We prove existence for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous. Existence is proven by a constructive procedure which makes use of a suitable family of approximating problems. Relevant qualitative properties of such constructed solutions are pointed out.
Measure-valued solutions of scalar hyperbolic conservation laws, Part 1: Existence and time evolution of singular parts / Bertsch, Michiel; Smarrazzo, Flavia; Terracina, Andrea; Tesei, Alberto. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 245:(2024). [10.1016/j.na.2024.113571]
Measure-valued solutions of scalar hyperbolic conservation laws, Part 1: Existence and time evolution of singular parts
Terracina, Andrea;Tesei, Alberto
2024
Abstract
We prove existence for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous. Existence is proven by a constructive procedure which makes use of a suitable family of approximating problems. Relevant qualitative properties of such constructed solutions are pointed out.File | Dimensione | Formato | |
---|---|---|---|
Bertsch_Measure-valued-solutions_2024.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
779.91 kB
Formato
Adobe PDF
|
779.91 kB | Adobe PDF | Contatta l'autore |
Bertsch_preprint_Measure-valued-solutions_2024.pdf
accesso aperto
Note: preprint
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
453.54 kB
Formato
Adobe PDF
|
453.54 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.