Identification of contamination sources and delineation of plumes in the geological environment stand as pivotal elements in reconstructing the conceptual site model (CSM) and devising remediation strategies tailored to specific physicochemical traits. This study endeavors to showcase the capabilities of a 3D digital interface, seamlessly integrating multi-source data, to elucidate site-specific contamination dynamics and steer the implementation of remediation strategies harmoniously aligned with the ethos of remediation geology. In a site historically marred by chlorinated solvent contamination, the digitization of stratigraphic, piezometric, chemical, and membrane interface probe (MIP) data underpins geomodeling endeavors and yields a meticulously crafted, data-driven CSM. The hydrogeochemical and hydrogeophysical data were interpolated to build a volumetric, digital 3D model illustrating data-driven elements. The comprehensive 3D clone adeptly delineates secondary contamination sources and renders visible the contamination plume within a georeferenced framework, mirroring the nuanced interplay of stratigraphic nuances and groundwater path. A data-centric approach to modeling facilitates the design of the first hydraulic virtual barrier leveraging groundwater circulation well (GCW) technology, its geometry finely attuned to intercept the contamination plume originating from source dissolution and aligning with preferential groundwater flow trajectories. Conventional hydrochemical monitoring and multilevel sampling substantiate the discernible reduction in chlorinated solvent concentrations across various depths within the aquifer horizon, affirming the efficacy of GCWs in their virtual barrier configuration. The findings highlight the effectiveness and limited groundwater consumption of the virtual barrier compared to the on-site pump-and-stock system. This research underscores the potency of a multi-faceted evidence-driven puzzle in conceptualizing contamination mechanisms within the geological milieu, thereby fostering the application of cutting-edge, effective, and sustainable remediation strategies.
3D GeoRemediation: a digital hydrogeophysical–chemical clone and virtual hydraulic barrier with groundwater circulation wells (GCWs) for groundwater remediation / Ciampi, Paolo; Felli, Giulia; Feriaud, Damiano; Esposito, Carlo; Petrangeli Papini, Marco. - In: SUSTAINABILITY. - ISSN 2071-1050. - 16:12(2024). [10.3390/su16125216]
3D GeoRemediation: a digital hydrogeophysical–chemical clone and virtual hydraulic barrier with groundwater circulation wells (GCWs) for groundwater remediation
Ciampi, Paolo
;Felli, Giulia;Feriaud, Damiano;Esposito, Carlo;Petrangeli Papini, Marco
2024
Abstract
Identification of contamination sources and delineation of plumes in the geological environment stand as pivotal elements in reconstructing the conceptual site model (CSM) and devising remediation strategies tailored to specific physicochemical traits. This study endeavors to showcase the capabilities of a 3D digital interface, seamlessly integrating multi-source data, to elucidate site-specific contamination dynamics and steer the implementation of remediation strategies harmoniously aligned with the ethos of remediation geology. In a site historically marred by chlorinated solvent contamination, the digitization of stratigraphic, piezometric, chemical, and membrane interface probe (MIP) data underpins geomodeling endeavors and yields a meticulously crafted, data-driven CSM. The hydrogeochemical and hydrogeophysical data were interpolated to build a volumetric, digital 3D model illustrating data-driven elements. The comprehensive 3D clone adeptly delineates secondary contamination sources and renders visible the contamination plume within a georeferenced framework, mirroring the nuanced interplay of stratigraphic nuances and groundwater path. A data-centric approach to modeling facilitates the design of the first hydraulic virtual barrier leveraging groundwater circulation well (GCW) technology, its geometry finely attuned to intercept the contamination plume originating from source dissolution and aligning with preferential groundwater flow trajectories. Conventional hydrochemical monitoring and multilevel sampling substantiate the discernible reduction in chlorinated solvent concentrations across various depths within the aquifer horizon, affirming the efficacy of GCWs in their virtual barrier configuration. The findings highlight the effectiveness and limited groundwater consumption of the virtual barrier compared to the on-site pump-and-stock system. This research underscores the potency of a multi-faceted evidence-driven puzzle in conceptualizing contamination mechanisms within the geological milieu, thereby fostering the application of cutting-edge, effective, and sustainable remediation strategies.File | Dimensione | Formato | |
---|---|---|---|
Ciampi_3D GeoRemediation_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
7.85 MB
Formato
Adobe PDF
|
7.85 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.