x,y) = δy (x) on ∂Ω,
(1.3)
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y ∈ ∂Ω. Indeed the concentration point turns out to satisfy ∇τ(x0)R(x0) = 0, where τ(x0)
denotes a tangent vector at the point x0 ∈ ∂Ω, the Robin function is defined as R(x) := H(x,x),
where H is the regular part of G:

H(x,y) := G(x,y)− 1
π
log

1
|x− y|

. (1.4)

Later Castro [5] identified a limit problem by showing that a suitable scaling of the least
energy solutions converges in C1

loc(R2
+) to the regular solution

U(t1, t2) = log

(
4

t21 +(t2 + 2)2

)
(1.5)

of the Liouville problem


∆U= 0 in R2

+
∂U
∂ν = eU on ∂R2

+´
∂R2

+
eU = 2π and supR2

+

U<+∞.
(1.6)

He also proved that for least energy solutions

‖up‖∞ →
√
e as p→∞,

as it had been previously conjectured in [27].
Observe that problem (1.1) also admits families of solutions which develop m boundary

peaks as p→∞, for any integer m⩾ 1, as proved in [4] and indeed, recently in [15], it has
been proved that the boundary concentration behaviour characterises any family of solutions
to (1.1) which satisfy the uniform energy bound (1.2) (i.e. not only the least energy ones).

In order to state the results of [15] we define, for a sequence pn →+∞, the blow-up set S
of the sequence pnupn , where upn solves (1.1), to be the subset

S :=
{
x̄ ∈ Ω : ∃ (xn)n ∈ Ω, xn → x̄, with pnupn (xn)→+∞

}
. (1.7)

We summarise the results in [15] as follows:

Theorem I. Let (up)p be a family of solutions of (1.1) satisfying (1.2). Then there exist
C,c, c̃, C̃> 0 such that

c⩽ ‖up‖L∞(Ω) ⩽ C, for p> 1 (1.8)

c̃⩽ p
ˆ
∂Ω

uppdσ ⩽ C̃, for p large. (1.9)

3
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Furthermore for any sequence pn →+∞, there exists a subsequence (still denoted by pn) such
that the following statements hold true:

(1) There exists an integer m⩾ 1, a finite collection of m distinct points x̄i ∈ ∂Ω, i = 1, . . . ,m,
such that the blow-up set S of the sequence pnupn is given by

S = {x̄1, x̄2, . . . , x̄m} . (1.10)

(2) There exist m positive constants ci > 0, i = 1, . . . ,m, such that

pnu
pn
pn

∗
⇀

m∑
i=1

ciδx̄i in the sense of Radon measures on ∂Ω

and

lim
n→∞

pnupn =
m∑
i=1

ciG(., x̄i) in C1
loc(Ω \ S), Lt(Ω) and Lt(∂Ω), ∀ t ∈ [1,+∞), (1.11)

where G is the Green’s function for the Neumann problem (1.3).
(3) The points x̄i, i = 1, . . . ,m, satisfy

ci∇τ(x̄i)H(x̄i, x̄i)+
∑
h̸=i

ch∇τ(x̄i)G(x̄i, x̄h) = 0, (1.12)

where τ(x̄i) is a tangent vector to ∂Ω at x̄i and H is the regular part of G as defined in (1.4).

Theorem I shows boundary concentration at a finite number of points in S ⊂ ∂Ω, moreover
by (1.11) and (A.4) it follows that in any compact subset of Ω \ S

pup ⩽ C, (1.13)

and so

lim
n→∞

upn = 0 in C1
loc

(
Ω \ S

)
. (1.14)

Many questions arise from this result:

• How does upn behave close to the points x̄i?
In particular, what is the asymptotic behaviour of ‖upn‖∞?

• Can one compute the constants ci which appear at points (2) and (3 ) in theorem I?
• What one can say about the total energy of upn?

Looking at the asymptotic results for least energy solutions [5, 27] and at the existence results
of solutions with multiple concentrations points [4], it was conjectured in [15] that for general
solutions of (1.1) under the uniform energy assumption (1.2) the constants ci’s must be all
equal and that an asymptotic quantisation of the energy must occur, more precisely it was
conjectured that:

4
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ci = 2π
√
e, for 1⩽ i ⩽ m, (C1)

pn

ˆ
Ω

(
|∇upn |2 + u2pn

)
dx→ m · 2π e; (C2)

as n→∞, and furthermore that

‖up‖L∞(Ω) →
√
e, (C3)

as p→+∞.
Here we answer these questions, proving in particular (C1)–(C3).

Theorem 1.1. Let (up)p be a family of solutions to (1.1) satisfying (1.2) and let pn →+∞, as
n→∞, be the subsequence such that the statements in theorem I hold true. Then

(i)

ci = lim
δ→0

lim
n→+∞

pn

ˆ
Bδ(x̄i)∩∂Ω

upnpndx= 2π
√
e, for 1⩽ i ⩽ m;

(ii)

lim
δ→0

lim
n→∞

‖upn‖L∞(Bδ(x̄i)∩Ω) =
√
e ∀ i = 1, . . . ,m,

where Bδ(x̄i) is a ball of center at x̄i and radius δ > 0;
(iii)

lim
n→∞

pn

ˆ
Ω

(
|∇upn |2 + u2pn

)
dx= m · 2π e;

(iv) let δ > 0 be such that B2δ(x̄i)∩B2δ(x̄j) = ∅ for i 6= j and let (yi,n)n ⊂ Bδ(x̄i)∩Ω, i =
1, . . . ,m, be the sequences of local maxima of upn around x̄i, namely

upn (yi,n) := ‖upn‖L∞(Bδ(x̄i)∩Ω),

then (yi,n)n ⊂ ∂Ω, limn→∞ |yi,n− x̄i|= 0 and, setting µi,n :=
(
pnupn(yi,n)

pn−1
)−1

(→ 0),
then

wi,n (t) :=
pn

upn (yi,n)

(
upn
(
Ψ−1
i (bi,n+µi,nt)

)
− upn (yi,n)

)
,

where bi,n =Ψi(yi,n), t ∈ Tn := {t ∈ R2 : bi,n+µi,nt ∈Ψi(Ω∩BRi(x̄i))} and Ψi is a
change of coordinates which flattens ∂Ω near x̄i and Ri > 0 is a suitable radius (see
section 2.1).
Then

lim
n→∞

wi,n = U in C1
loc

(
R2

+

)
,

where U is the solution (1.5) of the Liouville problem (1.6).
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Theorem 1.1 shows that the conjectures (C1) and (C2) are true, furthermore points (ii) and
(iv) provide information on the solutions close to the concentration points x̄i for p large, in
particular we identify the same limit profile U around each concentration point. We stress
that in [15] only the existence of a first bubble U was proved, scaling the solution around the
sequence of global maxima, while the behaviour around the other concentration points was
unknown. Observe that U is the same profile describing the least energy solutions (for which
m= 1, see [5]), and indeed our theorem, combined with the results in [15] (theorem I), extends
to general families of solutions the asymptotic results proved in [5, 27] for least energy solu-
tions, thus giving a complete characterisation of the asymptotic behaviour for problem (1.1).
We remark that the number m of concentration points coincides with the maximal number k
of bubbles U which may appear as limit profiles (for details see proposition 3.3 and (4.33) in
proposition 4.6).

We stress that from (1.12) and point (i) in theorem 1.1 we also deduce that the concentration
m-tuple (x̄1, . . . , x̄m) ∈ ∂Ω is a critical point of the function ϕm : (∂Ω)m → R

ϕm (x1, . . . ,xm) :=
m∑
i=1

H(xi,xi)+
m∑
i ̸=h

G(xi,xh) . (1.15)

We point out that (1.14) and (ii)-theorem 1.1 clearly imply that also conjecture (C3) holds
true:

Corollary 1.2. Let (up)p be a family of solutions to (1.1) satisfying (1.2). Then

lim
p→+∞

‖up‖∞ =
√
e. (1.16)

It is worth to remark the interesting analogy between the results here obtained for the
Neumann problem (1.1) and those known for the Lane-Emden equation under Dirichlet bound-
ary condition  ∆u= |u|p−1u in Ω

u> 0 in Ω
u= 0 on ∂Ω.

(1.17)

The asymptotic behaviour as p→+∞ of families (up)p of solutions of (1.17), under the
assumption that condition (1.2) holds, is well understood after the works [1, 10–12, 23, 24,
28], and the results established therein can be tought as the analogs of theorems I and 1.1. In
particular it is known that up stays uniformly bounded and that, up to subsequences, peaks-up
as m points in the domain Ω [10]. Furthermore, it is proved [11, 12, 28] that (1.16) holds and
that the concentration appears at a critical point of the functional (1.15), now defined on Ωm,
where G and H are respectively Green’s and Robin’s functions of −∆ in Ω under Dirichlet
boundary conditions. Moreover there is quantisation of the energy, since

lim
n→∞

pn

ˆ
Ω

(
|∇upn |2 + u2pn

)
dx= m · 8π e,

and limit profiles are identified.
In this work we perform a blow-up analysis for the solutions of problem (1.1) following the

approach developed in [11, 12] in the framework of the Lane–Emden Dirichlet problem (1.17).
Of course one has to be very careful since nowwe have a boundary concentration phenomenon
due to the Neumann boundary condition, while the concentration for problem (1.17) is in Ω.

6
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We prove theorem 1.1 by first performing an exhaustion method which provides a construc-
tion of concentration points. This approach relies on the energy bound assumption (1.2) and
comes with pointwise estimates of the solutions and with the description of the local asymp-
totic profile U. Similar methods have been exploited for more general 2D Dirichlet problems
(see [10, 13]), also in higher dimension (see for instance [14, 25]). We have adapted the con-
struction to deal with the Neumann problem, taking advantage also of the results in [15], this
part can be found in section 3.

Afterwards, in section 4, we refine the asymptotic analysis, showing that one can actu-
ally scale the solutions around local maxima and deriving the sharp constants and the energy
quantisation. These proofs rely on a detailed local blow-up analysis, in particular we use a
local Pohozaev identity (see the proof of lemma 4.5), pointwise estimates of the rescaled func-
tions (see lemma 4.7) and exploit the Green representation formula for the solutions to (1.1)
(see the proof of proposition 4.8). Finally, at the end of section 4, we complete the proof of
theorem 1.1.

We have postponed to appendix some technical estimates used throughout the paper.

2. Notations

We list here some notations used throughout the paper. First the coordinates of a point will be
denoted as follows: x= (x1,x2) ∈ R2.

Newt we denote the open ball centered at a point q= (q1,q2) ∈ R2 and radius r> 0 as
Br(q) := {x ∈ R2 : |x− q|< r}. We also define the open half ball as

B+
r (q) := Br (q)∩

{
x ∈ R2 : x2 > q2

}
, (2.1)

its flat boundary as

Dr (q) := Br (q)∩
{
x ∈ R2 : x2 = q2

}
(2.2)

and its curved boundary as

Sr (q) :=
{
x ∈ R2 : |x− q|= r, x2 > q2

}
. (2.3)

Moreover dist(x,∂Ω) = infy∈∂Ω |x− y|. We stress that C will be a positive constant which can
change from line to line.

2.1. Change of coordinates which straightens out ∂Ω near a point on ∂Ω

We assume that ∂Ω ∈ C2. We fix a point on ∂Ω that we denote by Q ∈ ∂Ω, in the following
the change of coordinates defined below will be applied around the points in S= {x̄1, . . . , x̄m}
(see theorem 1.1) and around limit points of suitable special sequences (see section 3).

It can be proved that there exist R> 0 and a C2 function ρ : R→ R such that, up to reorder-
ing the coordinates and reorienting the axis

Ω∩BR (Q) =
{
x=

(
x1,x2

)
∈ BR (Q) : x2 > ρ

(
x1
)}

∂Ω∩BR (Q) =
{
x=

(
x1,x2

)
∈ BR (Q) : x2 = ρ

(
x1
)}
.

Furthermore, up to a suitable translation of the axis we can assume that

Q= (0,0)

7
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so that

ρ(0) = 0

and, up to a suitable rotation of the axis, we can also assume that

ρ ′ (0) = 0.

We define the map

y=Ψ (x) (2.4)

defined by {
y1 = x1

y2 = x2 − ρ
(
x1
)

then Ψ is one-to-one and det(DΨ) = 1. Note that Ψ is a C2 function which maps Ω∩BR(Q)
into a subset of the half-plane, more precisely

ΩQ := Ψ(Ω∩BR (Q))⊂
{
y=

(
y1,y2

)
: y2 > 0

}
∂FΩQ := Ψ(∂Ω∩BR (Q))⊂

{
y=

(
y1,y2

)
: y2 = 0

}
and the point Q= 0 is mapped to the origin.

We define

ũp (y) := up
(
Ψ−1 (y)

)
, for all y ∈ ΩQ ∪ ∂FΩQ (2.5)

then (see [15]) ∆ũp− ũp− 2ρ ′ (y1) ∂2ũp
∂y1∂y2 − ρ ′ ′ (y1) ∂ũp

∂y2 +
(
ρ ′ (y1))2 ∂2ũp

∂(y2)2
= 0 in ΩQ

∂ũp
∂y2

[
−1+ ρ ′ (y1)− (ρ ′ (y1))2]= ũpp in ∂FΩQ

Let xp ∈ Ω be a family of points such that Q= limp→+∞ xp and
µp := (pup(xp)p−1)−1 → 0.

Hence for p large xp ∈ BR(Q) and so the point

qp := Ψ(xp) ∈ ΩQ ∪ ∂FΩQ

is well defined.
We scale ũp around qp, setting

zp (t) :=
p

ũp (qp)
(ũp (qp+µpt)− ũp (qp)) , for t ∈ TQ,p ∪ ∂FTQ,p

where

TQ,p :=
{
t=
(
t1, t2

)
∈ R2 : qp+µpt ∈ ΩQ

}
(2.6)

∂FTQ,p :=
{
t=
(
t1, t2

)
∈ R2 : qp+µpt ∈ ∂FΩQ

}
(2.7)

8
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Let us observe that we can choose R̄> 0 such that

B R̄
µp

(0)∩

{
t : t2 >−

q2p
µp

}
⊂ TQ,p (2.8)

and

B R̄
µp

(0)∩

{
t : t2 =−

q2p
µp

}
⊂ ∂FTQ,p (2.9)

Indeed, let us fix R̄> 0 so that

B+
2R̄ (0)⊂ ΩQ

(
and D2R̄ (0) := B2R̄ (0)∩

{
y2 = 0

}
⊂ ∂FΩQ

)
.

Since qp → 0 (because xp → Q) then, for p large, |qp|⩽ R̄/2 hence

BR̄ (qp)∩
{
y2 ⩾ 0

}
⊂ B2R̄ (0)

+ ∪D2R̄ (0) .

Equations (2.8) and (2.9) follow observing that

qp+µpt ∈ BR̄ (qp)∩{y2 ⩾ 0} ⇔

{
|t|⩽ R̄

µp

t2 ⩾− q2p
µp

.

The function zp satisfies
Lpzp− (µp)

2 zp = p(µp)
2 in B R̄

µp
(0)∩{t : t2 >− q2p

µp
}

Npzp =
(
1+ zp

p

)p
in B R̄

µp
(0)∩{t : t2 =− q2p

µp
}

where, since ρ ′(0) = 0 and ρ ′ ′ is continuous:

Lp := ∆− 2ρ ′ (q1p+µpt
1
) ∂2

∂t1∂t2
−µpρ

′ ′ (q1p+µpt
1
) ∂

∂t2

+
[
ρ ′ (q1p+µpt

1
)]2 ∂2

∂ (t2)2
−→

p→+∞
∆

and

Np :=
[
−1+ ρ ′ (q1p+µpt

1
)
−
[
ρ ′ (q1p+µpt

1
)]2] ∂

∂t2
−→

p→+∞

∂

∂ν
.

Thanks to these convergences one can restrict to consider the case when ∂Ω is flat near Q,
since the same arguments adapt to the non-flat case (see for instance [5, 15]).

9
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3. Exhaustion of concentration points

Given a family (up) of solutions of (1.1), for a sequence pn →+∞we define the concentration
set S̃ of upn as

S̃ :=
{
x ∈ Ω : ∃ (xn)n ∈ Ω, xn → x, with pnu

pn−1
pn (xn)→+∞

}
⊂ Ω. (3.1)

Clearly

S̃ ⊆ S = {x̄1, . . . , x̄m} (⊂ ∂Ω) , (3.2)

where S is the blow-up set of the sequence pnupn (see (1.7) for the definition) characterised
in [15] (see theorem I in the Introduction). Indeed by the definition of S̃ , for any x ∈ S̃ there
exists a sequence xn ∈ Ω, xn → x such that

pnu
pn−1
pn (xn)→+∞,

then clearly

pnupn (xn)→+∞,

hence, by the definition of S, x ∈ S and (3.2) is proved.
Let us also note that

liminf
n→∞

upn (xn)⩾ 1.

As a consequence, up to reordering the points in S, there exists N⩽ m such that

S̃ = {x̄1, . . . , x̄N} . (3.3)

In this section we will prove the existence of a maximal number k of concentrating
sequences xn for the set S̃, satisfying specific properties, in particular we get pointwise estim-
ates and a description of up close to the points of S̃ . The main result is contained in proposition
3.3 below.

We introduce some notation. For l ∈ N \ {0} families of points (xi,p)p ⊂ Ω, i = 1, . . . , l, such
that

pup−1
p (xi,p)→+∞ as p→+∞, (3.4)

we define the parameters

µi,p :=
(
pup−1

p (xi,p)
)−1

(→ 0, as p→+∞) , (3.5)

and introduce the following properties:

(P l
1) For any i, j ∈ {1, . . . , l}, i 6= j,

lim
p→+∞

|xi,p− xj,p|
µi,p

=+∞.

10
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(P l
2) For any i ∈ {1, . . . , l},

lim
p→+∞

dist(xi,p,∂Ω)
µi,p

= 0.

(P l
3) For any i = 1, . . . , l, let Qi ∈ ∂Ω be such that

Qi := lim
p→+∞

xi,p,

let Ψi be the change of coordinates which straightens ∂Ω in a neighbourhood of Qi of
radius Ri > 0, let qi,p =Ψi(xi,p) and let

zi,p (t) :=
p

up (xi,p)

(
up
(
Ψ−1
i (qi,p+µi,pt)

)
− up (xi,p)

)
for t ∈ Ti,p ∪ ∂FTi,p, (3.6)

where Ti,p := TQi,p, see (2.6) and (2.7) in section 2 for the notations.
Then

Ti,p ∪ ∂FTi,p → R2
+ and zi,p (t)−→ U(t) in C1

loc

(
R2

+

)
as p→+∞, (3.7)

where U is the function in (1.5).
(P l

4) There exists C > 0 such that

pRl,p (x)u
p−1
p (x)⩽ C

for all p> 1 and all x ∈ Ω. where Rl,p is the function

Rl,p (x) := min
i=1,...,l

|x− xi,p|, ∀x ∈ Ω. (3.8)

Remark 3.1. If we assume that there exist l ∈ N \ {0} families of points (xi,p)p ⊂ Ω, i =
1, . . . , l which satisfies (3.4) and such that property (P l

4) holds true, then it is clear that the
concentration set defined in (3.1) reduces to

S̃ =

{
lim

p→+∞
xi,p, i = 1, . . . , l

}
.

Lemma 3.2. If there exists l ∈ N \ {0} such that the properties (P l
1), (P l

2) and (P l
3) hold for

families (xi,p)i=1,...,l of points satisfying (3.4), then

p
ˆ
Ω

(
|∇up|2 + u2p

)
dx⩾ 2π

l∑
i=1

α2
i + op (1) as p→+∞,

where αi := liminfp→+∞ up(xi,p) (⩾ 1, by (3.4)).

Proof. Let us fix i ∈ {1, . . . , l}. Since limp→+∞ xi,p = Qi ∈ ∂Ω and limp→+∞µi,p = 0, then
for any R> 0 and p sufficiently large BRµi,p(xi,p)∩ ∂Ω⊂ Bδi(Qi).

As in section 2.1 we can assume w.l.o.g. that Qi = 0. We claim that(
BRµi,p

3
(qi,p)∩

{
y2 = 0

})
⊂Ψ

(
BRµi,p (xi,p)∩ ∂Ω

)
, (3.9)

11
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where qi,p := Ψ(xi,p). GivenΨ as in (2.4), it follows thatΨ−1 is a C2 function in a neighbour-
hood of (0,0) = Ψ(Qi) furthermore DΨ−1(0,0) = I. Thus

∃δ > 0 such that ‖DΨ−1 (y)‖⩽ 3 ∀y ∈ B+
δ (0,0). (3.10)

Since limp→+∞ qi,p =Ψ(Qi) = (0,0), then for p sufficiently large we have(
BRµi,p

3
(qi,p)∩

{
y2 = 0

})
⊂ B+

δ (0,0).

Let y= (y1,0) ∈ (BRµi,p

3
(qi,p)∩{y2 = 0}) then y=Ψ(x) where

|x− xi,p|= |Ψ−1 (y)−Ψ−1 (qi,p) |
⩽ sup

B+
δ (0,0)

‖DΨ−1‖|y− qi,p|

(3.10)
⩽ Rµi,p.

This proves (3.9).
Let us write, for any R> 0, recalling the definition of ũp in (2.5)

p
ˆ
BRµi,p (xi,p)∩∂Ω

up+1
p dσ (x) ⩾ p

ˆ
Ψi(BRµi,p (xi,p)∩∂Ω)

ũp+1
p (y) dσ (y)

(3.9)
⩾ p

ˆ
BRµi,p

3

(qi,p)∩{y2=0}
ũp+1
p (y) dσ (y)

⩾ pµi,p

ˆ
BR
3
(0)∩

{
t2=−

q2i,p
µi,p

} ũp+1
p (qi,p+µi,pt) dt

1

(3.5)
⩾ up (xi,p)

2
ˆ
BR
3
(0)∩

{
t2=−

q2i,p
µi,p

} ũp+1
p (qi,p+µi,pt)

up+1
p (xi,p)

dt1

⩾ up (xi,p)
2
ˆ
BR
3
(0)∩

{
t2=−

q2i,p
µi,p

}
(
1+

zi,p (t)
p

)p+1

dt1. (3.11)

Thanks to (P l
3), we have

‖zi,p−U‖
L∞
(
B+
R/3

) = op (1) as p→+∞. (3.12)

Thus by (3.11), (3.12) and Fatou’s lemma

liminf
p→+∞

(
p
ˆ
BRµi,p (xi,p)∩∂Ω

up+1
p dσ (x)

)
⩾ α2

i

ˆ
BR/3(0)∩{t2=0}

eU(t) dt1. (3.13)

Moreover by virtue of (P l
1) it is not hard to see that BRµi,p(xi,p)∩BRµj,p(xj,p) = ∅ for all

i 6= j. Hence, in particular, thanks to (3.13)

liminf
p→+∞

(
p
ˆ
∂Ω

up+1
p dσ (x)

)
⩾

l∑
i=1

(
α2
i

ˆ
BR/3(0)∩{t2=0}

eU(t) dt1
)
.

12
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At last, since this holds for any R> 0, we get

p
ˆ
Ω

(
|∇up|2 + u2p

)
dx= p

ˆ
∂Ω

up+1
p dσ (x)⩾

l∑
i=1

α2
i

ˆ
∂R2

+

eU(t) dt1 + o(1) = 2π
l∑

i=1

α2
i + o(1) ,

as p→+∞.

Using an exhaustion method, we establish the existence of a maximal number k of ‘bubbles’
U appearing about the points of the boundary subset S̃.

Proposition 3.3. Let (up) be a family of solutions to (1.1) and assume that (1.2) holds. Then
after passing to a subsequence pn →+∞ as n→∞, there exist an integer k⩾ 1 and k families
of points (xi,pn) in Ω i = 1, . . . ,k such that (Pk

1), (Pk
2), (Pk

3) and (Pk
4) hold. Moreover given

any family of points xk+1,pn , it is impossible to extract a new sequence from the previous one
such that (Pk+1

1 ), (Pk+1
2 ), (Pk+1

3 ) and (Pk+1
4 ) hold with the sequences (xi,pn), i = 1, . . . ,k+ 1.

Furthermore, there exists N⩽min{m,k} (where m is the number of points of the set S) such
that, up to reordering the points x̄i ∈ S , it holds

S̃ =

{
lim

n→+∞
xi,pn , i = 1, . . . ,k

}
= {x̄1, . . . , x̄N} , (3.14)

where S̃ is the concentration set defined in (3.1).

Remark 3.4. The point x1,pn can be taken to be a maximum point of upn in Ω, hence it belongs
to ∂Ω, see STEP 1 below. The other sequences xi,p, i = 2, . . . ,k are instead in Ω.

Observe also that the number N of distinct points in S̃ satisfies N⩽ k.

Proof. For simplicity throughtout the proof we will denote any sequence pn →+∞ as n→∞
simply by p.

STEP 1. We show that there exists a family (x1,p) of points in Ω such that, after passing to a
sequence (P1

2 ) and (P1
3 ) hold.

Let us choose x1,p be a point inΩwhere up achieves its maximum. In [15] it has been proved
that x1,p ∈ ∂Ω and that it satisfies (P1

3 ).

STEP 2. We assume that (Pn
1 ), (Pn

2 ) and (Pn
3 ) hold for some n ∈ N \ {0}. Then we show that

either (Pn+1
1 ), (Pn+1

2 ) and (Pn+1
3 ) hold or (Pn

4 ) holds, namely there exists C > 0 such that

pRn,p (x)u
p−1
p (x)⩽ C

for all x ∈Ω, with Rn,p defined as in (3.8).
Let n ∈ N \ {0} and assume that (Pn

1 ), (Pn
2 ) and (Pn

3 ) hold while

sup
x∈Ω

(
pRn,p (x)u

p−1
p (x)

)
→+∞ as p→+∞. (3.15)

We let xn+1,p ∈ Ω be such that

pRn,p (xn+1,p)u
p−1
p (xn+1,p) = sup

x∈Ω

(
pRn,p (x)u

p−1
p (x)

)
. (3.16)

13
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By (3.15), (3.16) and since Ω is bounded it is clear that

pup−1
p (xn+1,p)→+∞ as p→+∞

and

liminf p→+∞up (xn+1,p)⩾ 1. (3.17)

We will prove that (Pn+1
1 ), (Pn+1

2 ) and (Pn+1
3 ) hold with the added sequence (xn+1,p).

Proof of (Pn+1
1 ).

We first claim that

|xi,p− xn+1,p|
µi,p

→+∞ as p→+∞ (3.18)

for all i = 1, . . . ,n and µi,p as in (3.5).
Let us assume by contradiction that there exists i ∈ {1, . . . ,n} such that |xi,p−

xn+1,p|/µi,p → R as p→+∞ for some R⩾ 0. Then the points xi,p and xn+1,p are close to
each other and by virtue of (Pn

2 ), they are very close to the boundary of Ω. Let us denote
qi,p := Ψi(xi,p) and qn+1,p := Ψi(xn+1,p) where Ψi is the function defined by (2.4) around the
boundary point Qi := limp→+∞ xi,p. Since Ψi is C2, (|qi,p− qn+1,p|/µi,p)p is bounded. Up to
subsequence, |qi,p− qn+1,p|/µi,p → R ′ as p→+∞ for some R ′ ⩾ 0. Thanks to (Pn

3 ), we get

lim
p→+∞

p|xi,p− xn+1,p|u
p−1
p
(
xn+1,p

)
= lim

p→+∞

|xi,p− xn+1,p|
µi,p

(
up
(
xn+1,p

)
up
(
xi,p
) )p−1

= lim
p→+∞

|xi,p− xn+1,p|
µi,p

up
(
Ψ−1
i

(
qn+1,p

))
up
(
xi,p
)

p−1

= lim
p→+∞

|xi,p− xn+1,p|
µi,p

1+
zi,p
(
µ−1
i,p

(
qn+1,p− qi,p

))
p

p−1

=
4R(

t1
)2

+
(
t2 + 2

)2 <+∞
(
where

(
t1
)2

+
(
t2
)2

= R ′2
)
,

against (3.15) and (3.16), thus (3.18) holds.
Setting

µn+1,p :=
[
pup−1

p (xn+1,p)
]−1 → 0 as p→+∞, (3.19)

by (3.15) and (3.16) we deduce that

Rn,p (xn+1,p)

µn+1,p
→+∞ as p→+∞. (3.20)

Then (3.18), (3.20) and (Pn
1 ) imply that (Pn+1

1 ) holds with the added sequence (xn+1,p).

14
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Proof of (Pn+1
2 ).

Let us prove that for any S> 0

sup
BSµn+1,p (xn+1,p)∩Ω

up (x)
up (xn+1,p)

⩽ 1+O

(
Sµn+1,p

(p− 1)Rn,p (xn+1,p)

)
. (3.21)

Let x ∈ BSµn+1,p(xn+1,p)∩Ω, since xn+1,p satisfies (3.16),

Rn,p (x)up (x)
p−1 ⩽ Rn,p (xn+1,p)u

p−1
p (xn+1,p) .

Furthermore |x− xn+1,p|⩽ Sµn+1,p, thus

Rn,p (x) ⩾ min
i=1,...,n

|xn+1,p− xi,p| − |x− xn+1,p|

⩾ Rn,p (xn+1,p)− Sµn+1,p.

Then, since for p large by (3.20), Rn,p(xn+1,p)− Sµn+1,p > 0

up−1
p (x)⩽ Rn,p (xn+1,p)

Rn,p (xn+1,p)− Sµn+1,p
up−1
p (xn+1,p)

⩽ 1

1− S
Rn,p(xn+1,p)

µn+1,p
up−1
p (xn+1,p)

⩽
(
1+O

(
Sµn+1,p

Rn,p (xn+1,p)

))
up−1
p (xn+1,p) ,

thus (3.21) is proved.

Let us now introduce the rescaled function

vn+1,p (t) :=
p

up (xn+1,p)
[up (xn+1,p+µn+1,pt)− up (xn+1,p)] ,∀t ∈ Ω̃n+1,p

:= µ−1
n+1,p (Ω− xn+1,p) . (3.22)

Observe that by definition for t ∈ Ω̃n+1,p ∩BS(0)

vn+1,p (t) = p

(
up (x)

up (xn+1,p)
− 1

)
, (3.23)

where x := xn+1,p+µn+1,pt ∈ Ω∩BSµn+1,p(xn+1,p), hence by (3.21) and (3.20) it follows that
for any S> 0 one has

limsup
p→+∞

sup
Ω̃n+1,p∩BS(0)

vn+1,p ⩽ 0. (3.24)

Next to show (Pn
2 ) we argue by contradiction assuming that limp→+∞ dist(xn+1,p,∂Ω)

µ−1
n+1,p 6= 0. Up to a subsequence two cases may occur:

(1) dist(xn+1,p,∂Ω)µ
−1
n+1,p −→ L> 0,

(2) dist(xn+1,p,∂Ω)µ
−1
n+1,p −→+∞.

15
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Case (1). Let us start by the first case.We have xn+1,p −→ Qn+1 ∈ ∂Ω.Wemay assumewithout
loss of generality that the unit outward normal to ∂Ω at Qn+1 is −e2, where e2 is the second
element of the canonical basis of R2, and that ∂Ω is contained in the hyperplane x2 = 0. For
simplicity wewill also assume that ∂Ω is flat nearQn+1, we point out that all our arguments can
be adapted to the non-flat case considering the change of coordinates which straightens out ∂Ω
near Qn+1, introduced in section 2.1 (see for instance [5, theorem 3]). The flatness assumption
means that the function Ψn+1 in (2.4) is the identity, namely that there exists R := Rn+1 > 0
such that Ω∩B+

R (Qn+1) = B+
R (Qn+1) and ∂Ω∩ ∂B+

R (Qn+1) = DR(Qn+1).
In particular, for p large one has that x2n+1,p = dist(xn+1,p,∂Ω), so that by assumption

x2n+1,p

µn+1,p
−→ L (3.25)

as p→+∞.
Let us project xn+1,p on the boundary defining the point x̂n+1,p := (x1n+1,p,0)(∈ ∂Ω), and

let us set

sn+1,p (t) := vn+1,p

(
t1, t2 −

x2n+1,p

µn+1,p

)
, ∀t ∈ Ω̂n+1,p := µ−1

n+1,p (Ω− x̂n+1,p)

(3.22)
=

p
up (xn+1,p)

[up (x̂n+1,p+µn+1,pt)− up (xn+1,p)] . (3.26)

We can choose δ > 0 such that B+
δ (x̂n+1,p)⊂ B+

R (Qn+1), hence

B+
δ

µn+1,p

(0)⊂ Ω̂n+1,p and D δ
µn+1,p

(0)⊂ ∂Ω̂n+1,p

and, by (1.1), the rescaled function sn+1,p solves the system
−∆sn+1,p+µ2

n+1,psn+1,p =−µ2
n+1,pp in B+

δ
µn+1,p

(0) ,

∂sn+1,p

∂ν
=

(
1+

sn+1,p

p

)p

on D δ
µn+1,p

(0) ,
(3.27)

furthermore for any σ> 0, by (3.25), there exists S> 0 such that B+
σ (0)⊂ BS(0,

x2n+1,p

µn+1,p
)∩

Ω̂n+1,p, then

limsup
p→+∞

sup
B+
σ (0)

sn+1,p (t) ⩽ limsup
p→+∞

sup

BS

(
0,

x2n+1,p
µn+1,p

)
∩Ω̂n+1,p

vn+1,p

(
t1, t2 −

x2n+1,p

µn+1,p

)

⩽ limsup
p→+∞

sup
BS(0)∩Ω̃n+1,p

vn+1,p (t)
(3.24)
⩽ 0. (3.28)

Arguing similarly as in the proof of [5, lemma 2], we will prove that for any r> L
3 there exist

C> 0, pr > 1 and α ∈ (0,1) such that

‖sn+1,p‖C1,α(B+
r (0)) ⩽ C, for any p> pr. (3.29)

16
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We first observe that for any fixed q⩾ 2 and for p sufficiently large
ˆ
B+
4r (0)

|pµ2
n+1,p|q dx= op (1) (3.30)

and ˆ
D4r(0)

∣∣∣∣1+ sn+1,p (t)
p

∣∣∣∣pq dσ
=

1
µn+1,p

ˆ
D4rµn+1,p (x̂n+1,p)

(
up (x)

up (xn+1,p)

)pq

dσ

⩽ p
u2p (xn+1,p)

sup
x∈D4rµn+1,p (x̂n+1,p)

(
up (x)

up (xn+1,p)

)p(q−1)−1ˆ
∂Ω

up+1
p (x) dσ

⩽ C, (3.31)

where in the last inequality we used (3.17), D4rµn+1,p(x̂n+1,p)⊂ Bcrµn+1,p(xn+1,p)∩ Ω̄ for some
constant c> 0 (being r> L

3 ), (3.21), (3.20) and the energy bound (1.2), since for a solution up
one has

´
Ω
(|∇up|2 + u2p)dx=

´
∂Ω
up+1
p dσ.

Let us now consider the solution wp to
−∆wp+µ2

n+1,pwp =−pµ2
n+1,p in B+

4r (0) ,
∂wp
∂ν

=

(
1+

sn+1,p

p

)p

on D4r (0) ,

wp = 0 on S4r (0) .

(3.32)

By (3.30) and (3.31), with q= 2, the existence of such wp ∈ H1(B+
4r(0)) is guaranteed by Lax–

Milgram. Furthermore arguing as in [26, theorem 5.3], we have by (3.30) and (3.31), that
wp ∈W

1
2+t,q(B+

4r(0)) with the uniform bound

‖wp‖W 1
2 +t,q(B+

4r (0))
⩽ C

(
‖µ2

n+1,pp‖Lq(B+
4r (0))

+

∥∥∥∥(1+ sn+1,p

p

)p∥∥∥∥
Lq(D4r(0))

)
⩽ C, (3.33)

for q> 4 and 0< t< 2/q.
In particular, by Sobolev embeddings, ‖wp‖L∞(B+

4r (0))
⩽ C, so we can define the function

ϕp := wp− sn+1,p+ ‖wp‖L∞(B+
4r (0))

+ 1,

which solves {
−∆ϕp+µ2

n+1,pϕp = µ2
n+1,p

(
‖wp‖L∞(B+

4r )
+ 1
)

in B+
4r (0) ,

∂φp

∂ν = 0 on D4r (0) ,

furthermore, since sn+1,p ⩽ 1 in B+
4r(0) for p sufficiently large by (3.28), then

ϕp ⩾ 0 in B+
4r (0) .

17
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We define, for t= (t1, t2) ∈ B4r(0), the function

ϕ̂p (t) =

{
ϕp (t) ift2 ⩾ 0
ϕp (t1,−t2) ift2 < 0,

which turns out to be a non-negative weak solution to

−∆ϕ+µ2
n+1,pϕ = µ2

n+1,p

(
‖wp‖L∞(B+

4r (0))
+ 1
)

in B4r (0) .

Therefore by the Harnack inequality we get for every a⩾ 1( 
B3r(0)

ϕ̂ap

) 1
a

⩽ C

(
inf
B3r(0)

ϕ̂p+ ‖µ2
n+1,p

(
‖wp‖L∞(B+

4r (0))
+ 1
)
‖L2(B4r(0))

)
3r>L+(3.25)

⩽ C

(
ϕp

(
0,
x2n+1,p

µn+1,p

)
+µ2

n+1,pC

)
⩽ C

(
2‖wp‖L∞(B+

4r (0))
+ 1+µ2

n+1,pC
)

⩽ C,

where we have used that sn+1,p(0,
x2n+1,p

µn+1,p
) = 0 and that ‖wp‖L∞(B+

4r (0))
⩽ C. Then

‖ϕp‖La(B3r(0)) ⩽ C|B3r (0) |
1
a ⩽ C for any p> pr and for any a> 1.

Finally by interior elliptic regularity

‖ϕ̂p‖W2,q(B2r(0)) ⩽ C
(
‖µ2

n+1,p

(
‖wp‖L∞(B+

4r (0))
+ 1
)
‖Lq(B3r(0)) + ‖ϕ̂p‖Lq(B3r(0))

)
⩽ C. (3.34)

Being sn+1,p = wp+ ‖wp‖L∞(B+
4r (0))

+ 1−ϕp, combining (3.33) and (3.34) we obtain

‖sn+1,p‖W 1
2 +t,q(B+

2r (0))
⩽ C for q> 4,0< t<

2
q
and p> pr.

At last by the Morrey embedding theorem we get that

‖sn+1,p‖C0,α(B+
2r (0))

⩽ C for some α > 0

and in turn, by Schauder estimates for the Neumann problem, we get

‖sn+1,p‖C1,α(B+
r (0)) ⩽ C

(
‖−µ2

n+1,pp‖L∞(B+
2r (0))

+

∥∥∥∥(1+ sn+1,p

p

)p∥∥∥∥
C0,α(D2r(0))

+ ‖sn+1,p‖C0,α(B+
2r (0))

)
⩽ C

for any p> pr, so (3.29) holds true.
By (3.29) and the regularity theory of elliptic equations, we derive that, up to a subsequence,

sn+1,p → Ũ in C1
loc

(
R2
)

as p→∞, (3.35)
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where, by (3.27) and (3.28), Ũ satisfies the following problem
∆Ũ= 0 in R2

∂Ũ
∂ν = eŨ on ∂R2

Ũ⩽ 0 in R2.

(3.36)

Furthermore sn+1,p(0,
x2n+1,p

µn+1,p
) = 0, for any p, then by (3.25) it follows that Ũ(0,L) = 0.

Let us now prove that

ˆ
∂R2

eŨ <∞. (3.37)

Let R> 0, then for any |t1|< R we have

(p+ 1)

[
log

(
1+

sn+1,p
(
t1,0
)

p

)
−
sn+1,p

(
t1,0
)

p+ 1

]
−→

p→+∞
0,

so we can use Fatou’s Lemma and (3.35) to write

ˆ R

−R
eŨ(t

1,0)dt1 ⩽
ˆ R

−R
e
sn+1,p(t1,0)+(p+1)

[
log

(
1+

sn+1,p(t1,0)
p

)
−

sn+1,p(t1,0)
p+1

]
dt1 + op (1)

⩽
ˆ
BR(0)∩{t2=0}

(
1+

sn+1,p (t)
p

)p+1

dt1 + op (1)

⩽
ˆ
BR(0)∩{t2=0}

up+1
p (x̂n+1,p+µn+1,pt)

up+1
p (xn+1,p)

dt1 + op (1)

⩽ µ−1
n+1,p

ˆ
BRµn+1,p (x̂n+1,p)∩{x2=0}

up+1
p (x)

up+1
p (xn+1,p)

dx1 + op (1)

⩽ p

up (xn+1,p)
2

ˆ
∂Ω

up+1
p (x)dσ (x)+ op (1)

(3.17)
⩽ p

(1− ε)2

ˆ
∂Ω

up+1
p (x)dσ(x)+ op(1)

(1.2)
⩽ C<+∞,

so that eŨ ∈ L1(∂R2).
Using now (3.36), (3.37) and the classification due to Liu [19] (see also [30]), we obtain

Ũ
(
t1, t2

)
= log

2η2

(t1 − η1)
2
+(t2 + η2)

2 where η1 ∈ R and η2 > 0. (3.38)

Remark 3.5. Notice that what we have proven up to now in Case (1) holds true also if

dist(xn+1,p,∂Ω)µ
−1
n+1,p −→ L= 0,

in particular we get that the rescaled function sn+1 defined in (3.26) converges to Ũ (see (3.35)),
which in this case satisfies the conditions Ũ(0,0) = 0 and Ũ⩽ 0, that imply that η1 = 0 and
η2 = 2, namely that Ũ≡ U, where U is the function defined in (1.5).
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We remark that Ũ is a radial and decreasing function with respect to the point (η1,−η2).
We have

Ũ(η1,0)> Ũ(0,L) = 0

which contradicts the fact that Ũ⩽ 0.
This rules out Case (1), namely the possibility that dist(xn+1,p,∂Ω)µ

−1
n+1,p −→ L> 0.

Case (2). In the sequel we will prove that the second case i.e. dist(xn+1,p,∂Ω)µ
−1
n+1,p −→+∞

cannot occur too. Let vn+1,p be the rescaled function defined in (3.22). By (1.1), vn+1,p solves

−∆vn+1,p+µ2
n+1,pvn+1,p =−µ2

n+1,pp in Ω̃n+1,p.

Since for any R> 0, BR(0)⊂ Ω̃n+1,p for p large enough, it follows that Ω̃n+1,p converges to
the whole plane R2.

Furthermore, from (3.17), (3.19) and the uniform bound (1.8) we get

|∆vn+1,p|⩽ |µ2
n+1,pvn+1,p|+ |µ2

n+1,pp|⩽ C in Ω̃n+1,p, (3.39)

namely vn+1,p are functions with uniformly bounded laplacian in BR(0), moreover
vn+1,p(0) = 0.

Let us decompose

vn+1,p = ϕp+ψp in Ω̃n+1,p ∩BR (0) ,

with −∆ϕp =−∆vn+1,p in Ω̃n+1,p ∩BR(0) and ψp = vn+1,p in ∂(Ω̃n+1,p ∩BR(0)).
Using (3.39) by standard elliptic theory, we see that ϕp is uniformly bounded in Ω̃n+1,p ∩
BR(0). The function ψp is harmonic in Ω̃n+1,p ∩BR(0) and bounded from above by (3.24).
By the Harnack inequality, either ψp is uniformly bounded in BR(0), or it tends to −∞ on
each compact set of BR(0). The second alternative cannot happen because, by definition,
ψp(0) = vn+1,p(0)−ϕp(0) =−ϕp(0)⩾−C. Hence vn+1,p is uniformly bounded in BR(0)
for all R> 0. After passing to a subsequence, standard elliptic theory implies that vn+1,p is
bounded in C2

loc(R2). Thus

vn+1,p → V in C1
loc

(
R2
)
as p→∞, (3.40)

where V ∈ C1(R2) is a harmonic function satisfying V(0) = 0 and V⩽ 0 by (3.24).
So by a Liouville type theorem

V≡ 0. (3.41)

Let now Qn+1 = lim
p→∞

xn+1,p. By (3.2) and (3.19) it follows that Qn+1 ∈ S ⊂ ∂Ω, where S is

the concentration set in (1.7). In order to simplify the exposition, we will assume in the sequel
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that ∂Ω is flat near the point Qn+1. This flatness assumption means that there exists R0 > 0
such that

Ω∩B+
R0
(Qn+1) = B+

R0
(Qn+1) and DR0 (Qn+1)⊂ ∂Ω.

We also assume that near Qn+1, ∂Ω is contained in the hyperplane x2 = 0 and the unit outward
normal to ∂Ω at Qn+1 is (−e2), where e2 is the second element of the canonical basis of R2.

W.l.o.g. we can also assume that

BR0 (Qn+1)∩S = {Qn+1} . (3.42)

Now, inspired by Guo–Liu [16] (see page 750), we define the function

Wp (x) =
p

u2p (xn+1,p)

ˆ s0

−s0

up+1
p (x+(s,0))ds, ∀x ∈ B+

2s0 (Qn+1) ,

where 0< s0 < R0/4. We have

∆x
(
up+1 (x+(s,0))

)
= (p+ 1)upp (x+(s,0))∆xup (x+(s,0))

+ (p+ 1) pup−1
p (x+(s,0)) |∇xup (x+(s,0))|2

⩾ (p+ 1) upp (x+(s,0))∆xup (x+(s,0))

= (p+ 1) up+1
p (x+(s,0))

⩾ 0 ∀x ∈ B+
2s0 (Qn+1)∪ S2s0 (Qn+1) and ∀s ∈ [−s0,s0] .

Hence Wp is a subharmonic function in B+
2s0(Qn+1).

By (1.13) and (3.42), for p large,

|up (y) |⩽ C1
1
p
, ∀y ∈ S2s0 (Qn+1),

thus

Wp → 0 uniformly in S2s0 (Qn+1). (3.43)

Furthermore for each y ∈ D2s0 we have

Wp (y)⩽
p

u2p (xn+1,p)

ˆ
∂Ω

up+1 (x) dσ (x)
(1.2),(3.17)

⩽ C2. (3.44)

Combining (3.43) with (3.44) and using the maximum principle we get

Wp (x)⩽ C for all x ∈ B+
2s0 (Qn+1) . (3.45)
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On the other hand, we have for k>C and p sufficiently large

Wp (xn+1,p) =
p

u2p (xn+1,p)

ˆ s0

−s0

up+1
p (xn+1,p+(s,0))ds

(3.19)
⩾ p

u2p (xn+1,p)

ˆ kµn+1,p

−kµn+1,p

up+1
p (xn+1,p+(s,0))ds

⩾ p µn+1,p

u2p (xn+1,p)

ˆ k

−k
up+1
p (xn+1,p+µn+1,p (t,0))dt

⩾
ˆ k

−k

(
up (xn+1,p+µn+1,p (t,0))

up (xn+1,p)

)p+1

dt

⩾
ˆ k

−k

(
1+

vn+1,p (t,0)
p

)p+1

dt

(3.40)
=

ˆ k

−k
eV(t,0)dt+ o(1)

(3.41)
= 2k> 2C,

which is in contradiction with (3.45).
Hence, we have proved that Case (2) cannot occur.
So, up to a subsequence,

lim
p→∞

dist(xn+1,p,∂Ω)µ
−1
n+1,p = 0

and (Pn+1
2 ) holds with the added points (xn+1,p).

Proof of (Pn+1
3 ). Since (Pn+1

2 ) holds, by remark 3.5, assuming the flatness of ∂Ω near Qn+1,
we have that

sn+1,p → U in C1
loc

(
R2
)

where U is the limit function in (1.5).
By the definition of sn+1,p (see (3.26)), since x2n+1,p/µn+1,p → 0, we conclude that also

vn+1,p → U in C1
loc

(
R2
)
,

where vn+1,p are the rescaled functions introduced in (3.22).
In the flat case this proves that (Pn+1

3 ) holds with the added points (xn+1,p), since the res-
caled function zn+1,p in (3.6) coincide with the rescaled functions vn+1,p. The non-flat case can
be obtained in the same way (see [5, theorem 3]), thus STEP 2. is proved.

STEP 3. We complete the proof of proposition 3.3.
From STEP 1. we have that (P1

1 ), (P1
2 ) and (P1

3 ) hold. Then, by STEP 2., either (P1
4 ) holds

or (P2
1 ), (P2

2 ) and (P2
3 ) hold. In the first case the assertion is proved with k= 1. In the second

case we go on and proceed with the same alternative until we reach a number k ∈ N \ {0} for
which (Pk

1), (Pk
2), (Pk

3) and (Pk
4) hold up to a sequence. Note that this is possible because the

solutions up satisfy (1.2) and lemma 3.2 holds and hence the maximal number k of families of
points for which (Pk

1), (Pk
2), (Pk

3) hold must be finite.
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Moreover, given any other family of points xk+1,p, it is impossible to extract a new
sequence from it such that (Pk+1

1 ), (Pk+1
2 ), (Pk+1

3 ) and (Pk+1
4 ) hold together with the points

(xi,p)i=1,..,k+1. Indeed if (Pk+1
1 ) was verified then

|xk+1,p− xi,p|
µk+1,p

→+∞ as p→+∞, for any i ∈ {1, . . . ,k} ,

but this would contradict (Pk
4).

Finally let us recall that by remark 3.1

S̃ =

{
lim

p→+∞
xi,p, i = 1, . . . ,k

}
hence (3.14) follows from (3.3).

4. Refined analysis

We know that the solutions of (1.1) satisfy theorem I in the Introduction. In particular, for a
sequence of positive solutions upn , the blow-up set S of pnupn is a discrete subset of ∂Ω

S = {x̄1, . . . , x̄m} ⊂ ∂Ω

(see (1.7) for the definition of S and (1)-theorem I for its characterisation).
Moreover we have seen in proposition 3.3 that, up to reordering the points x̄i, the concen-

tration set S̃ of upn , defined in (3.1), satisfies

S̃ = {x̄1, . . . , x̄N} , with N⩽min{m,k} ,

where k is the maximal number of bubbles U in proposition 3.3.
Thanks to the local analysis developed in the previous section, we can actually deduce the

following.

Proposition 4.1.

S = S̃ and so in particular m= N⩽ k.

Proof. It is enough to show that S ⊆ S̃, namely that m⩽ N. Let us assume by contradiction
that x̄m ∈ S \ S̃ . Since x̄m ∈ S , by definition there exists xn ∈ Ω, xn → x̄m such that pnupn(xn)→
+∞. Since x̄m 6∈ S̃ then there exist r> 0 such that Br(x̄m)∩ S̃ = ∅ and that definitively xn ∈
Br(x̄m)∩Ω=: K. Next we show that (Pk

4), which holds by proposition 3.3, implies that

max
K
pn|upn |⩽ C, (4.1)

thus reaching a contradiction.
Let δ := dist(K, S̃)/2> 0. For y ∈ K we have

upn (y) =
ˆ
∂Ω

G(x,y)
∂upn
∂ν

dσ (x) =
ˆ
∂Ω

G(x,y)upnpn (x) dσ (x) , (4.2)

whereG(., .) is the Green function satisfying (1.3).We split the integral over ∂Ω into two parts,
the integral over Bδ(y)∩ ∂Ω and the integral over ∂Ω \Bδ(y).
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On the one hand, if x ∈ Bδ(y) we get d(x, S̃)⩾ δ > 0 and so Rk,pn(x)⩾ c> 0 for n large.
From (Pk

4) we derive

upn−1
pn (x)⩽ C

pn
, ∀x ∈ Bδ (y) .

Hence

ˆ
Bδ(y)∩∂Ω

G(x,y)upnpn (x) dσ (x)⩽ C

(
1
pn

) pn
pn−1

ˆ
∂Ω

G(x,y) dσ (x)⩽ C
pn

(4.3)

where we have used the fact that G(.,y) is integrable on ∂Ω which follows from lemma A.1
in the appendix.

On the other hand if x ∈ ∂Ω \Bδ(y) then G(x,y)⩽ C by using (A.4) since |x− y|> δ > 0.
Thus we get

ˆ
∂Ω\Bδ(y)

G(x,y)upnpn (x)dx⩽ cK

ˆ
∂Ω

upnpn (x)dx
(1.9)
⩽ cK

pn
. (4.4)

Combining (4.2) with (4.3) and (4.4) we deduce (4.1).

We conclude the subsection with a result which will be of help in computing the constants
ci which appear in (1.11) and (1.12).

Lemma 4.2. Let pn →+∞, as n→∞ and ci > 0 be as in theorem I, then

ci = lim
δ→0

lim
n→∞

pn

ˆ
Bδ(x̄i)∩∂Ω

upnpn dσ (x) , i = 1, . . . ,m.

Proof. We retrace the proof of (1.13) in order to characterise the constants ci. Let us observe
that, since the points x̄i’s are isolated, there exists δ > 0 such that B2δ(x̄i)∩B2δ(x̄j) = ∅. Then
by the Green representation formula for each x ∈ Ω \ S we have

pnupn (x) = p
ˆ
∂Ω

G(x,y)upnpn (y) dσ (y)

= pn

m∑
i=1

ˆ
Bδ(x̄i)∩∂Ω

G(x,y)upnpn (y) dσ (y)+ pn

ˆ
∂Ω\∪iBδ(x̄i)

G(x,y)upnpn (y) dσ (y)

= pn

m∑
i=1

ˆ
Bδ(x̄i)∩∂Ω

G(x,y)upnpn (y) dσ (y)+ on (1) ,

where in the last equality we have used that pnupn is bounded on compact sets of Ω \ S and the
fact that

´
∂Ω
G(x,y) dσ(y)⩽ C (from lemma A.1 in the appendix).

Furthermore by the continuity of G(x, ·) in Ω \ {x} and by (1.9) we obtain, up to a sub-
sequence, that

lim
n→+∞

pnupn (x) =
m∑
i=1

ciG(x, x̄i) , where ci := lim
δ→0

lim
n→∞

pn

ˆ
Bδ(x̄i)∩∂Ω

upnpn dσ (x) .
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4.1. Scaling around local maxima

Let xi,pn ∈ Ω, i = 1, . . . ,k, be the maximal number of concentrating sequences in proposition
3.3. W.l.o.g. we can relabel them and assume for the first m sequences that

xj,pn → x̄j, ∀j = 1, . . . ,m and S = {x̄1, x̄2, . . . , x̄m} (4.5)

In order to simplify the exposition, we will assume in the sequel that ∂Ω is flat near
x̄j for all j = 1, . . . ,m. This flatness assumption means that there exists Rj > 0 such that

Ω∩B+
Rj (x̄j) = B+

Rj (x̄j) and DRj (x̄j)⊂ ∂Ω, for all j = 1, . . . ,m, (4.6)

and moreover Ψj ≡ Id. Since the x̄j’s are distinct, it follows that there exists r ∈
(0,minj=1,...,mRj/4) such that

B+
4r (x̄ℓ)∩B

+
4r (x̄j) = ∅, B+

4r (x̄j)⊂ Ω, for all `, j = 1, . . . ,m, ` 6= j. (4.7)

Lemma 4.3. Let m ∈ N \ {0} be as in (4.5) and let r> 0 be as in (4.7). Let us define yj,n ∈
B+
2r(x̄j), j = 1, . . . ,m, such that

upn (yj,n) := max
B+
2r (x̄j)

upn (x) . (4.8)

Then, for any j = 1, . . . ,m and as n→∞:

(i)

εj,n :=
[
pnu

pn−1
pn (yj,n)

]−1 −→ 0. (4.9)

(ii)

yj,n −→ x̄j and yj,n ∈ ∂Ω for n large. (4.10)

(iii)

|yi,n− yj,n|
εj,n

−→+∞ for any i = 1, . . . ,m, i 6= j.

(iv) Defining:

wj,n (y) :=
pn

upn (yj,n)
(upn (yj,n+ εj,ny)− upn (yj,n)) , y ∈ Ωj,n :=

Ω− yj,n
εj,n

, (4.11)

then

lim
n→∞

wj,n = U in C1
loc

(
R2

+

)
(4.12)

with U as in (1.5).
(v)

liminf
n→∞

pn
upn (yj,n)

ˆ
Dr(yj,n)

upnpn (x) dσ (x)⩾ 2π .
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Remark 4.4. (i) Is the analogue of (3.4) and (3.5) for the families of points yj,n, j = 1, . . . ,m.
(iii) and (iv) are respectively properties (Pm

1 ) and (Pm
3 ) introduced in section 3. Moreover

by (i) we get

liminf
n→∞

upn (yj,n)⩾ 1 (4.13)

and by (ii) we also deduce property (Pm
2 ) and that for any δ ∈ (0,2r) there exists nδ ∈ N such

that

yj,n ∈ Dδ (x̄j) , for n⩾ nδ. (4.14)

Proof. (i): Let x̄j ∈ S = S̃ by proposition 4.1 then ∃ a sequence xn → x̄j such that
pnu

pn−1
pn (xn)→+∞ as n→∞. Hence xn ∈ Br(x̄j) for n large and the assertion follows

observing that by definition upn(yj,n)⩾ upn(xn).
(ii): Assume by contradiction that yj,n does not converge to x̄j, then up to a subsequence (that

we still denote by yj,n) yj,n → x̃ such that (2r⩾) |x̄j− x̃|⩾ δ > 0. But then by (1.11) in
theorem I

pnupn (yj,n) =
m∑
j=1

cjG(x̃, x̄j)+ on (1) = O(1) . (4.15)

Moreover, since x̄j ∈ S , there exists a sequence xn ∈ Ω such that xn → x̄j and pnupn(xn)→
+∞. Hence xn ∈ Br(x̄j) for n large and by definition upn(yj,n)⩾ upn(xn), which is in con-
tradiction with (4.15), as a consequence yj,n → x̄j.

Recall that yj,n satisfies (4.8) and ∆upn = upn in B+
2r(x̄j). If by contradiction yj,n ∈

B+
2r(x̄j), then ∆upn(yj,n)> 0, which is impossible. Hence yj,n ∈ ∂B+

2r(x̄j) = D2r(x̄j)∪
S2r(x̄j). Since yj,n −→ x̄j ∈ ∂Ω, we obtain yj,n ∈ D2r(x̄j)⊂ ∂Ω for n large.

(iii): Just observing that by construction |yi,p− yj,p|⩾ 4r if i 6= j.
(iv): Observe that (ii) and (i) imply that for any R> 0 there exists nR ∈ N such that

B+
R (0)⊂ B+

2r
εj,n

(
x̄j− yj,p
εj,n

)
⊂ Ωj,n for n⩾ nR. (4.16)

Indeed for n large yj,n ∈ Dr(x̄j) by (ii) and and Rεj,n < r by (i). As a consequence
B+
Rεj,n(yj,n)⊂ B+

2r(x̄j)⊂ Ω for n large, which gives (4.16) by scaling back.

From (4.16) and the arbitrariness of R we deduce that the set Ωj,n → R2
+ as n→∞.

(4.12) is then obtained similarly as in the proof of proposition 3.3-(Pn+1
3 ).

(v): using (4.14) we have that yj,n ∈ Dr(x̄j) for large n and so B+
r (yj,n)⊂ B+

2r(x̄j)⊂ Ω for n
large, namely, by scaling

B+
r

εj,n

(0)⊂ Ωj,n, for n large (4.17)
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By scaling and passing to the limit as n→∞, by (i), (iv) and Fatou’s Lemma one has

liminf
n→∞

pn
upn (yj,n)

ˆ
Dr(yj,n)

upnpn (x) dσ (x) = liminf
n→∞

ˆ
D r

εj,n
(0)

(
1+

wj,n (y)
pn

)pn

dσ (y)

⩾
ˆ
∂R2

+

eU(y) dσ (y) = 2π

which gives (v).

Lemma 4.5. Let r> 0 be as in (4.7) and yj,n for j = 1, . . . ,m be the local maxima of upn as
in (4.8). Let us define

βj,n :=
pn

upn (yj,n)

ˆ
Dr(yj,n)

upnpn (x) dσ (x) , for j = 1, . . . ,m. (4.18)

Then

lim
n−→+∞

βj,n = 2π. (4.19)

Proof. Fix j ∈ {1, . . . ,m}. By lemma 4.3-(v) we already know that

liminf
n→∞

βj,n ⩾ 2π,

so we have to prove only the opposite inequality:

limsup
n→∞

βj,n ⩽ 2π. (4.20)

For δ ∈ (0,r) by (4.7)

B+
δ (x̄j)⊂ Ω (4.21)

and we define

αj,n (δ) :=
pn

upn (yj,n)

ˆ
Dδ(x̄j)

upnpn (x) dσ (x) . (4.22)

In order to prove (4.20) it is sufficient to show that

lim
δ→0

limsup
n→∞

αj,n (δ)⩽ 2π (4.23)

since (4.20) will follow observing that

βj,n = αj,n (δ)+
pn

upn (yj,pn)

ˆ
Dr(yj,n)\Dδ(x̄j)

upnpn (x) dσ (x) = αj,n (δ)+ on (1) , (4.24)

where the second term goes to zero as n→∞ because yj,n ∈ D2r(x̄j). Indeed Dr(yj,n) \
Dδ(x̄j)⊂ D3r(x̄j) \Dδ(x̄j)⊂ ∂Ω \ S and we know that for any compact subset of ∂Ω \ S the
limit (1.11) holds and liminfn→∞ upn(yj,n)⩾ 1 by (4.13).

In the rest of the proof we show (4.23).
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Let us consider the local Pohozaev identity for problem (1.1) in the set B+
δ (x̄i):

ˆ
B+
δ (x̄i)

u2pndx=
ˆ
∂B+

δ (x̄i)

1
2
〈x− x̄i,ν〉

(
|∇upn |2 + u2pn

)
−〈x− x̄i,∇upn〉

∂upn
∂ν

dσ (x) , (4.25)

where ν is the outer unitary normal vector to ∂B+
δ (x̄i) in x. Recalling that we have assumed

that ∂Ω is flat near x̄i (see (4.6)), then we have ν =−e2 on Dδ(x̄i), so that 〈x− x̄i,ν〉= 0 and
〈x− x̄i,∇u〉= (x− x̄i)1 ∂u

∂x1 for each x ∈ Dδ(x̄i). Furthermore on Sδ(x̄i) we have ν = x−x̄i
δ and

〈x− x̄i,∇u〉= δ ∂u
∂ν . Hence from (4.25) and by integrating by part we get

1
pn+ 1

ˆ
Dδ(x̄i)

upn+1
pn dσ =

ˆ
B+
δ (x̄i)

u2pndx−
δ

2

ˆ
Sδ(x̄i)

(
|∇upn |2 + u2pn − 2

(
∂upn
∂ν

)2
)

dσ

+

[
(x− x̄i)

1 u
pn+1
pn

pn+ 1

]x̄1i+δ

x̄1i−δ

.

Multiplying the last equation by p2n we obtain

p2n
pn+ 1

ˆ
Dδ(x̄i)

upn+1
pn dσ ⩾ − δ

2

ˆ
Sδ(x̄i)

|pn∇upn |2 dσ−
δ

2

ˆ
Sδ(x̄i)

(pnupn)
2 dσ

+ δ

ˆ
Sδ(x̄i)

(
pn
∂upn
∂ν

)2

dσ+ p2n

[
(x− x̄i)

1 u
pn+1
pn

pn+ 1

]x̄1i+δ

x̄1i−δ

=: T1 +T2 +T3 +T4. (4.26)

Next we analyse the behaviour of the four terms in the right hand side.
Recall that, by (1.13), pnupn →

∑m
j=1 cjG(·, x̄j) in C1

loc(B
+
r (x̄i) \ {x̄i}). Moreover, using

lemma A.3, for δ ∈ (0,r) we have

m∑
j=1

cjG(x, x̄j) =
ci
π
log

1
|x− x̄i|

+O(1) ,
m∑
j=1

cj∇G(x, x̄j) = −ci
π

x− x̄i
|x− x̄i|2

+O(1)

(4.27)

for each x ∈ B+
δ (x̄i) \ {x̄i}. By the uniform convergence of the derivative of pnupn on compact

sets combined with (4.27), passing to the limit we have

T1 =− δ

2

ˆ
Sδ(x̄i)

|pn∇upn |
2 dσ −→

n→∞
− δ

2

ˆ
Sδ(x̄i)

(
−ci
π

x− x̄i
|x− x̄i|2

+O(1)

)2

dσ (x) =− c2i
2π

+O(δ)

T2 =− δ

2

ˆ
Sδ(x̄i)

(pnupn)
2 dσ −→

n→∞
− δ

2

ˆ
Sδ(x̄i)

(
ci
π
log

1
|x− x̄i|

+O(1)

)2

dσ (x) = O
(
δ2 log2 δ

)

T3 = δ

ˆ
Sδ(x̄i)

(
pn

∂upn
∂ν

)2

dσ −→
n→∞

δ

ˆ
Sδ(x̄i)

(
−ci
π

⟨x− x̄i,ν (x)⟩
|x− x̄i|2

+O(1)

)2

dσ (x) =
c2i
π

+O(δ)

and also

T4 ⩽
2pn
pn+ 1

δ‖pnupn+1
pn ‖L∞(∂Dδ(x̄i))

(1.13)
= on (1)O(δ) .
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So by (4.26) and recalling the definition of αi,n

αi,n (δ)upn (yi,n)
2 (4.22)

= upn (yi,n) pn

ˆ
Dδ(x̄i)

upnpn (x) dσ (x)⩾ pn

ˆ
Dδ(x̄i)

upn+1
pn (x) dσ (x)

(4.26)
⩾ c2i

2π
+O(δ)+ on (1) , (4.28)

but by lemma 4.2, (4.21) and (4.22)

ci = lim
δ→0

lim
n→∞

pn

ˆ
Dδ(x̄i)

upnpn dσ (x) = lim
δ→0

lim
n→∞

αi,n (δ)upn (yi,n) . (4.29)

Combining (4.28) and (4.29) we get (4.23).

Lemma 4.5 immediately implies the following result.

Proposition 4.6. Let r> 0 be as in (4.7) and let yj,n, for j = 1, . . . ,m, be the local maxima of
upn as in (4.8), where m is the number of points in the concentration set S. Let us consider a
subsequence of pn (which we still denote by pn) such that

mj := lim
n→∞

upn (yj,n) = lim
r→0

lim
n→∞

‖upn‖L∞(B2r(x̄j)∩Ω) (4.30)

is well defined for j = 1, . . . ,m. Then one has

cj = 2π ·mj; (4.31)

lim
n→∞

pn

ˆ
Ω

(
|∇upn |2 + u2pn

)
dx= 2π

m∑
j=1

m2
j ; (4.32)

and

m= k, (4.33)

where cj’s are the constant in theorem I and k ∈ N \ {0} is the maximal number of bubbles
given by proposition 3.3.

Proof. Observe that, by (1.8), mj is well defined for a suitable subsequence of pn and, further-
more 1⩽ mj <∞ for any j = 1, . . . ,m, by (4.13).

(4.31) follows from some argument already used in the proof of lemma 4.5 (see (4.22)
and (4.24)), indeed we have

cj = lim
δ→0

lim
n→∞

pn

ˆ
Dδ(x̄j)

upn (x)
pn dσ (x)

(4.22)
= lim

δ→0
lim
n→∞

αj,n (δ)upn (yj,n)

(4.24)
= lim

n→∞
βj,nupn (yj,n) = 2π ·mj,

where the last equality follows from lemma 4.5.
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Next we prove (4.32). Observe that

pn

ˆ
Ω

(
|∇upn |2 + upn

)2
dx= pn

ˆ
∂Ω

upn+1
pn dσ

=
m∑
j=1

pn

ˆ
Dr(x̄j)

upn+1
pn dσ+ pn

ˆ
∂Ω\∪m

j=1Dr(x̄j)
upn+1
pn dσ

(1.13)
=

m∑
j=1

pn

ˆ
Dr(x̄j)

upn+1
pn dσ+ on (1) . (4.34)

Moreover

pn

ˆ
Dr(x̄j)

upn+1
pn dσ = pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ+ on (1) , (4.35)

since for n large enough D r
3
(x̄j)⊂ D r

2
(yj,n)⊂ Dr(x̄j) so that

pn

ˆ
Dr(x̄j)\D r

2
(yj,n)

upn+1
pn dσ ⩽ pn

ˆ
{x∈Dr(x̄j), r

3<|x−x̄j|<r}
upn+1
pn dσ

(1.13)
= op (1) .

Let us consider the remaining term in the right hand side of (4.35) and prove that

lim
n→∞

pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ = 2π ·m2

j . (4.36)

On the one side, since the families of points yj,n, j = 1, . . . ,m, satisfy properties (Pm
1 ), (Pm

2 )
and (Pm

3 ) introduced in section 3 (see remark 4.4), similarly as in the proof of lemma 3.2,
using (4.30), we obtain that

liminf
n→∞

pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ ⩾ 2π ·m2

j . (4.37)

On the other side, since B+
r
2
(yj,n)⊂ B+

2r(x̄j)⊂ Ω for n large,

pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ ⩽ upn (yj,n) pn

ˆ
Dr(yj,n)

upnpn dσ
(4.18)
= upn (yj,n)

2
βj,n,

so lemma 4.5 implies that

limsup
n→∞

pn

ˆ
D r

2
(yj,n)

upn+1
pn dσ ⩽ 2π ·m2

j . (4.38)

(4.36) then follows by combining (4.37) and (4.38). Finally (4.34)–(4.36) imply (4.32).
Next we show that the points yj,n, j= 1, . . . ,m, also satisfy property (Pm

4 ), namely that there
exists C > 0 such that

pnRm,pn (x)u
pn−1
pn (x)⩽ C ∀x ∈ Ω (4.39)

where Rm,pn(x) :=minj=1,...,m |x− yj,n|. Arguing by contradiction we suppose that

sup
x∈Ω

(
pnRm,pn (x)u

pn−1
pn (x)

)
→+∞ as n→+∞
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and let ym+1,n ∈ Ω be such that

pnRm,pn (ym+1,n)u
pn−1
pn (ym+1,n) = sup

x∈Ω

(
pnRm,pn (x)u

pn−1
pn (x)

)
. (4.40)

By (4.40) and since Ω is bounded it is clear that

pnu
pn−1
pn (ym+1,n)→+∞ as n→+∞.

Taking the sequences of local maxima yj,n for j = 1, . . . ,m and the added sequence ym+1,n,
similarly as in the proof of proposition 3.3, we then get that (Pm+1

1 ), (Pm+1
2 ) and (Pm+1

3 )
hold.

Applying now lemma 3.2 for the families of points (yi,n)i=1,...,m+1 and using (4.30) we
obtain

pn

ˆ
Ω

(
|∇upn |2 + u2pn

)
dx⩾ 2π

m∑
i=1

m2
i + 2πm2

m+1 + on (1)

(4.13)
⩾ 2π

m∑
i=1

m2
i + 2π+ on (1) as n→∞,

thus

lim
n→∞

pn

ˆ
Ω

|∇upn |2 + u2pn dx> 2π
m∑
i=1

m2
i

which contradicts (4.32) concluding the proof of (Pm
4 ).

At last in order to derive (4.33), let us consider k families of points x1,pn ,x2,pn , . . .xk,pn ∈ Ω
as in the statement of proposition 3.3. By virtue of proposition 4.1

S = {x̄1, . . . , x̄m}=
{

lim
n→+∞

xi,pn : i ∈ {1, . . . ,k}
}
.

Given i ∈ {1, . . . ,k}, let j ∈ {1, . . . ,m} be such that limn→+∞ xi,pn = x̄j. Next, recalling that
{y1,n,y2,n, . . . ,ym,n} satisfy (Pm

4 ) and applying (4.39) at xi,pn we get

p|xi,pn − yj,n|upn−1
pn (xi,pn)

(4.7)+(4.8)
= pRm,pn (xi,pn)u

pn−1
pn (xi,pn)⩽ C.

So in particular, up to a subsequence∣∣∣∣yj,n− xi,pn
µi,pn

∣∣∣∣⩽ C.

As a consequence, up to a subsequence, since y2j,n = 0 and xi,pn satisfies (Pk
2), there exists

t̂i,j ∈ ∂R2
+ such that

ti,j,n :=
yj,n− xi,pn
µi,pn

→ t̂i,j.

By (3.6) and (3.7)

0⩽ pn
upn (xi,pn)

(upn (yj,n)− upn (xi,pn)) = zi,pn (ti,j,n)→ U
(̂
ti,j
)
⩽ 0.
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Thus, by (1.5) t̂i,j = 0, then

|yj,n− xi,pn |
µi,pn

= on (1) . (4.41)

In conclusion, let us suppose by contradiction that k>m, then there exists

i, ℓ ∈ {1, . . . ,k} , i ̸= ℓ, such that lim
n→+∞

xi,pn = lim
n→+∞

xℓ,pn = x̄j for some j ∈ {1, . . . ,m}.

In addition w.l.o.g. let us assume that up to a subsequence µi,pn ⩾ µℓ,pn .
By (4.41)

|xi,pn − xℓ,pn |
µi,pn

⩽ |xi,pn − yj,n|
µi,pn

+
|xℓ,pn − yj,n|

µi,pn

⩽ |xi,pn − yj,n|
µi,pn

+
|xℓ,pn − yj,n|

µℓ,pn
= on (1) ,

which is a contradiction against property (Pk
1) for x1,pn ,x2,pn , . . .xk,pn .

Next we give a decay estimate for the rescaled functions wj,n which will be fundamental to
compute the constants mi’s.

Lemma 4.7. For any γ ∈ (0,2) there exists Rγ > 1 and nγ ∈ N such that

wj,n (z)⩽ (2− γ) log
1
|z|

+ C̃γ , ∀j = 1, . . . ,k (4.42)

for some C̃γ > 0 provided Rγ ⩽ |z|⩽ r
εj,n
, z ∈ D r

εj,n
(0) and n⩾ nγ .

As a consequence

0⩽
(
1+

wj,n (z)
pn

)pn

⩽
{

1 for |z|⩽ Rγ

Cγ
1

|z|2−γ for Rγ ⩽ |z|⩽ r
εj,n
.

(4.43)

Proof. Arguing similarly as in the proof of [11, lemma 4.4] one can deduce a crucial pointwise
estimate for wj,n, namely it can be proved that for any ε> 0, there exist Rε > 1 and nε ∈ N
such that

wj,n (y)⩽
(
βj,n
π

− ε

)
log

1
|y|

+Cε, ∀j = 1, . . . ,m

for some Cε > 0, provided 2Rε ⩽ |y|⩽ r
εj,n
, y ∈ D r

εj,n
(0) and n⩾ nε.

Equation (4.42) then follows by lemma 4.5. Finally (4.43) is a direct consequence of (4.42)
(see for instance the proof of [12, lemma 2.1] which can be easily adapted to this case).

Proposition 4.8.

mi =
√
e, ∀i = 1, . . . ,m.

Proof. From (1.9)

c⩽ pn

ˆ
∂Ω

upnpn (x)dσ (x)⩽ C
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hence, by the properties of the Green function G,

ˆ
∂Ω\D2r(x̄j)

G(yj,n,x)u
pn
pn (x) dσ (x) ⩽ Cr

ˆ
∂Ω\D2r(x̄j)

upnpn (x) dσ (x)

⩽ Cr

ˆ
∂Ω

upnpn (x) dσ (x) = O

(
1
pn

)
(4.44)

and similarly, observing that (4.10) implies that for n large enough the points yj,n ∈ Dr/2(x̄j)
and that Dr/2(x̄j)⊂ Dr(yj,n)⊂ D2r(x̄j), also

ˆ
D2r(x̄j)\Dr(yj,n)

G(yj,n,x)u
pn
pn (x) dσ (x) ⩽

ˆ
{x∈D2r(x̄j), r

2<|x−x̄j|<2r}
G(yj,n,x)u

pn
pn (x) dσ (x)

⩽ C r
2

ˆ
∂Ω

upnpn (x) dσ (x) = O

(
1
pn

)
. (4.45)

Using the previous estimates and the Green representation formula, we then get

upn(yj,n) =
ˆ
∂Ω

G(yj,n,x)u
pn
pn(x)dσ(x)

=

ˆ
D2r(x̄j)

G(yj,n,x)u
pn
pn(x)dσ(x)+

ˆ
∂Ω\D2r(x̄j)

G(yj,n,x)u
pn
pn(x)dσ(x)

(4.44)–(4.45)
=

ˆ
Dr(yj,n)

G(yj,n,x)u
pn
pn(x)dσ(x)+ on(1)

(4.11)
=

upn(yj,n)
pn

ˆ
D r

εj,n
(0)
G(yj,n,yj,n+ εj,nz)

(
1+

wj,n(z)
pn

)pn

dσ(z)+ on(1)

(1.4)
=

upn(yj,n)
pn

ˆ
D r

εj,n
(0)
H(yj,n,yj,n+ εj,nz)

(
1+

wj,n(z)
pn

)pn

dσ(z)

−
upn(yj,n)
πpn

ˆ
D r

εj,p
(0)

log |z|
(
1+

wj,n(z)
pn

)pn

dσ(z)

−
upn(yj,n) log(εj,n)

πpn

ˆ
D r

εj,n
(0)

(
1+

wj,n(z)
pn

)pn

dσ(z)+ on(1)

= An+Bn+Cn+ on(1). (4.46)

Since H satisfies (A.3) in the appendix, by (4.9) and (4.10) we get

lim
n→∞

H(yj,n,yj,n+ εj,nz) = H(x̄j, x̄j) , for any z ∈ ∂R2
+,
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so by (4.30), the convergence (4.12) and the uniform bounds in (4.43) we can apply the
dominated convergence theorem, and since the function z 7→ 1/|z|2−γ is integrable in {z ∈
∂R2

+, |z|> Rγ} choosing γ ∈ (0,1) we deduce

lim
p→+∞

upn (yj,n)
ˆ
D r

εj,n
(0)
H(yj,n,yj,n+ εj,nz)

(
1+

wj,n (z)
pn

)pn

dσ (z)

(4.12)
= mjH(x̄j, x̄j)

ˆ
∂R2

+

eU(z) dσ (z)
(1.6)
= 2πmjH(x̄j, x̄j) ,

from which

An :=
upn (yj,n)

pn

ˆ
D r

εj,n
(0)
H(yj,n,yj,n+ εj,nz)

(
1+

wj,n (z)
pn

)pn

dσ (z) = on (1) . (4.47)

For the second term in (4.46) we apply again the dominated convergence theorem, using (4.43)
and observing now that the function z 7→ log |z|/|z|2−γ is integrable in {z ∈ ∂R2

+, |z|> Rγ}
and that z 7→ log |z| is integrable in {z ∈ ∂R2

+, |z|⩽ Rγ}. Hence we get

lim
n→∞

upn (yj,n)
ˆ
D r

εj,n
(0)

log |z|
(
1+

wj,n (z)
pn

)pn

dσ (z) = mj

ˆ
∂R2

+

log |z|eU(z) dσ (z)<+∞

and this implies that

Bn :=−
upn (yj,n)
πpn

ˆ
D r

εj,n
(0)

log |z|
(
1+

wj,n (z)
pn

)pn

dσ (z) = on (1) . (4.48)

Finally for the last term in (4.46) let us observe that by the definition of εj,n in (4.9)

logεj,n =−(pn− 1) logupn (yj,n)− logpn, (4.49)

again by the dominated convergence theorem it follows

Cn := −
upn (yj,n) log(εj,n)

πpn

ˆ
D r

εj,n
(0)

(
1+

wj,n (z)
pn

)pn

dσ (z)

= −
upn (yj,n) log(εj,n)

πpn

(ˆ
∂R2

+

eU(z) dσ (z)+ on (1)

)

= −
upn (yj,n) log(εj,n)

πpn
(2π+ on (1))

(4.49)
= upn (yj,n)

[
pn− 1
pn

logupn (yj,n)+
logpn
pn

]
(2+ on (1)) . (4.50)

Substituting (4.47), (4.48) and (4.50) into (4.46) we get

upn (yj,n) = upn (yj,n)

[
pn− 1
pn

logupn (yj,n)+
logpn
pn

]
(2+ on (1))+ on (1) ,
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passing to the limit as n→∞ and using (4.30) we conclude that

logmj =
1
2
.

4.2. The proof of theorem 1.1

The statements of theorem 1.1 have been proved in the various propositions obtained so far. In
particular (i) is a consequence of lemma 4.2, (4.31) and proposition 4.8. (ii) derives from (4.30)
and proposition 4.8. The energy limit (iii) follows from (4.32) in proposition 4.6, combined
with proposition 4.8. The statement (iv) is contained in lemma 4.3 in the flat case, and can be
easily extended to the non-flat case, similarly as in [5, 15], see section 2.1.
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Appendix. Some properties of the Green function

Let y ∈ ∂Ω and let G(x,y) be the Green function satisfying the Neumann problem (1.3). First
note thatG⩾ 0 and by the classical strong maximum principle, for each y ∈ ∂ΩG(.,y) cannot
attain its minimum inΩ. Also, by the Hopf lemma ifG(x,y) = 0 for some x, y ∈ ∂Ω, x 6= y then
the normal derivative ∂G

∂νx
(x,y) is negative, which is impossible. Therefore, for each y ∈ ∂Ωwe

have

G(·,y)> 0 in Ω. (A.1)

By a compactness argument we can find a constant c> 0 such that G(x,y)> c for all y ∈ ∂Ω
and all x ∈ Ω.

Lemma A.1. There exists a positive constant C1 such that

0< G(x,y)⩽ C1 (| log |x− y||+ 1) for each x ∈ Ω \ {y} and y ∈ ∂Ω.

Proof. By (1.4), we have

G(x,y) =
1
π
log

1
|x− y|

+H(x,y) (A.2)
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where 1
π log 1

|x−y| is the singular part of G and H(x,y) is the regular part of G. The function
H(.,y) satisfies

−∆xH(x,y)+H(x,y) =− 1
π
log

1
|x− y|

in Ω

∂H
∂νx

(x,y) =
1
π

〈x− y,ν (x)〉
|x− y|2

on ∂Ω.

Arguing as in [29] (see pages 834 and 835), we have

x 7→ H(x,y) ∈ C1,γ
(
Ω
)
, y 7→ H(x,y) ∈ C1,γ

(
∂Ω,C1,γ

(
Ω
))

and ∇xH ∈ C
(
Ω× ∂Ω

)
(A.3)

for any γ ∈ (0,1). The desired result follows from (A.1)–(A.3).

As consequence of lemma A.1, we have the following result.

Lemma A.2. There exist C2,Cδ > 0 such that:

G(x,y)⩽ Cδ ∀ |x− y|> δ > 0, (A.4)

|∇xG(x,y) |⩽ C2

|x− y|
∀ x ∈ Ω \ {y} . (A.5)

Proof. It is easy to see that (A.4) is a consequence of lemma A.1.
By (A.2) we have

∇xG(x,y) =− 1
π

x− y
|x− y|2

+∇xH(x,y) (A.6)

for each x ∈ Ω \ {y}. Hence (A.5) follows from (A.6) and (A.3).

Let x1, . . . ,xn be n distinct points in ∂Ω and let r be some positive small constant such that
Br(xi)∩Br(xj) = for all 1⩽ i 6= j⩽ n.

Lemma A.3. Let 1⩽ i⩽ n and let (cj)1⩽j⩽n be n real numbers. For each x ∈ Br(xi)∩Ω \ {xi},
we have

n∑
j=1

cjG(x,xj) =
ci
π
log

1
|x− xi|

+O(1) and
n∑

j=1

cj∇G(x,xj) =−ci
π

x− xi
|x− xi|2

+O(1) .

Proof. Using lemma A.2, for each x ∈ Br(xi)∩Ω \ {xi} we have

m∑
j=1

cjG(x,xj) = ciG(x,xi)+O(1) and
m∑
j=1

cj∇G(x,xj) = ci∇G(x,xi)+O(1) .

FurthermoreG(x,xi) satisfies (A.2) and (A.6), so that, by the regularity ofH in (A.3) we obtain
the desired result.
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