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Abstract: Identification of contamination sources and delineation of plumes in the geological envi-
ronment stand as pivotal elements in reconstructing the conceptual site model (CSM) and devising
remediation strategies tailored to specific physicochemical traits. This study endeavors to show-
case the capabilities of a 3D digital interface, seamlessly integrating multi-source data, to elucidate
site-specific contamination dynamics and steer the implementation of remediation strategies harmo-
niously aligned with the ethos of remediation geology. In a site historically marred by chlorinated
solvent contamination, the digitization of stratigraphic, piezometric, chemical, and membrane in-
terface probe (MIP) data underpins geomodeling endeavors and yields a meticulously crafted,
data-driven CSM. The hydrogeochemical and hydrogeophysical data were interpolated to build a
volumetric, digital 3D model illustrating data-driven elements. The comprehensive 3D clone adeptly
delineates secondary contamination sources and renders visible the contamination plume within a
georeferenced framework, mirroring the nuanced interplay of stratigraphic nuances and ground-
water path. A data-centric approach to modeling facilitates the design of the first hydraulic virtual
barrier leveraging groundwater circulation well (GCW) technology, its geometry finely attuned to
intercept the contamination plume originating from source dissolution and aligning with preferential
groundwater flow trajectories. Conventional hydrochemical monitoring and multilevel sampling
substantiate the discernible reduction in chlorinated solvent concentrations across various depths
within the aquifer horizon, affirming the efficacy of GCWs in their virtual barrier configuration. The
findings highlight the effectiveness and limited groundwater consumption of the virtual barrier com-
pared to the on-site pump-and-stock system. This research underscores the potency of a multi-faceted
evidence-driven puzzle in conceptualizing contamination mechanisms within the geological milieu,
thereby fostering the application of cutting-edge, effective, and sustainable remediation strategies.

Keywords: groundwater; remediation; groundwater circulation wells; hydrogeophysics; chlorinated
hydrocarbons; membrane interface probe; sustainability; conceptual site model; hydraulic barrier;
pump-and-stock

1. Introduction
1.1. Understanding and Addressing Groundwater Contamination by Chlorinated Solvents

Groundwater contamination from hazardous chemicals, such as chlorinated solvents,
is a global issue [1–3]. These compounds, belonging to the class of dense non-aqueous
phase liquids (DNAPL), have been widely employed in different industrial sectors and
represent the most persistent pollutants in groundwater worldwide [3–5]. Among these,
perchloroethylene (PCE) and trichloroethylene (TCE) are well-known [6]. It is essential
to address these pollutants to protect and remediate groundwater resources [7,8]. The
removal and remediation of chlorinated solvents in polluted sites reflect a comprehensive

Sustainability 2024, 16, 5216. https://doi.org/10.3390/su16125216 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16125216
https://doi.org/10.3390/su16125216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9287-4984
https://orcid.org/0009-0001-2010-4013
https://orcid.org/0000-0001-5429-2959
https://orcid.org/0000-0002-8698-675X
https://doi.org/10.3390/su16125216
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16125216?type=check_update&version=2


Sustainability 2024, 16, 5216 2 of 20

understanding of the dynamic and temporal evolution of chlorinated compound contami-
nation. In the literature, different stages of contamination source aging and the architecture
of DNAPL with hydrogeological context have been recognized [6,9]. The release of DNAPL
is followed by the vertical migration of the spilled product into a separate phase [5,8,9].
In the unsaturated domain, processes such as volatilization and adsorption redistribute
contaminants among environmental matrices [2]. Within the saturated zone, the dissolution
of DNAPL generates a contamination plume that can extend for several kilometers in the
direction of groundwater flow through coarse granular formations [3]. Processes of ad-
sorption and diffusion on fine-grained horizons can give rise to persistent plumes through
back-diffusion mechanisms, resulting in the slow release of pollutants into the aquifer
even after the depletion of the primary source [10–12]. Moreover, the well-known chain
of reactions of biological reductive dechlorination (BRD) can transform PCE, sequentially
generating TCE, dichloroethylene (DCE) isomers, primarily cis-DCE, vinyl chloride (VC),
and finally ethene [13,14]. The above depicts an exceedingly complex physicochemical
framework. Nonetheless, comprehending contaminant behavior and distribution in sub-
surface environments is paramount for effective site remediation [7,8]. It is important to
note that the choice of remediation strategy depends on site-specific conditions, regulatory
requirements, and the goals of remediation [9].

1.2. Reimagining Contaminated Site Characterization: Innovative Approaches to Advanced
Conceptual Modeling

Site investigations represent the first step in reconstructing the framework and scenario
of contamination, guiding subsequent remediation efforts [15,16]. The traditional character-
ization techniques typically involve stratigraphic drilling, the installation of piezometers,
soil and groundwater sampling for chemical analysis, and a suite of hydrogeological inves-
tigations for hydraulic parameterization of aquifers [17–19]. Although these investigations
are indispensable, they are often costly and time-consuming and frequently struggle to
capture the complex architecture of contaminant redistribution in the subsurface with ade-
quate resolution [20]. On the other hand, direct-push (DP) investigation methods rapidly
acquire information about the subsurface, increasing data density and offering valuable
insights into contamination status, migration pathways, and hydraulic and physical pa-
rameters [21–24]. Electrical conductivity (EC) measurements from DP methods physically
parameterize geological structures [25–27], while the hydraulic profiling tool (HPT) can
be integrated with hydraulic tomography for high-resolution site characterization [28–30].
The membrane interface probe (MIP) is extensively employed for detecting pollutants in
the subsurface and understanding the distribution of contaminants in environmental ma-
trices [22]. The MIP typically features three detectors. The flame ionization detector (FID)
detects the presence of both aliphatic and aromatic hydrocarbons. The photoionization
detector (PID) measures aromatic hydrocarbons, while the dry electrolytic conductivity
detector (DELCD) is sensitive to organohalogen compounds [31,32]. These methods are
essential for high-resolution site characterization (HRSC) and the reconstruction of an
accurate conceptual site model (CSM) [33]. Traditional and DP information mentioned
above can potentially converge into 3D digital conceptual models for the joint manage-
ment of multi-source data that effectively guides decision-making, selection, and sizing
of a tailored remediation strategy based on contamination dynamics in the site-specific
hydrogeochemical and physical context [34–37].

1.3. Remediation Strategies for Groundwater Contaminated with DNAPL: A Spotlight on GCW

Various chemical–physical technologies are employed at contaminated sites to ad-
dress groundwater pollution caused by DNAPLs and chlorinated solvents, including
pump-and-treat (P&T), air sparging (AS), and permeable reactive barriers (PRB) [38–44].
Additionally, bioremediation approaches can be adopted to enhance pollutant degradation
by microbial consortia [13,45]. A combination of these approaches may be necessary for
effective and sustainable chlorinated solvent remediation [45–48]. Among the array of avail-
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able technologies, groundwater circulation wells (GCWs) emerge as a promising solution
for aquifer remediation [49–52]. These multiscreened vertical wells pump groundwater
from a screened section. The extracted water is treated above ground and reintroduced
into a different screened section of the aquifer after treatment [53–55]. The simultaneous
extraction/re-injection of water into different screened sections of the same vertical well re-
sults in the formation of an ellipsoidal groundwater recirculation cell and the development
of vertical hydraulic gradients [56–59]. Groundwater circulation systems have proven to
be highly effective remediation technologies in addressing persistent contaminants in the
source area, as extensively demonstrated in the literature [60–63]. GCWs accelerate the mo-
bilization of DNAPLs trapped in zones of reduced permeability and dead-end pores [34].
Additionally, GCWs can be utilized to deliver reagents and/or nutrients into aquifers,
thereby enhancing in situ bioremediation and creating in situ hydro-bio-geo-chemical reac-
tors for the degradation of chlorinated compounds [64–67]. These systems eliminate the
water consumption associated with traditional physical extraction wells and mitigate the
development of groundwater table depression cones associated with P&T/pump-and-stock
(P&S) systems [68].

1.4. Case Study: The First Virtual Hydraulic Barrier for Intercepting a Contamination Plume

The present research focuses on a decommissioned thermoelectric power plant located
in northern Italy. Since 2005, the presence of a chlorinated hydrocarbon plume has been
detected in the aquifer, although a contamination source has not been delineated by previ-
ous characterization investigations. A P&S groundwater pumping system, consisting of
15 wells with a total pumping rate of 6.8 m3/d, has been progressively installed on-site
to reduce the contamination load in the aquifer (Figure S1 of Supplementary Materials).
However, the remediation efforts have not led to an improvement in groundwater quality.
In this context, some investigations using MIP technology have been carried out to delineate
the contamination sources. The integrated management of hydrogeological, chemical, and
physical information is the adopted approach to guide environmental remediation with
an interactive, multisource CSM. The reconstruction of contamination dynamics and the
need to reduce concentrations within the site in line with remediation objectives orientate
an intervention strategy with a hydraulic barrier consisting of GCWs. To the best of our
knowledge, there is no other hydraulic barrier consisting of GCWs, thus making it an
absolutely innovative and unique technique for plume interception. Very few studies in the
literature just hypothesize the use of hydraulic barriers consisting of recirculation systems
for controlling salt intrusion in coastal areas [69,70] and plume containment. Since this
technology is generally used to address contamination sources, in an unusual hydraulic
containment application, we would like to define it as a virtual hydraulic barrier. The
results obtained from the debut of the virtual hydraulic barrier in the first months of
operation will be carefully described and discussed. The findings aim to highlight the
potential of a geology-driven hydrogeochemical–physical digital clone in (i) delineating the
contamination source and contamination mechanisms, (ii) reconstructing contamination
migration patterns in groundwater, and (iii) guiding the deployment of an innovative
remediation strategy tailored to hydrochemical characteristics and remediation objectives.
Furthermore, this research has the goal of evaluating the performance and sustainability
of the intervention of virtual barriers with GCWs compared to traditional P&T/P&S. The
research findings emphasize the pivotal role of remediation geology in the management
and remediation of contaminated sites. Besides, the outcomes paint a picture of a cutting-
edge hydraulic containment approach using the virtual hydraulic barrier, outperforming
the traditional P&T/P&S methods. This study aims to demonstrate the effectiveness of
this multi-source approach in conceptualizing the distribution and migration of plumes
originating from contamination sources. This is possible due to the spatial integration of
multi-source evidence within the geological framework. This three-dimensional geospatial
and hydrogeophysical approach serves as a guide for the implementation of a targeted
remediation strategy aligned with the principles of remediation geology.
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2. Materials and Methods
2.1. Reconstruction of Conceptual Site Model

The selection and application of appropriate remediation technologies rely on environ-
mental characterization activities and the development of a CSM. For the reconstruction
of the CSM information from geological boreholes, groundwater monitoring points, high-
resolution characterization investigations, water chemistry analyses, and hydrogeological
tests were digitized and archived within a 4D geodatabase (considering the time dimen-
sion). All data concerning geological characterization, including stratigraphic information
deduced from 113 geological boreholes with depths of approximately 12 m from ground
level, have been stored in the data archive. Boreholes were drilled using the continuous
core sampling technique and some of these bores were used to place permanent open-pipe
piezometers and wells. The construction scheme for 124 wells and piezometers, varying in
depth on average from 4.3 to 10.3 m, has been stored in the geodatabase. Sub-surface water
circulation was reconstructed using piezometric measurements collected between 2006 and
2013 from 75 monitoring wells intercepting different aquifer horizons. 16 Lefranc-type
permeability tests [71], 11 stepwise pumping tests [72], and 1 long-term pumping test [73]
were performed on the groundwater monitoring network to hydraulically parametrize
aquifer deposits and to understand and vectorize groundwater circulation patterns. Be-
tween 2005 and 2023, chemical analyses were conducted on water samples collected from
109 monitoring stations to track the evolution of water quality status and the vertical
stratification of contamination in various aquifer bodies. Further investigations were
performed using the MIP technique for the screening of 53 vertical profiles with depths
ranging between about 2 and 18 m. The MIP investigations have been conducted from
the inner to outer portions of the industrial site. The EC profiling obtained through MIP
was employed to physically parameterize subsurface deposits and enhance the geological
framework, whereas the acquisition of FID, PID, and DELCD signals aimed to discretely
identify the presence of contaminants at specific depths [31]. The spatial envelope of
the DELCD signal in a geographic information system (GIS) environment had the pur-
pose of identifying the potential secondary sources of contamination. Supplementary
characterization information is derived from the drilling completed for the installation
of 3 groundwater circulation wells (IEG-GCW®, IEG Technologie GmbH, Gruibingen,
Germany), 6 multi-level piezometers (IEG-MLSW®), and 12 integrative piezometers for
groundwater monitoring. Geological-stratigraphic, hydrochemical, and engineering data
merge simultaneously into the relational geodatabase. A multi-criteria CSM was developed,
simultaneously integrating geological, hydrochemical, and direct push information to serve
as a data-driven decision support system. Geological-hydrochemical data such as elevation
of geological boundaries, MIP data, TCE concentration values, and groundwater level
measurements were interpolated and modeled to reconstruct the hydrogeological structure
of the subsurface stratigraphic layers and depict the groundwater circulation pattern and
contamination scenario in the geological framework. The modeling was performed with
RockWorks 17 software (RockWare Geoscientific Software Consulting Training, Golden, CO,
USA), which employs modeling methods in a GIS to generate a volumetric and voxel-based
three-dimensional model of the subsurface. The hydrogeochemical and direct push data
were interpolated using the inverse distance weighting (IDW) algorithm to build a solid,
digital 3D model, illustrating data-driven elements overlapping multi-source information.
3D geomodeling operations with the IDW generally employed a weighted exponent of 6.5
and a neighboring set of 8 points. Additional geoprocessing options, such as a high-fidelity
filter to preserve control point values and smoothing surfaces, were also employed. The
mesh of the 3D model is built up of elementary components such as voxels and encom-
passes the entire plant, extending vertically from −16.5 m to 2.6 m a.s.l. The voxel grid is
discretized at 1 m in the X and Y axes and 0.1 m in the Z direction, for a total of 426 nodes
for X, 556 nodes for Y and 191 nodes for Z. Geomodeling has the purpose of generating a
3D hydrogeophysical clone capturing site-specific hydrogeochemistry, identifying the con-
tamination source within the stratigraphic context, defining groundwater flow patterns and
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preferred pathways of flow and transport guided by the hydraulic gradient and subsurface
stratigraphic discontinuities. All this information is combined into a 3D geo-referenced
interface, building a digital CSM that allows the information to be extrapolated both for
tailoring the design of the remediation technology and monitoring the performance of re-
medial measures. The multi-source, data-driven interface strongly influenced and oriented
the design of a groundwater circulation barrier with GCWs. The goal was to intercept and
treat the plume migrating towards the site.

2.2. Remediation Strategy Configuration

The remediation system consists of a virtual hydraulic barrier that aims to intercept
and bar the contamination plume following the direction of preferential groundwater
flow. Three GCWs operated by simultaneously pumping and re-injecting water from
distinct hydraulically isolated screened sections. This process had the purpose of cre-
ating an overlapping recirculation cell to capture all water passing through the aquifer
section intercepted by the virtual barrier. The pumped water was conveyed to a treatment
plant for contaminant concentration reduction before being re-injected into the aquifer.
The re-injection of treated water into the aquifer is essential for establishing the vertical
pressure gradient that drives the creation of the recirculation cell, which performs the
hydraulic barrage. If a portion of the treated water were to be used for other purposes, the
hydraulic balance of the system would be compromised, reducing the vertical pressure
gradient and consequently the radius of influence of the recirculation cell. The dimen-
sioning and configuration of the IEG-GCW virtual barrier reflected the hydrogeochemical
conditions of the site. The barrier was placed along a profile covering an aquifer section
of approximately 100 m, with wells spaced approximately 30 m apart and approximately
12 m deep. Each GCW presented three screened sections at 3–4 m, 6–7 m, and 10–11 m
to fit the site-specific geological conditions. The configuration of the screens had the dual
purpose of pumping/re-injecting water into the contaminated aquifer levels, impacting
the contamination plume, and mobilizing pollutants potentially adsorbed or absorbed on
the fine layers. Six multilevel sampling wells (MLSW) were installed within the radius
of influence of the recirculation wells to track the remedial impacts in the treatment area.
These were equipped with four different sampling horizons, between approximatively
4–5 m, 6.5–7.5 m, 8–9 m, and 11–12 m, to monitor the TCE concentration trends over time
after the remediation plant startup. The sampling levels of the MLSWs were redistributed
across the entire saturated thickness of the aquifer to provide a picture of the contamination
vertical stratification over time. The treatment plant is contained within a 12 m container,
hosting a contaminated water storage tank, a sand filter, two IEG-compact strippers, and a
decontaminated water storage tank (Figure 1).

Outside the treatment container, two carbon filters are accommodated. Treatment
involved sand filtration to remove suspended solids, followed by accumulation in a tank to
ensure a constant flow rate to the strippers. At the outlet of the strippers, water is stored
in another reservoir and then re-injected into the aquifer. The air used for stripping was
recirculated over carbon filters to ensure complete adsorption of volatilized contaminants.
The plant linked to the recirculation wells operated with an average flow rate of 1.8 m3 h−1

equally distributed over the three GCW barrier wells. In the first two months after the
start-up of the plant, the GCWs operated by pumping groundwater from the top and
base screened sections and by re-injecting groundwater from the intermediate screened
section. During these months, a progressive decrease in the pumping and re-injection
flow rates of the plant was observed. To restore the initial flow rates, the recirculation
configuration was reversed by pumping groundwater from the middle-screened section
and re-injecting it into the deep one. Conventional hydrochemical monitoring combined
with multilevel sampling aimed to validate the successful interception of the plume of
contamination by the groundwater recirculation barrier. The hydrochemical monitoring
of the piezometric network aimed to reveal the performance of the adopted technology in
the specific configuration to impede the migration of pollutants along the groundwater
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pathways. Additionally, a comparative assessment of the performances of GCW and
P&S is intended to highlight the sustainability of the proposed solution for treating a
contamination plume compared to traditional hydraulic containment.
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Figure 1. Schematic of the remediation strategy configuration depicting the groundwater circulation
wells (GCW1, GCW2, and GCW3) with three screened sections and six multilevel sampling wells
(MLSW1, MLWS2, MLSW3, MLSW4, MLSW5, and MLSW6) with four screens.

3. Results and Discussion
3.1. Geological and Hydrogeological Framework

Detailed stratigraphic investigations delineate six lithological layers within the geolog-
ical sequence, depicting an alternation of fine and coarse sediments. The 3D model arising
from data-driven geomodeling illustrates stratigraphic relationships, and discontinuities
and reveals substantial thickness variations in geological strata, indicating a complex de-
positional environment. The site’s complex lithostratigraphic structure reflects sediment
variations due to the paleogeographic evolution of the final Arno basin section [74]. The
geological sequence represents a multi-layered aquifer distinguishing six distinct litho-
technical horizons. After the anthropogenic deposits characterized by an average thickness
of 1.8 m, the subsequent layers alternate between fine and coarse deposits. In sequence
from top to bottom, the layers consist of:

• Clayey-silty deposit at depths ranging from 2 to 4 m from the ground level, which
locally confines the groundwater circulation hosted in the underlying sediments,

• A horizon with an average thickness of 2.6 m, consisting of sandy-clayey deposits with
gravels that form a shallow aquifer (A) and exhibit an average hydraulic conductivity
of approximately 2 × 10−5 m/s,

• Light brown silty-clayey deposits at depths ranging from 6.5 to 8 m, revealing a
spatially discontinuous distribution across the study area and hydraulically separating
the shallow aquifer from the circulation of deeper groundwater,

• Compact gravel with sandy matrix, with an average thickness of 4 m and hydraulic
conductivity of about 9 × 10−4 m/s, forming a deep aquifer (B),
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• A low-permeability layer consisting of grey silty clays, encountered at a depth of
approximately 12 m, acting as an aquiclude.

The 3D model presents a vertical exaggeration factor of 10 marking lithological tran-
sitions (Figure 2a). Additionally, the use of a representation offset between stratigraphic
layers allows stratigraphic discontinuities to be identified (Figure 2b). The described
geological context delineates a multi-layered aquifer.
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Figure 2. Geological 3D model of the industrial plant that depicts the complex architecture of the
stratigraphic layers (a) and 3D geological model “exploded” with an offset between the geological
strata (b).

The groundwater circulation scheme reflects the fragmentation, the local confinement,
and the hydraulic connectivity of aquifer horizons. The shallow aquifer (A) highlights
a complex circulation pattern (Figure 3a). A high piezometric level in the vicinity of the
industrial facility clearly emerges from the reconstruction of the potentiometric maps where
the silty clays assume significant thicknesses. This aspect does not appear when viewing
the 3D geological model, which instead emphasizes the stratigraphic discontinuities of the
brown silty clays. The silty clays locally confine the shallow aquifer, generating an increase
in pressure head, alternatively pore water pressure [75]. Furthermore, the groundwater
level contour map reveals the convergence of groundwater flow vectors at the southeastern
portion of the site, suggesting local vertical hydraulic gradients towards the underlying
aquifer portions. Figure 3b illustrates the flow direction within the deep aquifer (B), which
is oriented mainly from southeast (SE) to northwest (NW). The differences in grain size
and hydraulic conductivity result in two distinct flow velocities for the identified aquifer
bodies: 3.46 m/year for the shallow aquifer (A) and 119 m/year for the deep aquifer (B).
Variations in the direction and velocity of the groundwater flow reflect the complex and
heterogeneous geological framework, potentially impacting contamination distribution
and migration in the hydrogeological domain.

The discontinuities in the separation level between the two aquifers and the vertical
gradient in the southeastern sector may facilitate the migration of contaminants dissolved
in aquifer A to B and the plume migration along the preferential direction of groundwater
flow hosted in the sandy gravelly layer, transporting contaminants in groundwater to the
inner portions of the site.
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tion in aquifers A (a) and B (b).

3.2. Identification of the Contamination Source and Reconstruction of Pollution Dynamics

MIPs effectively identify a contamination source that generates a plume of dissolved
components in groundwater. The investigations conducted from the inner to outer portions
of the site led to a stepwise refinement of the local hydrogeological model and a gradual
‘approach’ to the secondary contamination source, as highlighted by the increasing signals
from the FID, PID, and DELCD detectors during the operational sequence. Specifically,
no measurable traces of chlorinated substances were found in any of the vertical profiles
obtained within the plant (Figure 4a). MIP 14b, located at the site boundary, depicts the
absence of contamination signals and significant heterogeneity in electrical conductivity,
mirroring the intricate geological composition of the subsurface and physically parametriz-
ing the geological model (Figure 4b). Outside the site, moving gradually eastwards,
increasing signs of the various detectors are evident (Figure 4c,d). The implementation of
boreholes to reconstruct the local geology in detail and the installation of piezometers for
water sampling follow the identification of peaks attributable to the presence of pollutants
in external areas, for the gradual and dynamic refinement of the CSM (Figure 4e,f). The
MIPs depicted in Figure 4c–f reveal intense signal peaks for different detectors. While
FID signals suggest the presence of unsaturated hydrocarbons such as methane, and PID
performs a general screening of VOCs encountered at various depths, DELCD specifically
identifies chlorinated solvents such as TCE [22,36]. The DELCD signals are heterogeneously
distributed over depths ranging from 4 to 8 m. The maximum DELCD signal intensities,
approximately 0.8 V, are recorded at around 4 and 6 m depth at the Mattei8 point and
approximately 8 m depth at the Mattei10 point. DELCD signal profiles impact both aquifer
bodies and are distributed over depths ranging from 1 to 2.5 m along the verticals located
in the eastern portion of the study area. These pieces of evidence semi-quantitatively depict
the vertical redistribution of chlorinated solvents and delineate the residual source area
architecture. Furthermore, proceeding from Mattei8 to Mattei10, the signals emerge at
progressively shallower depths. This pattern suggests a progressive approach to a point
source of contamination.
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Figure 4. Localization of MIP screening boreholes in the investigation domain (a). Profiles of FID,
PID, and DELCD acquired at points MIP14b (b), Mattei8 (c), and Mattei10 (d). MIP detector profiles
were acquired at investigation points S600A (e) and S600B (f) with the association of local stratigraphy
and the construction layout of the piezometers along the verticals. The localization of MIP profiles
shown in (b–f) are identified with an asterisk in (a).
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The interpolation of DELCD signals confines and delineates, using a 0.4 V isosur-
face, the volume impacted by secondary sources of chlorinated solvent in the residual
phase within the local geological architecture. Also, the 3D rendering of the data-driven
model clearly identifies and depicts a pseudo-secondary contamination source outside
the site that had not been recognized through previous characterizations (Figure 5a). The
overlay of geological knowledge and direct push elements in the 3D interface, combined
with the reconstruction of groundwater recirculation patterns for aquifers A and B and
hydrochemical information, reveals the dynamics of contamination and the mechanisms
of pollutant transport in the reconstructed hydrogeochemical framework. The residual
fraction of the pollutant delineated with MIPs impacts aquifer A and reaches aquifer B
due to local discontinuities in the silty-clayey layer that hydraulically separates the aquifer
bodies. The lack of spatial continuity of this horizon is also highlighted by the S600A and
S600B drillings conducted in the source area (Figure 4e,f). In the source area, the maximum
concentrations of TCE at monitoring points intercepting aquifers A and B correspond to
163 mg/L and 50 mg/L, respectively. Although these concentrations represent approxi-
mately 12% and 4% of TCE solubility in water (1349 mg/L) [76], potentially suggesting the
presence of residual and trapped DNAPL ganglia, DNAPL in a separate phase was not
detected. A contamination plume originates from the dissolution of the spatially delineated
residual fraction component and follows the groundwater flow vectors in a particularly
complex hydrogeological architecture. In the shallow portion of the aquifer (A), the trans-
port of dissolved components in groundwater is guided both by the discontinuity in the
separation layer between aquifer bodies and local vertical gradients that influence the
plume migration from aquifer A to B. In the deep portion of the aquifer (B), the plume
migrating along the direction of groundwater flow develops over a considerable distance
until it reaches the internal sections of the site. This reflects the high flow velocities of
deep groundwater in highly permeable gravelly deposits constituting aquifer B and the
physicochemical properties of chlorinated solvents that poorly are absorbed in gravelly
aquifers [6,77,78]. The three-dimensional representation of TCE contamination plumes
in the upper (A) and deep (B) aquifers using isosurfaces with concentration values of 30
and 2 mg/L, respectively, schematizes the roles of vertical gradients and stratigraphic
discontinuities in the migration of dissolved contaminants in the groundwater within the
specific hydrostratigraphic context (Figure 5b). In addition, the contribution of the external
source to contaminating the groundwater of the deep aquifer within the site clearly emerges.
Finally, Figure 5b clearly reveals a spatial correspondence between the TCE isosurfaces and
the residual source delineated through MIP (Figure 5a), depicting the origin of a plume
through the dissolution of residual components of the secondary source.

3.3. Remediation Strategy Design and Decontamination Evidence

The design of the remediation strategy reflects the remediation goal of reducing the
contamination load within the site. Therefore, the geometric configuration of the virtual
barrier with three GCWs is strategically oriented perpendicular to the direction of ground-
water flow in aquifer B (Figure 6a), intercepting the contamination plume originating from
the secondary source delineated by the multi-source conceptual model (Figure 5a,b). The
two-dimensional profile AB captures the distinctive hydrogeological features at the virtual
barrier and provides insights into groundwater circulation and the dimensioning of a tailor-
made intervention (Figure 6b). Although the silty-clayey hydraulic separation horizon
between the two aquifers is continuous in the intervention area, the monitoring wells
intercepting the upper (A) and deep (B) aquifers, as well as the continuously screened mon-
itoring points across the entire saturated thickness (AB), show a comparable piezometric
level. The water exchange between aquifer bodies occurs at the identified local disconti-
nuities in the geological hydraulic separation horizon (Figure 6c), evidently facilitated by
numerous on-site drilling activities for piezometer installation [79]. This process narrows
the differences in hydraulic heads between the various aquifer horizons [80]. In such a
complex scenario, the groundwater recirculation guided by three GCWs equipped with
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three screened intervals in a virtual barrier setup intercepts and treats the contamination
plume originating from the upgradient hydrogeological areas and mobilizes contaminants
adsorbed or absorbed to the fine geological matrix.
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Figure 5. 3D model illustrating geological boreholes, stratigraphic contacts, and the secondary
contamination source delineated by a 0.4 V isosurface of DELCD signals (a). Contamination plumes
of TCE reconstructed for the upper (A) and deep (B) aquifers using concentration isosurfaces of
30 and 2 mg/L, indicating the flow direction of the groundwater circulation hosted in A and B,
and locating the stratigraphic discontinuities of the hydraulic separation level between the aquifer
bodies (b).
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The three circulation wells were started in April 2023 and operated continuously for
the following four months. In the first two months, the total recirculation rates of the virtual
barrier amounted to approximately 2.7 m3/h. Subsequently, a temporary reduction in
flow rates, stabilizing at around 1.1 m3/h in the last monitored month, suggests temporary
issues related to well clogging [81] (Figure 7). Well clogging sounds like the sole reason for
the reduction in recirculation flow rates. The high temperatures of the extracted and treated
water (up to about 30 ◦C), which is also chemically hard, have led to the sudden appearance
of calcareous fouling in the treatment plant. For this reason, a temporary increase in
hydraulic head in the re-injection screen sections was associated with their clogging. A
reduction in the flow rates of the GCWs could potentially compromise the integrity of the
barrier, impacting the development of the individual well’s ROI and creating gaps in the
virtual hydraulic containment system. The most notable drop in flow rate (<0.5 m3/h) was
only observed for around 10 days, which was inadequate for the plume to totally breach
the barrier. This evidence suggests a limited impact of the temporary reduction in flow
rates on the remediation outcomes.
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Figure 7. Recirculation flow rates measured at the system associated with the 3 GCWs during the
intervention operation period.

Hydrochemical monitoring at various depths at the virtual barrier highlights the rapid
and significant decrease in TCE concentrations induced by the groundwater recirculation
operated by the GCWs. The TCE levels measured in the screened section at a depth of 6–7 m
in GCW2 (GCW2-2) decreased from approximately 14 mg/L to non-detectable values in
the subsequent sampling and to 462 µg/L in the latest available campaign. Similarly, in the
GCW2-3 section located at a depth of 10–11 m, a decreasing trend in measured concentra-
tions was observed, ranging from 3414 to 1 µg/L during the monitored interval (Figure 8b).
The multilevel sampling data also validates this trend. Hydrochemical data collection for
the four sampling horizons of MLSW4 reveals a reduction in concentrations over time and
sporadic rebounds of TCE concentrations (Figure 8c). In monitoring points, the data col-
lected for the shallower sampling horizons, GCW2-1 and MLSW4-1, indicate significantly
lower pollutant concentrations compared to the deeper aquifer sections, aligning with the
conceptual model’s depiction of a contamination plume spreading in aquifer B. Besides,
the central screened section of the circulation well (GCW2-2), positioned in clayey-silty
deposits, reveals significantly higher initial concentrations than the other levels of vertical
sampling. This signifies pollutant mobilization dynamics induced by groundwater recircu-
lation within the radius of influence (ROI) of the GCW. Pollutants may have potentially
accumulated in low-permeability layers through diffusion from the plume into the silty clay
zones [6]. The capability of silty-clayey deposits to adsorb or absorb substantial amounts
of contaminants and release them with slow diffusive kinetics is well-documented in the
literature [82,83]. The reduced intergranular porosity and, consequently, limited hydraulic
conductivity indeed restrict advective movement in these lithologies [36,84,85]. Neverthe-
less, groundwater recirculation induced by the GCW rapidly removes TCE retained by the
light-brown silty clays, historically impacted by a contamination plume, and acting as a
storage reservoir for pollutants. The mobilization and reduction effects of TCE within the
ROI of the GCW are also evident in the hydrochemical monitoring of the MLSW, where
local rebound effects can be linked with the development of the recirculation cell that affects
masses of contaminant accumulations or the influx of dissolved pollutants into the aquifer
section intercepted by the virtual barrier. These findings are consistent with numerous
literature studies conducted on recirculating systems at both laboratory and field scales,
highlighting the mobilization of contaminants adsorbed or absorbed on low-permeability
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layers and rebound effects induced by groundwater circulation [86,87]. The long-term
influx of a contamination plume from the source area becomes evident from the analysis of
the temporal trends in TCE concentrations measured in the traditional monitoring wells
installed within the site. Since 2005, concentrations in the order of thousands of µg/L have
frequently been measured in the monitoring wells intercepting aquifer B (Figure 8d,e).
The variability in well-field hydrodynamics and residual source-zone discharge are po-
tential explanations for the decline in TCE concentrations observed in 2015, 2019, and
2020 [7,40,46]. Throughout the monitoring period, the P&S wells plugged and moved,
impacting the hydraulic gradient and groundwater flow. However, the continual supply of
aqueous-phase contaminant mass and the inefficacy of traditional pumping systems in the
specific hydrostratigraphic context are evident from the analysis in Figure 8d,e. The GCWs
in virtual hydraulic barrier mode, initiated in April 2023, resulted in a sharp decrease
in TCE levels measured in the onsite monitoring piezometers, testifying to the complete
interception and, indeed, the break of the TCE plume that originates from the source
and develops along the direction of groundwater flow. Compared to the pre-intervention
sampling, the monitoring wells internal to the site and located downstream of the virtual
hydraulic barrier system (whose positions are mapped in Figure 8a) show a percentage
reduction in PCE concentrations of 98.2% for S46, 99.5% for S52, 98.2% for S302B, and 95.1%
for S314B (Figure 8d,e).

The reconstructed framework provides points for reflection. Firstly, only the simulta-
neous management of all information related to the geological, hydrogeological, hydrogeo-
physical, and hydrochemical spheres allows the delineation of the contamination source
not identified by previous traditional investigations, defining plume migration patterns,
and understanding contaminant transport processes in a complex environment. The capa-
bility of MIPs to identify volumes impacted by residual phase pollutants is well-known
in the literature [22]. In the present case, HRSC through direct push investigation guides
an effective and targeted installation of groundwater monitoring points. We know the
well’s behavior before drilling, adding valuable elements to the MCS. In this regard, the
digital conceptual model is a multicriteria puzzle of analysis that simplifies the process of
multi-source data fusion and exchange, capturing the hydrogeophysical–chemical concep-
tualization, decrypting the hydrogeological influences behind contamination processes and
dynamics, and guiding the application of remediation technology in line with both strategic
objectives and the principles of remediation geology [68,88]. Delving into the accuracy of
our multi-source model, we added a high-fidelity filter to our interpolation technique as
an additional gridding option. This ensures that the voxel values in the 3D digital model
match the MIP data profiles, observations of stratigraphic contacts in drilled boreholes, and
contaminant concentration measurements in sampling wells. By reducing the interpolation
error to zero at sampling points where hydrogeochemical and hydrogeophysical data are
available, we ensure a high degree of confidence in our geomodelling [89]. For this site,
the integration of digital technologies such as 3D modeling and visualization of geospatial
data was incorporated into environmental decision-making processes, leading to a shift in
environmental procedures from safety measures to prevention-oriented approaches.

While the virtual hydraulic barrier with GCWs marks the debut of this configuration,
the reduction in TCE concentrations in the influent within the treatment section inside
the ROI and the disruption of the plume spatial continuity validate the effectiveness and
performance of the recirculation system for intercepting dissolved contaminants and acting
as hydraulic containment systems. With this configuration, the GCWs are clearly more
effective than the on-site P&S system, as the P&S wells were positioned ignoring the lo-
cation of the secondary source, without following any barrier criteria, and evidently do
not contribute effectively to the hydraulic confinement of the site from external contamina-
tion [90]. Comparing the estimated mass of TCE removed by the 3 GCWs and the mass
of TCE removed by the on-site P&S system over a 4-month period clearly and quanti-
tatively highlights the inefficacy of traditional physical water extraction systems, which
are designed on an approximate CSM, in intercepting a contamination plume. The three
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GCWs and the 15 wells used for the P&S system remove a mass of TCE equal to 3360 and
111 g, respectively (Figure 9a). Furthermore, during a comparable monitoring period, the
volumes of water recirculated by the GCWs and pumped by traditional physical extraction
wells amounted to 5922 and 821 m3, respectively (Figure 9b).
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Figure 8. Location of the GCWs that constitute the virtual barrier, the MLSWs, and the traditional
monitoring wells (S46, S52, S302B, S314B) around the treatment area (a). Concentrations of TCE
measured in the screened intervals of the GCW positioned at depths of 3–4 m (GCW2-1), 6–7 m
(GCW2-2), and 10–11 m (GCW2-3) after groundwater circulation well startup (b). Trends in TCE
concentrations detected at MLSW4 at sampling intervals installed at depths of 4–5 m (MLSW4-1),
6.5–7.5 m (MLSW4-2), 8–9 m (MLSW4-3), 11–12 m (MLSW4-4) during the hydraulic performance
monitoring of the virtual barrier with the GCWs (c). TCE concentrations detected over time at the
internal site monitoring wells (d,e).

While groundwater recirculation systems eliminate water resource consumption, the
P&S system generates a volume of groundwater to be allocated as waste [91]. Although the
disparity in groundwater resource consumption between traditional pumping systems and
groundwater recirculation systems is extensively documented in the literature [34,54,92],
comparative performance assessments of these remediation systems often refer to applica-
tions in source areas [55,87]. In comparison to previous studies, the findings of this research
strongly suggest that the application of a traditional hydraulic barrier, ignoring the com-
plex architecture of the contamination source and the migration patterns of pollutants in
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groundwater, drastically reduces the ability to effectively intercept the plume and remove
significant masses of pollutants, despite a large and well-known consumption of ground-
water resources. This context, representing a worst-case scenario for a traditional hydraulic
barrier relying on an approximate or even unknown conceptual model, underscores the
inefficacy and unsustainability of P&S/P&T compared to GCWs even for the interception
and removal of the contamination plume.
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4. Conclusions

The research underscores the efficacy of a holistic, data-centric approach in conceptu-
alizing and tackling groundwater contamination. Through the integration of geological,
hydrochemical, and hydrogeophysical data, this comprehensive methodology adeptly
identifies contamination sources, maps pollution dynamics, and crafts bespoke remediation
strategies. The digital, data-driven, multi-source clone elucidates how intricate lithos-
tratigraphic formations and groundwater flow patterns influence contaminant migration.
The 3D hydrogeochemical model contextualizes pollution dynamics within the geological
framework, serving as a dynamic platform to inform the design of advanced remediation
strategies by manipulating information in space–time. The implementation of a cutting-
edge virtual hydraulic barrier, comprising strategically positioned groundwater circulation
wells (GCWs), successfully intercepts and treats TCE plume originating from the secondary
source delineated through a membrane interface probe (MIP). This underscores the piv-
otal role of a precise conceptual site model in guiding effective remediation endeavors.
Comparative analyses between GCWs and conventional pumping systems demonstrate
greater effectiveness and sustainability of the recirculation system in pollutant removal
and groundwater conservation. Field observations suggest that this approach offers a
more sustainable alternative to traditional P&T/P&S methods for plume containment. In
essence, these findings emphasize the importance of leveraging cutting-edge digital tools
and geospatial techniques in remediation geology for sustainable and efficient groundwater
management. These advancements herald a paradigm shift towards more informed and
proactive approaches to environmental remediation. Embracing a 3D digital, multi-source
puzzle-based approach has the potential to radically transform the management of envi-
ronmental issues. Digital technologies like 3D modeling and visualization of geospatial
data could increasingly integrate into environmental decision-making processes, urging
authorities and companies towards a more proactive stance on environmental management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su16125216/s1, Figure S1: Location of the 15 P&S wells within
the domain of the thermoelectric power plant.
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