Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.

Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development / Appetecchia, Federico; Fabbrizi, Emanuele; Fiorentino, Francesco; Consalvi, Sara; Biava, Mariangela; Poce, Giovanna; Rotili, Dante. - In: PHARMACEUTICALS. - ISSN 1424-8247. - 17:7(2024). [10.3390/ph17070962]

Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development

Appetecchia, Federico
Co-primo
;
Fabbrizi, Emanuele
Co-primo
;
Fiorentino, Francesco
Co-primo
;
Consalvi, Sara;Biava, Mariangela;Poce, Giovanna
;
Rotili, Dante
2024

Abstract

Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
2024
gametocytes; malaria; mosquito; oocyst; plasmodium; transmission blocking
01 Pubblicazione su rivista::01g Articolo di rassegna (Review)
Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development / Appetecchia, Federico; Fabbrizi, Emanuele; Fiorentino, Francesco; Consalvi, Sara; Biava, Mariangela; Poce, Giovanna; Rotili, Dante. - In: PHARMACEUTICALS. - ISSN 1424-8247. - 17:7(2024). [10.3390/ph17070962]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1716808
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact