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Abstract
We consider the elliptic equation —Au + u = 0 in a bounded, smooth domain
) C R? subject to the nonlinear Neumann boundary condition Ou/0v =
|ulP~u on O and study the asymptotic behaviour as the exponent p — +occ of
families of positive solutions u,, satisfying uniform energy bounds. We prove
energy quantisation and characterise the boundary concentration. In particular
we describe the local asymptotic profile of the solutions around each concen-
tration point and get sharp convergence results for the L°°-norm.
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1. Introduction

Let © be a bounded domain in R? with smooth boundary 952. This paper deals with the analysis
of solutions of the boundary value problem

Au=u in
u>0 in (1.1)
%:u” on 0f)

where v denotes the outer unit normal vector to 92 and p > 1. Two dimensional elliptic
equations with nonlinear Neumann boundary conditions arise in many fields (conformal geo-
metry, corrosion modelling, etc.) see for instance [2, 3, 6-9, 16-18, 20-22, 29] and in partic-
ular, [4, 5, 15, 27] where problem (1.1) is considered.

Observe that solutions to (1.1) correspond to critical points in H'(£2) of the free energy
functional

1 1
E[,(M) = EL(|VM|2+M2) M*ﬁ/@gup+l dO'7

and by the compact trace and Sobolev embeddings H' () < Hz (8Q) < LP(8S2), one can
derive the existence of at least a solution for any fixed exponent p > 1 by standard variational
methods (see for instance [27]). For multiplicity results for p large enough see Castro [4] and
for sign-changing solutions see for instance [20].

This paper is devoted to the study of the asymptotic behaviour, as p — 400, of general
families of non-trivial solutions u, to (1.1) under a uniform bound of their energy, namely we
assume

p/ (IVup|* + 1) dx— BER, asp— +oo. (1.2)
Q

In [27], and later in [5], this analysis has been carried out for the family of least energy
solutions. Note that these solutions satisfy the condition

p/ (|Vu,,\2+u[2,) dx — 2me, asp— +oo,
Q

which is a particular case of (1.2). In [27] it was proved that least energy solutions remain
bounded uniformly in p, and develop one peak on the boundary, whose location is controlled
by the Green’s function G for the Neumann problem
AG(x,y) =G(xy)  in€, 3
96 (. y) = 3y (x) on AL, (13)
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y € 0f2. Indeed the concentration point turns out to satisfy V. R(xo) =0, where 7(xo)
denotes a tangent vector at the point xy € 912, the Robin function is defined as R(x) := H(x,x),
where H is the regular part of G:

1 1
H(x,y) ::G(x,y)fglogﬂ. (1.4)

Later Castro [5] identified a limit problem by showing that a suitable scaling of the least
energy solutions converges in Cj,_(R?.) to the regular solution

4
Ut t) =log | ————— 1.5
(11:12) =log (r% + (2 + 2)2> (-3

of the Liouville problem

AU=0  inR2

9U — ¢U on OR% (1.6)
fBR2+ eV =2m and supgs-U < +oo.

He also proved that for least energy solutions
lupl| oo — Ve as p — oo,

as it had been previously conjectured in [27].

Observe that problem (1.1) also admits families of solutions which develop m boundary
peaks as p — oo, for any integer m > 1, as proved in [4] and indeed, recently in [15], it has
been proved that the boundary concentration behaviour characterises any family of solutions
to (1.1) which satisfy the uniform energy bound (1.2) (i.e. not only the least energy ones).

In order to state the results of [15] we define, for a sequence p,, — 400, the blow-up set S
of the sequence p,u,, , where u,, solves (1.1), to be the subset

S:={xeQ: I(x), €Q, x, =X, with p,u,, (x,) = +oco}. (1.7)

We summarise the results in [15] as follows:

Theorem |I. Let (up)p be a family of solutions of (1.1) satisfying (1.2). Then there exist
C,c,¢,C > 0 such that

c< ||up||LOC(§) <C, forp>1 (1.8)

¢ ép/ uhdo < C, for p large. (1.9)
o
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Furthermore for any sequence p, — +o0, there exists a subsequence (still denoted by p,,) such
that the following statements hold true:

(1) There exists an integer m > 1, a finite collection of m distinct points X; € 0, i = 1,...,m,
such that the blow-up set S of the sequence pyuy, is given by

S={%.,%,. ... %} (1.10)

(2) There exist m positive constants ¢; > 0,1 = 1,...,m, such that

m
* .
p,,uﬁ;’ — E ¢ifs, in the sense of Radon measures on 02

i=l
and
Em puity, = _¢G(,%)  in Cloo(Q\S), L'(Q) and L'(09Q), Vi € [1,400), (1.11)
n— o0
i=1

where G is the Green’s function for the Neumann problem (1.3).
(3) The points x;, i = 1,...,m, satisfy

i VoH (% %) + Y enVrx) G (X, X) =0, (1.12)
h#i

where T(X;) is a tangent vector to OS2 at X; and H is the regular part of G as defined in (1.4).

Theorem I shows boundary concentration at a finite number of points in & C 92, moreover
by (1.11) and (A.4) it follows that in any compact subset of 2\ S

pu, < C, (1.13)
and so
- . 1 oy
lim up, =0 in Cig (Q\S). (1.14)

Many questions arise from this result:

e How does u,, behave close to the points X;?

In particular, what is the asymptotic behaviour of ||uy, || ?
e Can one compute the constants ¢; which appear at points (2) and (3 ) in theorem 1?7
e What one can say about the total energy of u,,,?

Looking at the asymptotic results for least energy solutions [5, 27] and at the existence results
of solutions with multiple concentrations points [4], it was conjectured in [15] that for general
solutions of (1.1) under the uniform energy assumption (1.2) the constants c¢;’s must be all
equal and that an asymptotic quantisation of the energy must occur, more precisely it was
conjectured that:
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ci=2m+/e, forl<i<m, (C1

p"/ (|v”pn
Q

as n — 0o, and furthermore that

2+u§n)dx—>m-27re; (C2)

el ) = V& (©3)

as p — +o0.
Here we answer these questions, proving in particular (C1)—(C3).

Theorem 1.1. Let (uy,), be a family of solutions to (1.1) satisfying (1.2) and let p, — 400, as
n — oo, be the subsequence such that the statements in theorem 1 hold true. Then

(@)

§—0n—+oo

¢;=lim lim pn/ urdx =2m+/e, for 1<i<m;
B(;(X,')ﬁaﬂ
(i0)
g%ngrgo”upn”]‘m(gé(;i)mﬁ) :\/E Vi= 1)"'am7

where Bs(X;) is a ball of center at X; and radius § > 0;

(iif)
tim [ (Vi +18,) dv=m2re
(iv) let 6 >0 be such that Bys(X;) N\ Bas(X;) =0 for i#j and let (yin), C Bs(x;) N, i =
1,...,m, be the sequences of local maxima of w,, around X;, namely
upn (yl,n) = ||upn ||L0°(B5(_76i)ﬂ§)7
then (yin)n C OSY, lim, o [yin — Xi| = 0 and, setting p; , = (pnu,,n (y,'7,1)p"*1) ! (—0),
then
Pr _
Wi (t) = : (”pn (‘I’i ! (bin+ Ui,rlt)) — Up, (yim)) )
Up, (Yin)

where bi, =V;(yi,), t€T,:={t€R?>: b+ pint € V;(ANBg (X))} and V; is a
change of coordinates which flattens 0S) near X; and R; > 0 is a suitable radius (see
section 2.1).

Then

lim wi,=U inCl, (@) ,

n—oo

where U is the solution (1.5) of the Liouville problem (1.6).

5
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Theorem 1.1 shows that the conjectures (C1) and (C2) are true, furthermore points (ii) and
(iv) provide information on the solutions close to the concentration points X; for p large, in
particular we identify the same limit profile U around each concentration point. We stress
that in [15] only the existence of a first bubble U was proved, scaling the solution around the
sequence of global maxima, while the behaviour around the other concentration points was
unknown. Observe that U is the same profile describing the least energy solutions (for which
m=1, see [5]), and indeed our theorem, combined with the results in [15] (theorem I), extends
to general families of solutions the asymptotic results proved in [5, 27] for least energy solu-
tions, thus giving a complete characterisation of the asymptotic behaviour for problem (1.1).
We remark that the number m of concentration points coincides with the maximal number k
of bubbles U which may appear as limit profiles (for details see proposition 3.3 and (4.33) in
proposition 4.6).

We stress that from (1.12) and point (i) in theorem 1.1 we also deduce that the concentration
m-tuple (X1,...,%,) € 0 is a critical point of the function ¢,, : (02)" — R

m

P (X1, xm) = > H (i) + Y G (xi,31). (1.15)

i=1 i#h

We point out that (1.14) and (ii)-theorem 1.1 clearly imply that also conjecture (C3) holds
true:

Corollary 1.2. Let (u,), be a family of solutions to (1.1) satisfying (1.2). Then
lim ] = V. (1.16)

It is worth to remark the interesting analogy between the results here obtained for the
Neumann problem (1.1) and those known for the Lane-Emden equation under Dirichlet bound-
ary condition

Au=|ufP~'u in
u>0 in Q (1.17)
u=20 on 0f).

The asymptotic behaviour as p — +o00 of families (u,), of solutions of (1.17), under the
assumption that condition (1.2) holds, is well understood after the works [1, 10-12, 23, 24,
28], and the results established therein can be tought as the analogs of theorems I and 1.1. In
particular it is known that u,, stays uniformly bounded and that, up to subsequences, peaks-up
as m points in the domain €2 [10]. Furthermore, it is proved [11, 12, 28] that (1.16) holds and
that the concentration appears at a critical point of the functional (1.15), now defined on Q™,
where G and H are respectively Green’s and Robin’s functions of —A in {2 under Dirichlet
boundary conditions. Moreover there is quantisation of the energy, since

nli}rglcp,,/Q (|Vupn \2 + ulz,x) dx=m-8me,
and limit profiles are identified.

In this work we perform a blow-up analysis for the solutions of problem (1.1) following the
approach developed in [11, 12] in the framework of the Lane—Emden Dirichlet problem (1.17).
Of course one has to be very careful since now we have a boundary concentration phenomenon
due to the Neumann boundary condition, while the concentration for problem (1.17) is in €2.

6
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We prove theorem 1.1 by first performing an exhaustion method which provides a construc-
tion of concentration points. This approach relies on the energy bound assumption (1.2) and
comes with pointwise estimates of the solutions and with the description of the local asymp-
totic profile U. Similar methods have been exploited for more general 2D Dirichlet problems
(see [10, 13]), also in higher dimension (see for instance [14, 25]). We have adapted the con-
struction to deal with the Neumann problem, taking advantage also of the results in [15], this
part can be found in section 3.

Afterwards, in section 4, we refine the asymptotic analysis, showing that one can actu-
ally scale the solutions around local maxima and deriving the sharp constants and the energy
quantisation. These proofs rely on a detailed local blow-up analysis, in particular we use a
local Pohozaev identity (see the proof of lemma 4.5), pointwise estimates of the rescaled func-
tions (see lemma 4.7) and exploit the Green representation formula for the solutions to (1.1)
(see the proof of proposition 4.8). Finally, at the end of section 4, we complete the proof of
theorem 1.1.

We have postponed to appendix some technical estimates used throughout the paper.

2. Notations

We list here some notations used throughout the paper. First the coordinates of a point will be
denoted as follows: x = (x!,x?) € R2.

Newt we denote the open ball centered at a point ¢ = (¢',¢*) € R? and radius r >0 as
B.(q) :={x€R? : |x—q| < r}. We also define the open half ball as

Bl (q) =B/ (¢)N{xeR* : & >¢’}, 2.1)
its flat boundary as

D,(q) =B, (9)N{xeR* : ¥ = ¢’} (2.2)
and its curved boundary as

S:(q)={xeR* : x—q|=r, *>q}. (2.3)

Moreover dist(x,09Q) = infycpq |x — y|. We stress that C will be a positive constant which can
change from line to line.

2.1. Change of coordinates which straightens out 9$2 near a point on OS2

We assume that 9 € C?. We fix a point on 9 that we denote by Q € 912, in the following
the change of coordinates defined below will be applied around the points in S = {X1,..., X}
(see theorem 1.1) and around limit points of suitable special sequences (see section 3).

It can be proved that there exist R > 0 and a C? function p : R — R such that, up to reorder-
ing the coordinates and reorienting the axis

QNBr(Q) = {x= (x".x*) €Br(Q) : ¥*>p(x")}
OQNBR(Q) = {x= (x17x2) € Br(0) : xzzp(xl)}.

Furthermore, up to a suitable translation of the axis we can assume that
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so that
p(0)=0

and, up to a suitable rotation of the axis, we can also assume that

p'(0)=0.
We define the map
y=V(x) 2.4

defined by

{yl —
V=x2—p (xl)
then W is one-to-one and det(DW) = 1. Note that ¥ is a C function which maps Q N Bg(Q)
into a subset of the half-plane, more precisely
Qo =T (Q2NBx(Q)) C {y= (") :»* >0}
GFQQ =V (0QNBR(Q)) C {y: (yl,yz) - y? :O}
and the point Q = 0 is mapped to the origin.

We define
u, (y) == up (\I/*l (y)), forallyeQouU Qo (2.5)
then (see [15])
~  ~ %, i %, .
Adiy ~it = 20" (3") gyrgiz =" (0") G2 + (0" (1)) 585 =0 in Qg
o [ 00 = (0] = in "0

Let x,€Q be a family of points such that Q=Ilim,,;x, and

1 = (pup(x,)"~1) =" = 0.
Hence for p large x, € Bg(Q) and so the point

g = (x,) € QU

is well defined.
We scale u, around g, setting

P _
2 (1) 1= = (U (qp + 1p1) = Wy (qp)),  for1€To, U0 Ty,
up (qp)

where

Top:={t=(1",#) €R* : g+t €} (2.6)
FTop={t=(1",P) €eR* : g+ p,t €0} 2.7)

8
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Let us observe that we can choose R > 0 such that

2
Br(0)nidr: >l Top (2.8)
mp /j,p
and
q2
Bz (0)NQt: F=—-"L3cCoTy, (2.9)
Hp ,up

Indeed, let us fix R > 0 so that

B (0) CQ (and D,z (0) := By (0) N {y* =0} C 0" Q).
Since g, — 0 (because x, — Q) then, for p large, |¢,| < R/2 hence

Br(gy) N {y* >0} CByr(0)" UDx(0).

Equations (2.8) and (2.9) follow observing that

dp + 11yt € Br(qp) N{* >0} & {
The function z,, satisfies

2
Lyzp— (1) 2 =p(pp)* B ()N {t: 2>~}

Hp
2

p .
Nyzp = (1+%) inBx (0)N{r: £ =—j}

Hp

where, since p’(0) = 0 and p'’ is continuous:

0? 0
— 1 1 1 1
L,:=A—=2p' (qp + ppt ) on wpp'! (qp + ppt ) gyl
2

— A

11 1\72
+[p (qp+/”LPt )] a<t2>2 p—+oo

and

21 0 9
Nyo= [0 (@bt )~ [0 )] o o

Thanks to these convergences one can restrict to consider the case when 0fQ is flat near Q,
since the same arguments adapt to the non-flat case (see for instance [5, 15]).

9
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3. Exhaustion of concentration points

Given a family (u),) of solutions of (1.1), for a sequence p, — 400 we define the concentration
set S of uy, as

S:= {x €Q: 3 (x,), €Q, x, —x, with pnuﬁj‘fl (xn) — +oo} cQ. (3.0
Clearly
SCSE={x1,....%u} (COQ), (3.2)

where S is the blow-up set of the sequence p,u,, (see (1.7) for the definition) characterised

in [15] (see theorem I in the Introduction). Indeed by the definition of S. , for any x € S there
exists a sequence x, € 2, x, — x such that

pnungl (Xn) - +OO7
then clearly
pnu[’n (xn) — +OO,

hence, by the definition of S, x € S and (3.2) is proved.
Let us also note that

imi > 1.
ligggfupn (xy) =1

As a consequence, up to reordering the points in S, there exists N < m such that
S={x1,...,xn}. (3.3)
In this section we will prove the existence of a maximal number k of concentrating
sequences x, for the set S, satisfying specific properties, in particular we get pointwise estim-
ates and a description of u, close to the points of S. The main result is contained in proposition
3.3 below.
We introduce some notation. For/ € N'\ {0} families of points (x; ,), C €,i =1,...,1,such
that
puﬁ_l (xip) = +00 as p — 400, (3.4)
we define the parameters

_ -1
pip = (puth "(xip)) (=0, asp— +o0), (3.5)

and introduce the following properties:

(Pl) Forany i,j € {1,...,1},i#}],

lim [Xip — %ip = too
ptoo fip
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(Pl) Foranyie€{l,...,l},

dist (x,-7p, 89)
p=rtoo Hip

=0.

(PL) Forany i =1,...,1, let Q; € 9 be such that

;= lim x;
Ql portoo i,ps

let W, be the change of coordinates which straightens 0 in a neighbourhood of Q; of
radius R; > 0, let ¢; , = ¥;(x; ) and let

p
up (Xip)

Zip (1) == (up (\I/l_l (qip+ ,ui,pt)) — Uy (xl-J,)) forteT;,U 8F7},p, (3.6)

where T; , := T, ,, see (2.6) and (2.7) in section 2 for the notations.
Then

T, U0 T, -R2  and z,(t)— U(t inCL_(R2) asp— +o0o, (3.7)
P P + P loc +

where U is the function in (1.5).
(PL) There exists C > 0 such that

PR, (x) uz_l (x)<C
for all p > 1 and all x € Q. where R;, is the function

R (x) == _min l\x—x,-’p|, Vx € Q. (3.8)

5

Remark 3.1. If we assume that there exist /€ N\ {0} families of points (x;,), C €, i =
1,...,I which satisfies (3.4) and such that property (7?4’1) holds true, then it is clear that the
concentration set defined in (3.1) reduces to

5:{ lim x;,,i = 1,...,1}.
p——+oo

Lemma 3.2. [f there exists | € N\ {0} such that the properties (P'), (P}) and (P%) hold for
families (x; ,)i=1,...; of points satisfying (3.4), then

!
p/ﬂ(|Vup\2+u12,)dx)ZWZa[z—i—op(l) asp — 400,

i=1
where o; = liminf,_, | u,(x;,) (=1, by (3.4)).

Proof. Let us fix i € {1,...,I}. Since lim,_, o x; , = Q; € IQ and lim,_, o it; , = 0, then
for any R >0 and p sufficiently large By, , (xi,) N OS2 C Bs,(Q;).
As in section 2.1 we can assume w.l.0.g. that Q; = 0. We claim that

(B Ry (i) N{Y* = 0}) C VU (Bgy,, (xip) NON), (3.9)
3

1
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where ¢, , := V (x; ,). Given ¥ as in (2.4), it follows that U~ is a C? function in a neighbour-
hood of (0,0) = ¥(Q;) furthermore D¥~!(0,0) = I. Thus

36>0 suchthat ||[DU~'(y)|| <3 VyeB(0,0). (3.10)

Since lim,_,  ~ ¢i , = ¥(Q;) = (0,0), then for p sufficiently large we have
(Bim,-,,, (gip) N{* = 0}) C BY (0,0).
3

Lety=(y',0) € (B Ry, (gip) N {y* =0}) then y = ¥(x) where
3

—xipl= U () =T (giy) |
< sup [DYUT|y—gipl
BF(0,0)
(3.10)
< Rpip.

This proves (3.9).
Let us write, for any R > 0, recalling the definition of , in (2.5)

p/ ot = p [ () do ()
BR“W’ (X,Yp)ﬁaﬂ \I/,’(BR‘“’.)’/ (X[yp)ﬂaﬂ)

39 ~p+1
= i+ (3) do(y)
B Ry, (410)N{?=0}
3
= Iwi,p/ oy ﬁlI;H (Gip + pipt) df!
B§ (O)O{t =— Tip }

S ) W (qip + iph)
>ty (Xip) W 2T ()
BR(O)ﬁ{zZ:— ""} p (Xip)

Hi,p

2 zip ()N
> Mp(xi,p)/ 2 <1+”’) dr'. (3.11)
pron{r—-7z1 P

ds!

Thanks to (P}), we have

||Zi,p_U||LOC(§/3) =0,(1) asp— +oo. (3.12)

Thus by (3.11), (3.12) and Fatou’s lemma

liminf p/ uﬁ“da(x) 20‘1‘2/ RUCFRY (3.13)
p—r—+00 Bry, , (xi,p)NOQ Br/3(0)N{2=0}

i,p

Moreover by virtue of (P}) it is not hard to see that Bgy, , (xi,,) N Bgy,, (x;,) = 0 for all
i #j. Hence, in particular, thanks to (3.13)

!
liminf p/ wWwtldo (x)) > aiz/ VOdrt |
p—-+o0 ( o0 ; Brys (0)n{2=0}

12
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At last, since this holds for any R > 0, we get

1

!
p/ (|Vup|2+u,2,)dx:p/ uﬁ“da(x)}Zoz%/ eU(t)dtl+0(1):27rZa,-2+0(1),
Q o0 = Jor

i=l
as p — 4o0. O

Using an exhaustion method, we establish the existence of a maximal number & of ‘bubbles’
U appearing about the points of the boundary subset S.

Proposition 3.3. Let (u,) be a family of solutions to (1.1) and assume that (1.2) holds. Then
after passing to a subsequence p, — +00 as n — 0o, there exist an integer k > 1 and k families
of points (x;p,) in Qi =1,....k such that (PF), (P%), (P¥) and (PX) hold. Moreover given
any family of points Xiy1 p,, it is impossible to extract a new sequence from the previous one
such that (PFY), (PAT1), (PETY) and (PXT') hold with the sequences (x;,), i = 1,...,k+ 1.
Furthermore, there exists N < min{m,k} (where m is the number of points of the set S) such
that, up to reordering the points x; € S, it holds

5:{ lim xi,,,n,izl,...,k}:{xl,...,xN}7 (3.14)

n—-+oo

where S is the concentration set defined in (3.1).

Remark 3.4. The point x; ,, can be taken to be a maximum point of u,, in Q, hence it belongs
to 012, see STEP 1 below. The other sequences x; ,, i = 2,...,k are instead in €).

Observe also that the number N of distinct points in S satisfies N <k

Proof. For simplicity throughtout the proof we will denote any sequence p, — +00 as n — o0
simply by p.

STEP 1. We show that there exists a family (x; ,) of points in §2 such that, after passing to a
sequence (P3) and (P3) hold.

Let us choose x1 , be a point in Q where up, achieves its maximum. In [15] it has been proved
that x; , € O and that it satisfies (P}).

STEP 2. We assume that (P}'), (P) and (P}) hold for some n € N\ {0}. Then we show that
either (P, (Py+Y) and (Py) hold or (Py) holds, namely there exists C > 0 such that

PR, (%) u‘,”,_l x)<C
for all x € £2, with R, , defined as in (3.8).
Letn € N\ {0} and assume that (P}), (P}) and (P%) hold while

sup (pRy, (x)uh ™" (x)) — 400 as p — +oo. (3.15)

x€Q

We let x,+1,, € Q be such that

pRn,p (anrl,p) MZ_I (anrl,p) = SUE (pRmp ()C) MZ_I (x>) . (3.16)
xeQ
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By (3.15), (3.16) and since §2 is bounded it is clear that

puz_l (Xnt1,p) = +00  asp — +oo

and
liminf ,_, { ooty (Xnp1,p) = 1. (3.17)

We will prove that (P +!), (P5™!) and (Py") hold with the added sequence (x,41 ).

Proof of (P ™).
We first claim that

Xip — Xn+lp
Mi,p

— 400 asp — 400 (3.18)

foralli =1,...,nand p;, as in (3.5).

Let us assume by contradiction that there exists i€ {1,...,n} such that |x;, —
xn+1,p|/lh',p — R as p — +oo for some R > 0. Then the points x;, and x,4, are close to
each other and by virtue of (P3), they are very close to the boundary of €. Let us denote
gip = Yi(xip) and g, 11, := V;(x,11,,) where U; is the function defined by (2.4) around the
boundary point Q; := lim,_, 4 oo X; . Since U; is C2, (|gip — Gu+1,p|/ i p)p is bounded. Up to
subsequence, |¢; , — Gnt1,p|/1tip — R’ as p — 400 for some R’ > 0. Thanks to (P%), we get

p—1
. _ g = Xaripl [up (Gat1p)
lim plx;, —x, ! (x = lim Xip = St 1.p 5
1H+oop‘ i.p — Xnt1,p|Utp ( n+1,p) p—r+oo Lip up (xl.’p)

p—1
P — U \Il‘il (Qn+l)

prteo Hip tp ('xiJ’)

—1
o P
[Xip = Xnt1,p] (1 + “ip (“"’P (g1 q"*’)) )

= lim
p—rtoo Hi,p

2 2
= R < +oo | where (tl) + (12) =R"?),
(") + (2 +2)°

against (3.15) and (3.16), thus (3.18) holds.
Setting

4

_ —1
fing1p = [pu " (Xug1)]  — Oas p— 400, (3.19)
by (3.15) and (3.16) we deduce that

Ry (anrl}p)
Hn+1,p

— +00 asp — +o0. (3.20)

Then (3.18), (3.20) and (P}) imply that (P™") holds with the added sequence (x,11,). O

14
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Proof of (P, ).
Let us prove that for any S >0

Stin
sup () 1+0( Hnt1,p ) . (3.21)
BSH,H,],]; (X,H,]’p)ﬂﬁ up (xn-i-l,p) (P - I)R”>P (xn-‘,-l,p)

Let x € Bsy, ., (Xnt1,p) N €, since x,41,, satisfies (3.16),

Rup (xX)up (x)p_l SRup (anrl,p)”z_l (Xnt1p) -

Furthermore |x — x,41 | < Sttpt1p, thus
Rup(x) = i:nl’l,i.p,,n a1, — Xip| — [ = Xng1p
2 Rup (Xnt1,p) = Stint1,p-
Then, since for p large by (3.20), Ry, , (*n41,) — Sttnt1,p >0

Rup (nt 1)

Rup (xn-i-l,p) = Spnt1p
1

W (x) <

D ug—l (xn+1,p)

N

ug_l (-anrl,p)

S
L= R Gy et

Sptny )) —1
< 1+0(’p W (Xnt1,p) s
( Rn,p (x11+l,p) ¢ P

thus (3.21) is proved. O

Let us now introduce the rescaled function

p ~
Vnitp (1) o= G ) [ty (Xn1.p + Hint1.pt) = tp (ng1,p)],VEE Qugr
P \"nrL,p
=ty (= Xa1p) (3.22)

Observe that by definition for ¢ € QH 1,pNBs(0)
p (x)
Vntl, (t)—p(p1>7 (3.23)
o ty (Xs1,)

where X := X, 15 + ftay1pt € QN Bsy, ., , (Xnt1,,), hence by (3.21) and (3.20) it follows that
for any S > 0 one has

limsup sup  v,41, <O. (3.24)
P10 Q14 ,NBs(0)

Next to show (P}) we argue by contradiction assuming that lim,_, | o dist(x,41 ,0€2)
- 411 » # 0. Up to a subsequence two cases may occur:

(1) dist(Xo11,, 0y, — L >0,
) dist(xn+1,p7aﬂ)u;ﬁl’p — +o0.
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Case (1). Let us start by the first case. We have x,, 1, — Q41 € 0€). We may assume without
loss of generality that the unit outward normal to 02 at Q4 is —e?, where ¢? is the second
element of the canonical basis of R?, and that 952 is contained in the hyperplane x*> = 0. For
simplicity we will also assume that 02 is flat near Q,, 11, we point out that all our arguments can
be adapted to the non-flat case considering the change of coordinates which straightens out 02
near 0,1, introduced in section 2.1 (see for instance [5, theorem 3]). The flatness assumption
means that the function ¥, in (2.4) is the identity, namely that there exists R := R,y >0
such that QN B (Qn11) = B (Quy1) and OQ N OBE (Qni1) = Dr(Qni1)-

In particular, for p large one has that xi fip= dist(x, 11, 0%2), so that by assumption

x%z+1 P
Hn1,p

1 (3.25)

as p — +o0.
Let us project x,1,, on the boundary defining the point X, := (x,llJrl’p?O)(e 0Q), and
let us set

2

X ~

. 1 n+l,p - S

Sn+1,p (l‘) = Vntlp (I 712 - 7# N ) s Vt € Qn+17p = Mg (Q —x,H_Lp)
n+1,p

32) p

[“p (in-H,p + Un+l,pt) —Up (xn—&-l,p)] . (3.26)
up (xn+1,p)

We can choose & > 0 such that BY (%,41,) C Bi (Qu+1), hence

Bty (0)CQu1, and D_ s (0)C O,

Hnt1,p Hnt1,p

and, by (1.1), the rescaled function s, , solves the system

_Asn+17p+/iz+1_’psn+1’p: —M%Jrl’pp in BT s (0)7
Hpt1,p
Osy 0 P (3.27)
S+1’P<1+S+1’P> onD_s _(0),
aV P Hnt1,p
.)62
furthermore for any o >0, by (3.25), there exists $> 0 such that B (0) C Bs(0, ﬁ) N
Qn-‘,—l,pa then
: : 1 Knt1,p
limsup sup s,41,(f) < limsup sup Vatlp (t = )
“+o0o gt +oo X2 ~ ,un-i-l,
p—+00 pE(0) p— 5 (Qﬁl{f;)ﬂﬁm,p P
. (3.24)
<limsup  sup  vupi, (7)) < 0. (3.28)

P=F00 B(0)NQg1

Arguing similarly as in the proof of [5, lemma 2], we will prove that for any r > % there exist
C>0,p,>1and a € (0,1) such that

||sn+l>pHCI,a(BV+(())) <C, for any p > p,. (3.29)
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We first observe that for any fixed g > 2 and for p sufficiently large

/+(0) |PM%+1,p|qu:0p(l) (3.30)

B,

and

pPq

Sn+1,p (1) do

/1)4,(0) p

1 pq
_ / ( up (%) ) do
Hn+1,p Darpy iy, (Fut1,) \Up (x’”rhp)

plg—1)—1
<P (up@f)> / w4 (x) do
u, (xn+1,p) X€Dar, yy , Gut1,0) up (xn+1,p) f}9]

<c (3.31)

1+

where in the last inequality we used (3.17), Dayy,, , (Rn+1,p) C Berpsr, (%nt1,p) N2 for some
constant ¢ > 0 (being r > %), (3.21), (3.20) and the energy bound (1.2), since for a solution u,
one has [,,(|Vu,* +2)dx = [,,ub" do.

Let us now consider the solution w,, to

—Aw, + U3+1 2= ;I’#?H-] ) in BZ’; (0),

oy _ (1 n s*”’) on Dy, (0), (3.32)
v p

w,=0 on Sy, (0).

By (3.30) and (3.31), with ¢ =2, the existence of such w, € H' (B} (0)) is guaranteed by Lax—
Milgram. Furthermore arguing as in [26, theorem 5.3], we have by (3.30) and (3.31), that
w, € W2 t14(B£(0)) with the uniform bound

P
Sn+1,p
Woll 1in < C | M pll sy +H<1+) DR
| 17||W2+' (B (0)) <| o ||Lq(B4r(O)) p L1(D4y(0))
forg>4and 0 <t<2/q.

In particular, by Sobolev embeddings, |[wp]|, (B2 (0)) < C, so we can define the function

Op =Wy — St p T ||WPHL°°(BZC(0)) +1,

which solves

—Ap, +:“i+1,p‘PP = Mﬁ+l,p (”WpHLoo(B;) + 1) in B;lLr (0),
% — 0 on Dy, (0),

furthermore, since s,,41, < 11in B4+r(0) for p sufficiently large by (3.28), then

0,20 inBj'r(O).
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We define, for t = (11,#,) € B4,(0), the function

R e ift, >0
(1) = { wp (t1,—12) ifty <0,

which turns out to be a non-negative weak solution to
7A()0 + ,u’ﬁ—i-l,p(p = :[1“121-1-1,]7 (”WpHLoo (3;(0)) + 1) in By, (O) .

Therefore by the Harnack inequality we get for every a > 1
1
o) < nf gt e, (1wl 1)
(7[33,((»%) (Bifl(w ot Mttnsr (Il (55 00) 1) 2o

3r>L+(3.25) X2,
< c <<Pp <07 “’) +ui+1,pc>
Hn+1,p

(2||Wp||Loc (B (0)) +1 +/J’i+1,pc>

<C
<G,

2
x’l
where we have used that s, , (0, u:f:) =0 and that ||wp ||, @) SC Then

1
lp | 2(8s,0)) < C|B3,(0)|a < C forany p > p, and for any a > 1.

Finally by interior elliptic regularity

I @ollweam o) < € (111 (Il (55 00) + 1) lsmsion + @ liscaion ) <€ (334

Being 5,41, = wp + [[Wp | B o) T 1 — ¢, combining (3.33) and (3.34) we obtain

2
||sn+1,pHW%+z,q(B;r(O)) <C forg>4,0<1< 7 and p > p,.

At last by the Morrey embedding theorem we get that

ll$nt1,p |Cﬂ,a(32+(0)) < C forsome a >0

and in turn, by Schauder estimates for the Neumann problem, we get

p
Sn1
< 2 | 4 Sntlp
Isut1sllere (s o) C(” sl ”L°°<B;<0>)+H( T ) oo

+ |ISnt1,p] cﬂﬂa(BZ(O))) s¢

for any p > p,, so (3.29) holds true.
By (3.29) and the regularity theory of elliptic equations, we derive that, up to a subsequence,

Sni1p — Uin Gy, (@) as p — 00, (3.35)

18
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where, by (3.27) and (3.28), U satisfies the following problem

Aff =0 inR2
% eV  onJR? (3.36)
U<0 in R2.

2
X
Furthermore s,,41,(0, ) =

e 0, for any p, then by (3.25) it follows that U (0,L)=0.
Let us now prove that 7

/ eU < 0.
OR2

Let R > 0, then for any |¢!| < R we have

log <1 + Sntlp (t1’0)> _ Sntlp (tl’o)

P p+1

(3.37)

(p+1)

0,

—
p——+oo

so we can use Fatou’s Lemma and (3.35) to write

R s, rITO)
R R 51, (11,0) (04 1) 10g<1+ ”“”( 0)>—”“’”(
/ eU(’lvo)dtlg / e #1o(10)
—R

p+1
Sn+1 s
( Sutip (1) ) dr' +0, (1)
BR(O N{r=0}
!

}dtl +0,(1)

N

/ (xn-i-l,p + Pntip 1)
Ben{r=0y Uy (ug1p)

. ™ (x)
lu’n—i-l,p 5

. +1
Rityt1,p Gnt1,p) {7 =0} “ﬁ (Xnt1 717)

< L/ W (x)do (x) + 0, (1)
up (Xnt1,p)" Jo0

(3.17)

<

dr' + 0, (1)

N

dx' +0p (1)

p p+] (1.2)
(1—¢)? /an T (x)do(x) +0,(1) < €< +o0,
so that e¥ € L! (OR?).
Using now (3.36), (3.37) and the classification due to Liu [19] (see also [30]), we obtain

) 2
U(1',) =log —————— where n € Rand 1, > 0. (3.38)
(e —=m)"+ (7 +m)

Remark 3.5. Notice that what we have proven up to now in Case (1) holds true also if

dist (x,41,,09) ,unj:l’p —L=0,

in particular we get that the rescaled function s, defined in (3.26) converges to U (see (3.35))
which in this case satisfies the conditions U(0,0) =0 and U < 0, that imply that ; =0 and
12 = 2, namely that U = U, where U is the function defined in (1.5)

19
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We remark that U is a radial and decreasing function with respect to the point (M, —1m).
We have

U(ni,0) > U(0,L) =0

which contradicts the fact that U < 0.
This rules out Case (1), namely the possibility that dist(x,+1,,0Q) 1, Jil_’p — L>0.

Case (2). In the sequel we will prove that the second case i.e. dist(x,11,,,0Q) 1, Jilﬁp — 400
cannot occur too. Let v, 1, be the rescaled function defined in (3.22). By (1.1), v, solves

2 2 0
AV tp g1 pVnttp = —HpgrpP 10 Qg p.

Since for any R > 0, Bg(0) C §n+ 1,p for p large enough, it follows that (NZ,LHJ, converges to
the whole plane R?.
Furthermore, from (3.17), (3.19) and the uniform bound (1.8) we get

[Avit1,p| < |Mi+1,pvn+l,p| + |M5+1,pp| <Cin QHHW (3.39)

namely v,yi, are functions with uniformly bounded laplacian in Bg(0), moreover

Vn+17p(0) =0.
Let us decompose

Vatip=@p+p in (NZ,H_IJ, NBg(0),

with —Ap, =—Av,y1, in S~2n+17p NBg(0) and 1, =Vv,y1, in G(QHLP N Bgr(0)).
Using (3.39) by standard elliptic theory, we see that ¢, is uniformly bounded in 2,11, N

Bg(0). The function 1, is harmonic in 2,41, N Bg(0) and bounded from above by (3.24).
By the Harnack inequality, either 1), is uniformly bounded in Bg(0), or it tends to —oco on
each compact set of Bg(0). The second alternative cannot happen because, by definition,
Pp(0) = Vuy1,,(0) — 0, (0) = —,(0) > —C. Hence v,41, is uniformly bounded in Bg(0)
for all R> 0. After passing to a subsequence, standard elliptic theory implies that v, is
bounded in C . (R?). Thus

Vat1,, — Vin C (R?) as p — oo, (3.40)

where V € C'(R?) is a harmonic function satisfying V(0) = 0 and V < 0 by (3.24).
So by a Liouville type theorem

V=0. (3.41)

Let now Q41 = li}m Xnt1,p- By (3.2) and (3.19) it follows that 0,1 € S C 052, where S is
P oo

the concentration set in (1.7). In order to simplify the exposition, we will assume in the sequel

20
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that Of) is flat near the point Q,. This flatness assumption means that there exists Ry > 0
such that

Q ﬂBj;o (Qn—H) = B?;o (Qn—&-l) and DRO (Qn—i—l) C 0N

We also assume that near Q,, 1, 92 is contained in the hyperplane x> = 0 and the unit outward
normal to 9 at Q,,+1 is (—e?), where €? is the second element of the canonical basis of R
W.l.o.g. we can also assume that

Br, (Quy1) NS = {Qui1}- (3.42)

Now, inspired by Guo-Liu [16] (see page 750), we define the function

p S() 1 7+
W, (x) = ——— bt (x4 (5,0))ds, Vx€ By, (Qui1),
ne <>/ (x+ (5,0)) ()

where 0 < 5o < Ry/4. We have

Ay (Wt (x4 (5,0))) = (p+ 1)t (x+ (5,0)) Ay (x + (5,0))
+(+ l)puﬁf1 (x+(5,0)) | Vaup (x + (5,0))
Z (p+1) uy (x+ (5,0)) Ay (x+ (5,0))
=({p+1) uﬁ,’*l (x+ (s,0))
>0 VxeB), (Qni1)US, (Qns1) and Vs € [—s0,50] -

2
|

Hence W), is a subharmonic function in B3, (Qn+1)-
By (1.13) and (3.42), for p large,

1 -
‘up(y” <C1;’ vyGSZS() (Qn+l)7

thus
W, —0 uniformly in S»s, (Qp41)- (3.43)

Furthermore for each y € D, we have

p (1.2),(3.17)
W,(0) < 57— / W (x)do(x) < G (3.44)
u, (anrl,p) o0

Combining (3.43) with (3.44) and using the maximum principle we get

W, (x) < Cforall x € By, (Qus1)- (3.45)

21
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On the other hand, we have for k > C and p sufficiently large

o 4 % +1
Wp (xnt1,p) = “%(errl,p)/—soug (Xn+1,p + (5,0)) ds

(3.19) p /kﬂn+l,ﬁ bt ( ( ))
> " Xnt1,p +(5,0))ds
w2 ) Sk, T

k

P Hn+1,

ﬁ/k“ﬁl (Xnt1,p + Hing1,p (£,0)) dt
p Xntip) J—

1
> /k (uP (xnjtl,p‘|'Mn+l,p(ta0)>>pJr dt
—k

tp (Xnt1,p)

k p+1
> / <1+ Vn41,p (t70)> dr
—k p

k
(3.40) / ALK PP (1) (34D 2k > 2C,
—k

which is in contradiction with (3.45).
Hence, we have proved that Case (2) cannot occur.
So, up to a subsequence,

lim dist (x4, 0) Mn_-s}l,p =0

p—00

and (P5) holds with the added points (xX,11,).

Proof of (P;'). Since (Pé”’l) holds, by remark 3.5, assuming the flatness of 9€2 near Q,,+1,
we have that

Spt1p— U in Clloc (@)

where U is the limit function in (1.5).
By the definition of 5,1, (see (3.26)), since x> 41,/ Bnt1,p — 0, we conclude that also

. 1 e
Vag1p = U in Gy, (R2> ,

where v, , are the rescaled functions introduced in (3.22).

In the flat case this proves that (P; ') holds with the added points (x,1,,), since the res-
caled function z,,4 1 , in (3.6) coincide with the rescaled functions v, 1 ,. The non-flat case can
be obtained in the same way (see [5, theorem 3]), thus STEP 2. is proved. O

STEP 3. We complete the proof of proposition 3.3.

From STEP 1. we have that (P}), (P}) and (P}) hold. Then, by STEP 2., either (P}) holds
or (P#), (P?) and (P?) hold. In the first case the assertion is proved with k = 1. In the second
case we go on and proceed with the same alternative until we reach a number k € N\ {0} for
which (Pf), (P5), (PX) and (PY) hold up to a sequence. Note that this is possible because the
solutions u, satisfy (1.2) and lemma 3.2 holds and hence the maximal number k of families of
points for which (Pf), (P4), (P5) hold must be finite.
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Moreover, given any other family of points xiyp,, it is impossible to extract a new
sequence from it such that (P{+1), (PAT1), (P5T!) and (P4T') hold together with the points
(Xip)i=1,.. k+1- Indeed if (Pf“) was verified then

[Xet1,p — il

— 400 asp—+oo, foranyie€ {l,... k},
Hk+1,p

but this would contradict (PF).
Finally let us recall that by remark 3.1

S= { lim x;,, i = lk}
p—r+oo

hence (3.14) follows from (3.3). O

4. Refined analysis

We know that the solutions of (1.1) satisfy theorem I in the Introduction. In particular, for a
sequence of positive solutions u,, , the blow-up set S of p,u,, is a discrete subset of Of2

S:{)‘cl,...,)‘cm}caQ

(see (1.7) for the definition of S and (1)-theorem I for its characterisation).
Moreover we have seen in proposition 3.3 that, up to reordering the points x;, the concen-
tration set S of u,,,, defined in (3.1), satisfies

S={x,....xy}, with N<min{m,k},

where £ is the maximal number of bubbles U in proposition 3.3.
Thanks to the local analysis developed in the previous section, we can actually deduce the
following.

Proposition 4.1.

S=8 and so in particular m =N < k.
Proof. It is ex}vough to show that S C S. , namely that m < N. Let us assume by contradiction
thatx,, € S\ S. Since X,, € S, by definition there exists x, € €2, x, — X,, such that p,u,, (x,) —

+0o0. Since X, € S then there exist > 0 such that B, (X)) N S = () and that definitively x, €
B,(%,,) NQ =: K. Next we show that (P}), which holds by proposition 3.3, implies that

maxpy|up, | < C, (4.1)

thus reaching a contradiction.

Let 0 := dist(K,S)/2 > 0. For y € K we have

Ou

up, (v) = /MZG(x,y) 85” do (x) = /aQG(x,y) uby (x) do (x), 4.2)

where G(., .) is the Green function satisfying (1.3). We split the integral over OS2 into two parts,
the integral over Bs(y) N OS2 and the integral over 02 \ Bs(y).
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On the one hand, if x € B5(y) we get d(x,S) > ¢ > 0 and so Ry, (x) = ¢ > 0 for n large.
From (P}) we derive

_ C
uby ey gp—, Vx € Bs(y).
n

Hence

1\ et
/ G (x,y)up (x) do(x) <C () / Glxy) do(9) << @3)
Bs (y)NoQ Pn f519) Pn

where we have used the fact that G(.,y) is integrable on 92 which follows from lemma A.1
in the appendix.

On the other hand if x € 9Q \ Bs(y) then G(x,y) < C by using (A.4) since [x —y| > ¢ > 0.
Thus we get

(1.9) ¢k
/ G (x,y)ub (x)dx < C](/ ur (x)dx < —. (4.4)
OQ\Bs () o0 Pn
Combining (4.2) with (4.3) and (4.4) we deduce (4.1). O

We conclude the subsection with a result which will be of help in computing the constants
c¢; which appear in (1.11) and (1.12).

Lemma 4.2. Let p, — +00, as n — oo and ¢; > 0 be as in theorem 1, then

¢; = lim limpn/ urdo(x), i=1,...,m.
6—0n—o0 B (x))NOQ

Proof. We retrace the proof of (1.13) in order to characterise the constants c;. Let us observe
that, since the points X;’s are isolated, there exists § > 0 such that By (X;) N Bas(%;) = ). Then
by the Green representation formula for each x € 0\ S we have

Puty, (x) = p /a G5 () d ()

> [ G0 a0+ Gx.y)ut: () do (y)
i=1 Bs (E;)ﬂaQ 8Q\U,‘B(§(Xi)

=X [ G ) dr )+ on(1).
i=1

s ()?,‘)ﬂaQ

where in the last equality we have used that p,u,, is bounded on compact sets of © \ S and the
fact that [,, G(x,y) do(y) < C (from lemma A.1 in the appendix).

Furthermore by the continuity of G(x,-) in Q\ {x} and by (1.9) we obtain, up to a sub-
sequence, that

m
lim p,up, (x) = E ¢iG(x,%), where ¢;:= lim lim p, urdo (x).
n——4o00 6—0n—o0 Bs (%)NOQ "

i=1 s(Xi)N
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4.1 Scaling around local maxima

Let x;,, € €, i =1,...,k, be the maximal number of concentrating sequences in proposition
3.3. W.Lo.g. we can relabel them and assume for the first m sequences that

X} pu —>)_Cj7 V]: 1,...,m and S:{)_Cl, X2, ...,)_Cm} 4.5)

In order to simplify the exposition, we will assume in the sequel that OS2 is flat near
x;forall j =1,...,m. This flatness assumption means that there exists R; > 0 such that

QN B (X)) = By, (%) and Dg, (X;) C 99, forallj =1,....m, (4.6)

and moreover ¥;=1Id. Since the Xx;’s are distinct, it follows that there exists r &
mR;/4) such that

B} (x)NBj (x)=0, Bf (x;) CQ, forall £,j = 1,...,m,{ #]. 4.7)

Lemma 4.3. Let m € N\ {0} be as in (4.5) and let r> 0 be as in (4.7). Let us define y; , €
B; (%),j = 1,...,m, such that

p, (j.n) 3= Max up, (x). (4.8)
B (%)
Then, foranyj =1,...,mand as n — oo:
©)
_ —1
Ejni= [ Uy 1(yj7,,)] — 0. 4.9
(D)
Yin — X; and y;, € 0S) for n large. (4.10)
(iif)
7|yi’n — Vil —r t+ooforanyi=1,....m,i #j.
jn
(iv) Defining:
— Qi L i 411
Win (V) = Y (tp, Vjn + Ejny) = tp, Vi) ¥ € Qjn = P (4.11)
ttp, (Yj,n) Ejn
then
Jim w, = U in G, (R%) (4.12)

with Uas in (1.5).
)

liminf — 2" / ubr (x) do (x) > 27.
n=00 Uy, (Vjn) D, (yjn)
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Remark 4.4. (i) Is the analogue of (3.4) and (3.5) for the families of points y; ,,j = 1,...,m.
(iif) and (iv) are respectively properties (P}") and (P}') introduced in section 3. Moreover
by (i) we get

liminfu, (y;,) > 1 (4.13)

n—oQ

and by (ii) we also deduce property (P5*) and that for any ¢ € (0,2r) there exists ns € N such
that

Yin € Ds (%), forn > ns. (4.14)

Proof. (i): Let ;€ S = S by proposition 4.1 then 3 a sequence x, — X; such that
p,luﬁ,”fl (x,) = 400 as n — oo. Hence x, € B,(%;) for n large and the assertion follows
observing that by definition u,, (yj.») = up, (x,).

(ii): Assume by contradiction that y; , does not converge to X;, then up to a subsequence (that
we still denote by y;,) yj.» — X such that (2r >) |x; —X| > ¢ > 0. But then by (1.11) in
theorem I

Patty, (i) = > _¢G(%,X;) + 0, (1) = O(1). (4.15)
j=1

Moreover, since X; € S, there exists a sequence x,, € Q such that x,, — X; and p,uyp, (x,) —
+o00. Hence x,, € B,(%;) for n large and by definition u,,, (y;,n) > up, (x,), which is in con-
tradiction with (4.15), as a consequence y; , — X;.
Recall that y;, satisfies (4.8) and Au,, = u,, in B} (%;). If by contradiction y;, €

B5 (%), then Au,, (y;,) >0, which is impossible. Hence y;, € B (%;) = Da,(¥X;) U
S2+(%;). Since y; , — X; € OS2, we obtain y; , € D»,(X;) C OS2 for n large.

(iif): Just observing that by construction |y; , — yj | = 4rif i #}j.

(iv): Observe that (if) and (i) imply that for any R > 0 there exists ng € N such that

Bf (0) C BT, (xfgy”’> C Q. for n > ng. 4.16)
Sin Jon
Indeed for n large y;, € D,(X;) by (ii) and and Re;, <r by (i). As a consequence
B;&M (i) C BS(%;) C Q for n large, which gives (4.16) by scaling back.
From (4.16) and the arbitrariness of R we deduce that the set ; , — Rﬁ_ as n — oo.
(4.12) is then obtained similarly as in the proof of proposition 3.3—(73§’+1 ).
(v): using (4.14) we have that y; , € D,(X;) for large n and so B} (y;,) C B;,(x;) C Q for n
large, namely, by scaling

Bt (0)CQ;,, fornlarge 4.17)

i
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By scaling and passing to the limit as n — oo, by (i), (iv) and Fatou’s Lemma one has

n—oo up»x (ijn) n—00 Pn

) Pn
liminf — 2" / W (x) do (x) = liminf / <1+W””(y)> do (y)
Dr(Yj,n) Dﬁ (O)
= / VO do (y) =27
oR2,

which gives (v).

O
Lemma 4.5. Let r >0 be as in (4.7) and y; , for j = 1,...,m be the local maxima of up, as
in (4.8). Let us define
Pn .
Bjn = / wr(x)do(x), forj=1,....,m. (4.18)
! up/x (yj,il) D,<(yj,y,) P
Then
ngrgooﬂm =2r. 4.19)
Proof. Fixje {1,...,m}. By lemma 4.3-(v) we already know that
liminf 3; ,, > 2,
n—oo N
so we have to prove only the opposite inequality:
limsup 3;,, < 2. (4.20)
n—oo
For 6 € (0,r) by (4.7)
Bf (x) cQ 4.21)
and we define
Qjq(0):= P / ' (x) do (x). (4.22)
Up, (yjﬂl) Ds (X‘,‘)
In order to prove (4.20) it is sufficient to show that
lim limsupay; , (0) < 2w (4.23)
00 pso0o
since (4.20) will follow observing that
Bin =0 (0)+ - / ubr (x) do (x) = aj . (6) + o, (1), (4.24)
tp, Vi) J,(3y.00\Ds5 (3)

where the second term goes to zero as n — oo because y;, € D»,.(X;). Indeed D,(y;,) \
Ds(%;) C D3,(X;) \ Ds(x;) C 02\ S and we know that for any compact subset of 92\ S the
limit (1.11) holds and liminf, o 4y, (;,,) = 1 by (4.13).

In the rest of the proof we show (4.23).
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Let us consider the local Pohozaev identity for problem (1.1) in the set B(}" (x:):

1 Ou
2 4 - 2., .2 - Pu
/me u, dx = st o) §<x—xi,u> (IVup, > +uy ) — (x —Xi, Vup,) £y do(x), (4.25)

where v is the outer unitary normal vector to (‘)Bé+ (%;) in x. Recalling that we have assumed
that 99} is flat near X; (see (4.6)), then we have v = —e? on Ds(X;), so that (x — X;,v/) = 0 and
(x—x;,Vu) = (x—x)' 2% 91 for each x € D;(;). Furthermore on S;(;) we have v = =% and
(x—x;,Vu)y=94 %. Hence from (4.25) and by integrating by part we get

1 patl 2 g 2, 2 Oup, ?
up™ do = u, dx— > |Vup,|” +u, —2 do
pnt1 Ds (%) B (%) 2 S5 (%) v

¥ 46

1
1 Uy

+
Pnt+1

()C—j(,')

=1
X —0

Multiplying the last equation by p? we obtain

Pi / wtlde > fé/ P Vu zdo—é (puu )zda
n = n Pn nUp,
Pt 1 Jps) p 2 Jss@) 2 Jssm)

a 2 n+1
+ 0 (,1 uP”) do + p?
S5 (%) v )

()C —Xi)l 'Dn
=T\ +T>+T5+Ts (4.26)

%48

P+ 1

Next we analyse the behaviour of the four terms in the right hand side.

Recall that, by (1.13), p,u,, — >_:_, ¢;G(-,%;) in CIOC(BJF(x,)\{x,}). Moreover, using
lemma A.3, for 6 € (0,r) we have

m _
Ci X—X;

” _ Ci 1 _
E ¢;G (x,X;) = ;log x| +0(1), E VG (x,X) = ——
j=1 ! j=1

g o0

4.27)

for each x € BY (x;) \ {X;}. By the uniform convergence of the derivative of p,u,, on compact
sets combined with (4.27), passing to the limit we have

_ 2 2

1) 1) Ci X—X; c;

=5 vl o -5 [ ( G X +o<1)) do (x) = 5L +0(5)
2sswy —oo 2Jsmy \ o Ix—x 2m

Ay, \ ¢ (x—xi,v(x)) 2 c?
T; = / (pn p") do — 6/ (74’772+0(1)) do(x)=-+4+0(9)
S5 (%) ov n—00 - fg (%) T |x—X T

2pn (1.13)

5HPn W | Lo o5 () 0,(1)0(9).
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So by (4.26) and recalling the definition of «;

(4.22)
0un ) 0 . ) o [ 0@ 2o [ 9 de
Dg(f(;) Dg()?,')
(4.26) (2

> SE+0(0) o (1), (4.28)

but by lemma 4.2, (4.21) and (4.22)

¢; = lim lim p,,/ ug" do (x) = lim lim o, (6) up, (Yin)- (4.29)
D5 (%)

§—0n—o0 " §—0n—o0

Combining (4.28) and (4.29) we get (4.23).

Lemma 4.5 immediately implies the following result.

Proposition 4.6. Let r >0 be as in (4.7) and let y; ,, for j = 1,...,m, be the local maxima of
up, as in (4.8), where m is the number of points in the concentration set S. Let us consider a
subsequence of p, (which we still denote by p,) such that

= 1t (31) =l i it 430)
is well defined for j = 1,...,m. Then one has
¢ =2m - my; (4.31)
nli)nolopn/ﬂ (IVup, | +uy ) dx= 27r§m:m}; (4.32)
j=l
and
m=k, (4.33)

where c;’s are the constant in theorem 1 and k € N\ {0} is the maximal number of bubbles
given by proposition 3.3.

Proof. Observe that, by (1.8), m; is well defined for a suitable subsequence of p, and, further-
more 1 <m; <ooforanyj=1,...,m,by (4.13).

(4.31) follows from some argument already used in the proof of lemma 4.5 (see (4.22)
and (4.24)), indeed we have

d—0n—o0 d—0n—o0

¢j=lim lim p,,/ up, (x) do (x) “2) lim lim ajn (0) tp, (Vin)
D5 (%)

(4.24)
= im Gy, () = 27 - mj,

where the last equality follows from lemma 4.5.
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Next we prove (4.32). Observe that

2
Pn/ (|vupn|2+upn) dx= Pn/ MﬁZHdU
Q o0

= Zp"/ uﬁz“do +p,,/ uﬁ;’“da
i=1 D, (%)) OOQ\UJ_ Dy (X))
(1.13) — nt 1
= an ur o +o0,(1). (4.34)
j=1 D,<()?j
Moreover
pn/( )uﬁ:“da:pn/ ( )u§3+1da+on(1), (4.35)
D, (x; Dg Yin

since for n large enough D (X;) C D1 (yj,) C D(X;) so that

1.13
pn/ uZ’nH'lda épn/ ug’n’+1da(:l)0p(l).
Dy (%)\D 5 (3j,1) {xeD(x), §<lx—%|<r}

Let us consider the remaining term in the right hand side of (4.35) and prove that

lim p, / wrttdo =27 - m;. (4.36)
"ree Iy ()
On the one side, since the families of points y; ,, j = 1,...,m, satisfy properties (P{"), (P5")

and (Pg”) introduced in section 3 (see remark 4.4), similarly as in the proof of lemma 3.2,
using (4.30), we obtain that

liminfp, / wrtdo > 21 - m? 4.37)
Dz (3jn)

n— 00 p 7

On the other side, since B¥ (Vi) C BS(%;) C  for n large,

(4.18) 5
pn/D ( )uﬁ:Jrl do < up, (yj,n)pn‘/D( )uﬁ”: do " ="u,, (yjﬂl) 6j,n7
3 Jiom r(Vj,n

so lemma 4.5 implies that

limsuppn/ uﬁ';“ do <27 m]2 (4.38)
D

n—oo % (y,-,n)

(4.36) then follows by combining (4.37) and (4.38). Finally (4.34)—(4.36) imply (4.32).
Next we show that the points y; ,, j = 1,...,m, also satisfy property (P}"), namely that there
exists C > 0 such that

PuRup, ()l ™" (x) KC VxeQ (4.39)
where Ry, p, (x) := minj— ___,|x —yj,|. Arguing by contradiction we suppose that

sup (puRop, (x) uﬁ’fl (x)) = 400 asn— +oo
x€Q
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and let y,,41,, € Q2 be such that

PR p, (Ymt1,n) ”5,",_1 (Ymt1,0) = SUB( nRon,p, (x) "‘5;_1 (x)) . (4.40)
xXEQ

By (4.40) and since (2 is bounded it is clear that
Pn—1
Py’ (Vmt1,0) = +00  asn — +oo.

Taking the sequences of local maxima y;, forj = 1,...,m and the added sequence Y1,
similarly as in the proof of proposition 3.3, we then get that (P{"*"), (Py™') and (P;")
hold.

Applying now lemma 3.2 for the families of points (y;,);=1....m+1 and using (4.30) we
obtain

p"‘/Q(|V”pn|2+“Zn)dXEZWZle+27rmi+l+on(1)
i=1
(413 M
> 2772’"124'27?-5-0"(1) asn — oo,

i=1
thus

m
2, 2 2
+upndx>27r§ m;

i=1

lim pn/ |Vup,
n—o0o Q

which contradicts (4.32) concluding the proof of (P}"). B
At last in order to derive (4.33), let us consider k families of points X p,, X2 ., ... Xk p, € 2
as in the statement of proposition 3.3. By virtue of proposition 4.1

S={x1,...,Xu} = {nngxi*”" (i€ {l,...,k}}.
Given i € {1,...,k}, let j € {1,...,m} be such that lim,_, { . x; ,, = X;. Next, recalling that
{1 Y2s -3 Ymn ) satisfy (P}') and applying (4.39) at x; ,, we get

(4.7)+(4.8)

plxip, _)’j7n|“§';_l (Xi,p,) PR p, (Xip,) ”zz_l (Xip,) < C.

So in particular, up to a subsequence

ij” — xi:Pn
Hip,

<C.

As a consequence, up to a subsequence, since yin =0 and x;, satisfies (P§), there exists
1;; € ORZ_ such that

Lijni=
By (3.6) and (3.7)
Pn X
0< ] (ttp, (Vjn) = tp, (Xip,)) = Zip, (tijn) = U (1) <O

< —
upll ('xi7pn
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Thus, by (1.5) 7;; = 0, then
Din =il _ (1), (4.41)
/’Li,pn

In conclusion, let us suppose by contradiction that k > m, then there exists

i,0e{l,...,k}, i#¢, suchthat m x;, = lim xp, =% forsomeje{l,...,m}.

li
n——+oo n——4oo

In addition w.L.o.g. let us assume that up to a subsequence ; ,,, = fig p, -

By (4.41)
ip, = Xpu| _ [Xipy = Vil | [Xep, =i,
Lp pul o Pipn T Vjnl | Xlpn T Vim

Hi,p, Fip, Hi,p,

Xipn — Vi, Xepn — Vi,

<|lp jn|+| P J”‘Zon(l)7
Hip, He p,
which is a contradiction against property (Pf) for xi ,,X2.,, - - - X p, O

Next we give a decay estimate for the rescaled functions w; , which will be fundamental to
compute the constants m;’s.

Lemma 4.7. For any v € (0,2) there exists Ry > 1 and n., € N such that

1 ~
Wj,n(Z)<(2—7)logm+q, Vi=1,....k (4.42)

for some 6'7 > 0 provided R, < |z| < ;’m, Z€ Dsﬁ(O) and n > n..

As a consequence
0< (1 + W’(Z)> < { forld < Ry (4.43)

1
Pn C'Y [z]2= for R’Y < |Z| <

Ejn

Proof. Arguing similarly as in the proof of [11, lemma 4.4] one can deduce a crucial pointwise
estimate for w; ,, namely it can be proved that for any € > 0, there exist R. > 1 and n. € N
such that

. 1
wj,n(y)g(@’ s)longCs, Vi=1,....m
™ Iyl

for some C. > 0, provided 2R. < |y| < -~, y€ D+ (0) and n > n..
jn Ejn

Equation (4.42) then follows by lemma 4.5. Finafly (4.43) is a direct consequence of (4.42)
(see for instance the proof of [12, lemma 2.1] which can be easily adapted to this case). [

Proposition 4.8.
m,-z\/g, Vi=1,...,m.

Proof. From (1.9)
c <p,,/ ubr (x)do (x) < C
19)
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hence, by the properties of the Green function G,

/ G (Yjn,X) uly (x) do (x) < C,/ uly (x) do (x)
O\D2, (%)) OQ\D2, (%))

< C,/ uby (x) do (x) = O (1> (4.44)
o0 p

n

and similarly, observing that (4.10) implies that for n large enough the points y; , € D, /»(X;)
and that D, 5 (X;) C Dy(yj.n) C D2,(X;), also

/ G 30s¥) () dr () < [ G () () dor (3
Do (X)) \Dr (¥j,n) {xeDa(x), §<x—x|<2r}
1
<C: / ubr (x) do (x) = O <) . (4.45)
oQ DPn

Using the previous estimates and the Green representation formula, we then get

. 05) = [ G800
= / G(yjm,x)ugz (x)do(x) + / G(ym,x)uz: (x)do(x)
Do (%) OQ\D2, (%)

(4.44)-(4.45) / G(yjns Xl (x) dor(x) + 04 (1)
Dr(yj,n)

. . Pn
(411) 4p, (Vjn) / G(yj,n,yj,n+ej,nz)<1+W”"<Z>) do(z) + 0a(1)
DPn + (0) Dn

€jom

. ) Pn
(lét) ul’"(y/”)/ H(yj,n,yj,n + 6]7,11) (1 + WJ"(Z)> dJ(Z)
Dn D_+(0) Dn

J

X . Pn
— ul’n(yjﬂ’l) / 10g|Z| <1 + W]vn(z)> dU(Z)
TPn D_r (0) Pn

i

_M/ Y (HWM(Z))W do(z) +oa(1)

TPn Pn

€jon

=A,+B,+C,+0,(1). (4.46)
Since H satisfies (A.3) in the appendix, by (4.9) and (4.10) we get

i H (v, + €j07) = H(%,3%)), for any z € ORY,
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so by (4.30), the convergence (4.12) and the uniform bounds in (4.43) we can apply the
dominated convergence theorem, and since the function z+ 1/|z|*~7 is integrable in {z €
ORZ, |z| > R,} choosing v € (0,1) we deduce

. Win (z) o
lim_u, (i) H(Yjn,yjntEmz) | 1+ do (z)
D_r (0)

p—+oo Pn
(+12) m;H (X;,%;) / e¥9do (z) 2 2mmiH (X, %),
oR,
from which
Pn
w (i Wi (z
P ) / H(yjn Yin +€jn2) (1 * j()> ot el e
Pn D_r (0) P

€j,n

For the second term in (4.46) we apply again the dominated convergence theorem, using (4.43)
and observing now that the function z — log|z|/|z|*~” is integrable in {z € OR?%, |z| > R}
and that z — log | is integrable in {z € IR? , |z| < R,}. Hence we get

Pn
. W'n Z
lim u,, (yjy,,)/ log|z| (1 4+ ( >) do(z) = mj/ log\z|eU(Z) do (z) < +o0
D_r (0) p OR?

n— o0
n
+

€jom

and this implies that

TPn n

. . Pn
By i —po Qi) / log | (1 + D% (Z)) do(z)=o0,(1).  (448)
D_+(0) p

Finally for the last term in (4.46) let us observe that by the definition of ¢; , in (4.9)

logej, = — (pn — 1) loguy, (yjn) —10gpn, (4.49)

again by the dominated convergence theorem it follows

Cpim U Uin) 108 (Ejn) / (1 1 @) >pn do (2)
D_r (0)

TPn Pn

Jsn

_ tp, (Vi) 108 (810) (/ eU(Z)dU(Z)+0n(1)>
oR2

T Pn

~ tp, (¥jn)10g (€j,n) 2
T Pn

7T+0n(1))

(4.49) pn—1 logp,
2, )| 2 o, 1) + 222 | 200 (1), (4.50

n n

Substituting (4.47), (4.48) and (4.50) into (4.46) we get

n n

pn—1 logpn
tp, () =ty (35) [plogupn (i) + ] 240, (1)) +0,(1),
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passing to the limit as » — oo and using (4.30) we conclude that

1
logm; = 5

4.2. The proof of theorem 1.1

The statements of theorem 1.1 have been proved in the various propositions obtained so far. In
particular (i) is a consequence of lemma 4.2, (4.31) and proposition 4.8. (ii) derives from (4.30)
and proposition 4.8. The energy limit (iii) follows from (4.32) in proposition 4.6, combined
with proposition 4.8. The statement (iv) is contained in lemma 4.3 in the flat case, and can be
easily extended to the non-flat case, similarly as in [5, 15], see section 2.1.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

Some parts of this work were done when the second author was hosted by university of Rome
La Sapienza and Rutgers University of New-Jersey when he won the inaugural Abbas Bahri
Excellence Fellowship. He wishes to thank these institutions for support and good working
conditions. We also thank H Castro for useful clarifications about his results.

Appendix. Some properties of the Green function

Let y € 99 and let G(x,y) be the Green function satisfying the Neumann problem (1.3). First
note that G > 0 and by the classical strong maximum principle, for each y € 92 G(.,y) cannot
attain its minimum in €. Also, by the Hopf lemma if G(x,y) = 0 for some x, y € 912, x # y then
the normal derivative g—g (x,) is negative, which is impossible. Therefore, for each y € 992 we
have

G(-,y)>0in Q. (A.1)

By a compactness argument we can find a constant ¢ >0 such that G(x,y) > ¢ for all y € 99
and all x € Q.

Lemma A.1. There exists a positive constant Cy such that
0<G(x,y) <Ci(|loglx—y||+1) foreachx e Q\{y} andy € Q.

Proof. By (1.4), we have

1
Glxy) = _log +H(x,y) (A2)

|x =yl
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where %log —L_ is the singular part of G and H(x,y) is the regular part of G. The function

[x—yI

H(.,y) satisfies

in Q

1 1
*AxH(xQ)) +H()C,y) = 7;10g

oH 1§ (x)) o
1 l—yvx
o0, (x,y) = P S on 99.

Arguing as in [29] (see pages 834 and 835), we have
x+— H(x,y) € C' (ﬁ) ,y— H(x,y) e C"7 (8Q,C1’7 (ﬁ)) and V,H € C(ﬁ X 8(2) (A.3)

for any 7 € (0, 1). The desired result follows from (A.1)—(A.3). O

As consequence of lemma A.1, we have the following result.

Lemma A.2. There exist C,Cs > 0 such that:

G(x?y)<C§ V|x—y|>(5>0, (A4)

C _
ViG )| < _2y| VxeQ\{y}. (A.5)

Proof. It is easy to see that (A.4) is a consequence of lemma A.1.

By (A.2) we have
I x—y
V.G(x,y) = ———=— H (x, A.6
(x,y) 7T|x_y|2+V (x,y) (A.6)
for each x € 2\ {y}. Hence (A.5) follows from (A.6) and (A.3). O
Let xq,...,x, be n distinct points in 92 and let r be some positive small constant such that

B, (x;))NB,(x;) =forall 1 <i#j<n.
LemmaA.3. Let 1 < i< nandlet(cj)i<j<n be n real numbers. For each x € B.(x;) N\ {xi},

we have

Ci X—X;

n . 1 n
chG(x,xj): %10g7—|—0(1) and chVG(x,xj): +0(1).
j=1

|x — x;]

= ™ Jx—x]?

Proof. Using lemma A.2, for each x € B,(x;) N2\ {x;} we have

chG(x,xj) =¢;G(x,x;)+0(1) and Zc;VG(x,x,-) =¢VG(x,x)+0(1).
j=1 =1

Furthermore G(x, x;) satisfies (A.2) and (A.6), so that, by the regularity of H in (A.3) we obtain
the desired result. O
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