MEASURE-VALUED SOLUTIONS
OF SCALAR HYPERBOLIC CONSERVATION LAWS, PART 1:
EXISTENCE AND TIME EVOLUTION OF SINGULAR PARTS

MICHIEL BERTSCH, FLAVIA SMARRAZZO, ANDREA TERRACINA, AND ALBERTO TESEI

ABSTRACT. We prove existence for a class of signed Radon measure-valued entropy so-
lutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one
space dimension. The initial data of the problem is a finite superposition of Dirac masses,
whereas the flux is Lipschitz continuous. Existence is proven by a constructive procedure
which makes use of a suitable family of approximating problems. Relevant qualitative
properties of such constructed solutions are pointed out.

1. INTRODUCTION

We study the Cauchy problem for the scalar conservation law:

{ut +[p(u)], =0 inRx(0,T)=5

(P) u = ug in Rx {0},

where ug is a finite signed Radon measure on R and ¢ : R — R is Lipschitz continuous (see
assumption (As)). Specifically, we consider initial measures whose singular part is a finite
superposition of Dirac masses:

P, M.
(A1) ugr € L'(R), Uos = . PoiOa, — ., Moi O,
iz =1

with pg; > 0,mg; > 0, a; = b; (’L =1,...,P.,l=1,.... M_;P,,M_ ¢ N) Here ug = ugqe + Ugs

is the Lebesgue decomposition of ug and ug, denotes the density of ug,. with respect to the

Lebesgue measure. Observe that by (A1) suppug, = {a1,-,a,_}, suppug, = {b1,-,b,, } and

Supp ugs Nsupp ugs = @, uf, denoting the positive and the negative part of ugs, respectively.
As for the function ¢, we shall assume that

(A2) p(u) = po(u) +Coury e WH (R),  CoeR

(hereafter u, := max{zu, 0}, u € R). Modelling motivations for the present study can be found
in [?, 27, 7] (see also [?]).

In view of the lack of regularity of initial data, in the following we shall address problem (P) in
the framework of the so called Radon measure-valued solutions, i.e. suitable weak solutions of
(P) satisfying a specific entropic formulation, which takes into account the possible persistence
of singular measures for positive times. It is worth observing that analogous notions of
solutions have been also considered in the case of linear multi-dimensional transport equations
with non-smooth coefficients ([?]), and in the Riemann problem for some physically relevant
systems of conservation laws (e.g., Keyfitz-Kranzer type systems). As for the latter, among
the many contributions, we explicitly mention the concept of delta-shock solutions which arises
to describe the appearance of delta functions supported on a shock (e.g., see [?, 7,7, 7, 27, ?]).
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1.1. The nonnegative case. If ug is a finite nonnegative Radon measure on R and ¢ satisfies
the following assumption:

(Ay) @ eLip([0,0)), ¢(0)=0, there exists lim 20 = Co, ¢(u)-Coue L>(0,00),
uU—>o0 u

there exist (nonnegative) Radon measure-valued entropy solutions of problem (P) [?]. Exis-

tence is proven by studying convergence in a suitable topology of the sequence of solutions of

the approximating problems:

Unt + [e(tr )]z =0 in S
Up, = Uop, in Rx {0},

where {ug,} € L°(R) n L*(R) is a convenient regularizing sequence of ug. The solutions
of (P) thus exhibited are called constructed solutions. Remarkably, in the proof it is not
restrictive to assume that ¢ satisfies

(AL) e Wh™(0,00), ¢(0)=0

instead of (A,). In fact, (Af,) implies (A,) with Co =0. On the other hand, if (A,) holds
and u = u(z,t) is an entropy solution of (P), then @ = u(x,t) := u(x + Cpt,t) is an entropy
solution of the problem

(P)

with i = ug and $(2) = p(2) -~ Coz (2 € R), thus ¢ satisfies (Af,) (see [?, Remark 3.16]).

If ug > 0 and (A,) holds, it is a general feature of entropy solutions that the singular part
us(t) does not increase along the characteristic lines @ = Cot + xg; moreover, if ugs has a
nonzero discrete part, there exists a positive time 7 € (0,7] (only depending on wps and ¢)
until which u,(t) > 0 (see [?, Proposition 3.8 and Theorem 3.18]). In particular, if (Af,) holds
and

{ ar+[p(a)], =0 inS
@ = fig in R x {0}

Py
(11) Uor € LI(R), Ups = ZPOZ 501‘ ,  DPoi> 0,
i=1

- there exists 7 € (0, 7] such that
(1.2) supp us(t) = supp uos = {a1, -, a, } forany te[0,7);
- there exist nonincreasing functions p; : [0,7] = [0, po;] such that p;(0) = po;, and

Py
(1.3) us(t) = ;pi(t) Oa, (tel0,T7).

This suggests an existence proof for problem (P) different from that in [?], which can be
outlined as follows. Consider the simple case where ugs = poda, po > 0, and ¢ satisfied (A7,).
By the above remarks there exists a positive time 7 until which the Dirac mass at a persists.
Consider the singular Dirichlet initial-boundary value problems

ur+[p(u)]e =0 in (-00,a) x (0,7) ur+[p(u)]e =0 in (a,00) x (0,7)
(1.4) u=oo in {a} x (0,7) u =00 in {a} x (0,7)
U = Uy in (—o0,a) x {0}, U = Uy in (a,00) x {0}.

The function w, determined by solutions of (??) in R x (0,7) is, by definition, the regular
part of a Radon measure u whose singular part is ug(t) := p(t) d, (t € (0,7)), with p defined
by the initial weight py and the variation of mass at the point a. It can be proven that the
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measure v is an entropy solution of problem (P) in (0,7). Moreover, it is the unique entropy
solution of (P) satisfying a suitable integral form of the following condition:

sgn_(ur(a”,t) = k)[p(ur(a,1)) - o(k)] <0
sgn_(ur (a7, t) = k)[p(ur(a7,t)) = (k)] 20

(see (77) and [?]); hereafter we set sgn , (u) := £x{su>0} (1), sgn (u) :=sgn, (u) +sgn _(u), x&
denoting the characteristic function of E ¢ R; u € R). Formally, condition (??) is equivalent
to the compatibility condition

[sgn (ur(a”,t) - k) = sgn (b(t) - k)][¢(ur(a”,t)) - (k)] <0
[sgn (ur(a”,t) = k) —sgn (b(t) - k) [ (ur(a”,1)) = p(k)] 20

between the traces u,(a*t) := lim,_ 4+ u,(x,t) and the boundary data b(t) = oo, for all k,¢
as above. It is known (see [?, ?]) that the initial-boundary value problems in (??), with
the boundary conditions "u = oo” replaced by "u = b”, are well posed if b € BV(0,T) and
(?7?) holds (for the sake of completeness, we recall the weaker formulations of the boundary
conditions for L*°- or L'-solutions in [?] and [?], respectively, as well as the results in [?, 7, ?]
on the existence of strong traces).

To summarize, as long as the Dirac delta at x = a survives, it behaves like a barrier which
decouples the evolution of the regular part of the solution on either side of the singularity.
As a consequence, the two Dirichlet conditions u,(a*,t) = oo at = = a - namely, the compat-
ibility condition (??) - are needed to prove uniqueness (in fact, it is known that the entropy
inequalities are not enough to ensure uniqueness of measure-valued solutions of (P)).

The above considerations can be extended to any initial data of the form (??) and ¢ as in
(Af,). The solution thus obtained turns out to belong to C'([0, T']; M*(R)), thus the functions
p; in (??) are continuous in [0,T] (see [?, Theorem 3.1]). We observe that the solutions
constructed in [?] are known to satisfy the compatibility conditions (thus to coincide with
those constructed in [?]) only under suitable conditions on ¢ (see [?, Proposition 3.17]).

If (A,) holds, for any nonnegative initial measure as in (??), analogous well-posedness
results for (P) are obtained from those for (P). In this case, for the unique solution u of (P)
(which satisfies a transformed form of the compatibility conditions (??) on the characteristic
lines {(x,t) € S|z =Cot+a;, t€[0,T]}):

- there exists 7 € (0, 7] such that

(1.5) for all k € [0, 00)

(1.6)

P,
(1.7) supp us(t) = |J{(z,t) e S|z =Cot+a;, te[0,T]} for any te[0,7);
i=1
- there holds
Py
(1.8) us(t) = Y pi(t) bavcee  (£€[0,T7])
i=1

with p; : [0,T] - [0,p0:], pi(0) = pp; nonincreasing and continuous on [0,7']. Let us mention
that now the map t — T_¢yt (Zi*l pi(t) 6%) belongs to C((0,T]; M*(R)), and is continuous
at t = 0 in the strong topology of M(R) if ¢ satisfies additional convexity assumptions (see
[?, Proposition 3.20]). On the other hand, u, is continuous on the whole interval [0,T] in the
weak* topology of M(R) (see [?, Proposition 3.5]).

1.2. The signed case: novel features and outline of results. As long as (A{,) holds,
the above results can be generalized to signed measures satisfying (A1) (see [?]).

As in the nonnegative case, the starting point is a monotonicity result: both the positive
and the negative part, u*(t), of the singular part us of any entropy solution of (P) are
nonincreasing with respect to ¢ (for simplicity of notations, for singular Radon measures
we prefer the symbols u¥ instead of [us].). Moreover, for any ¢ = 1,..., P,, (respectively
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I =1,...,M_) there exists 7; € (0,T] (respectively 7, € (0,7]) such that us(t)({a;}) > 0
(us(t)({bi}) > 0, respectively). Therefore, there exists 7 € (0,7] such that for any ¢ € [0,7)
(19) Supp u:(t) = Supp uas = {ah ap, } , Supp u;(t) = supp UES = {blﬂ Ty bM, } .

Moreover, there exist nonincreasing functions p; : [0,T] = [0,po; | with p;(0) = po;, my :
[0,T] - [0,mq; ] with m;(0) =mg (i=1,...,P,,l=1,...,M_), such that

P, M_
(1.10) ul(t) = ;pi(t) 8, , uz(t)= ; my(t) O, (te[0,77]).

As in the nonnegative case there holds uf € C([0,T]; M*(R)) (see [?, Corollary 1]), thus all
functions p; and m; in (??) are continuous in [0,7'].

Now an entropy solution u of (P) is said to satisfy the compatibility condition at a;
(i=1,...,P,) if

(1.11a) vess lim [ sen_(ur(x,t) — k) [o(u(2,1) - o (k)] B(t) dt <0
z—at JO

for all Be CL(0,7;), 820 and k € R, respectively at b; (I=1,...,M_) if

(1.11b) ess lim lesgn+(uT(ac,t) k) [(ur (2,1)) - o(k)] (1) dt < 0
z—=br JO

for all B € C1(0,7), B3>0 and k € R. A procedure which makes use of singular Dirichlet
problems, thus generalizes that described in Subsection 7?7, proves that the compatibility
conditions identify a class of well-posedness for problem (P) (see [?, Theorem 3.5]).

The results in [?] make essential use of the fact that limy .. 2% = 0. It is the purpose of
the present paper to address problem (P), with ug as in (A4;), under the general assumption

(As2) of possibly unbounded fluxes. Observe that (As) is a special case of
(1.12) o(u) =pp(u) + Cruy +C_u_, op e WH(R), C.eR, (veR).
Assuming (As) is not restrictive since, if (??) holds and u = u(z,t) is an entropy solution of
(P), then 4(%,t) := u(Z — C_t,t) is an entropy solution of the problem
# i+ [§(0)], =0 in S
4 =1 in Rx {0}

with Gg = ug and @(2) = p(z) + C_z(z € R), thus ¢ satisfies (Ay) with Cy = C, + C_.

In view of (Az), now the Dirac masses with a positive weight are transported along the
segments

(1.13a) P, = {(z,t)|x =a; + Cot, te[0,T]} (i=1,...,Py),
while the same happens to the Dirac masses with a negative weight along the vertical segments
(1.13b) M = {(z,t) |z =b, te[0,T]} (I=1,....,M).

If Cy = 0, the situation is that already addressed in [?]. Instead, if Cy # 0, two segments P;
and M, possibly intersect at some point (z,t;) (¢ti € (0,7)) (thus the strip S is a finite
union of triangles and possibly unbounded rectangles, rhombi and trapezoids). This is a
major qualitative novelty, which gives rise to an intriguing dynamics of the singular part of
entropy solutions of (P) (see Definition ?7?).

To point out in a simple case the intricacies we are faced with, let Cy > 0 and

(1.14) Ups = Poda — Mo0p (po,mo >0; a<b).

In this situation the parts u}(t) and u(¢) of any entropy solution u of (P) are transported
for positive times along the segments P := {(x,t) |z =a+Cyt, t € [0,T]} and M := {(z,t) |z =
b, t € [0,T]}, respectively. As in the previous cases, the positive and the negative part of
ug are nonincreasing in time along P and M (see Proposition ??). Therefore, there exist
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nonincreasing functions p : [0,7] - [0,po] and m : [0,T] — [0,mg] such that p(0) = po,
m(0) = myp, and

ul(t) =p(t) barcyt, uz(t)=m(t)d, forae. te[0,T]

(see equalities (??) below). Since Cj > 0, the segments P and M intersect at the point (b, o),
with ¢g := b(;—;‘ . There is no loss of generality in assuming tq < 7.

It is natural to ask how the two Dirac masses (with ”different signs”) interact at the
matching time tg, if both survive until the time ¢ = ¢y - an issue which obviously points at
the problem of continuity in time of entropy solutions of (P). Proposition ?? below shows
that both the absolutely continuous part and the singular part of an entropy solution u of
(P) are continuous in time in the whole interval [0,T] with respect to the weak* topology of
M(R) (a preliminary continuity result of u in the same topology is given by Lemma ?7). As
a consequence, we get the representation

us(t) = p(t*) darcyt — m(t*) 6y for every t € (0,T)

(where p(t*) := lim, 4= p(7), m(t*) = lim, 4 m(7) exist by the monotonicity of p and m;
the above equality is a particular case of (?77)). Since a + Cotg = b, it follows that

(1.15) us(to) = [p(tg) —m(tg)]0s = [p(t5) —m(t5)]ds .

It is important to stress that the weak* continuity at every point of [0,7], ensured for
us by Proposition ??, does not hold separately for u} and u;. Namely, continuity of p,m at
t =ty need not hold - although the difference w := p—m is continuous at ty, as shown by (?7).
Therefore, the entropic formulation alone does not determine the evolution of u*(t) after to,
and additional information is needed.

This additional information is provided by a major feature of the solutions given by our
existence proof (see Theorem ?7?). Existence of entropy solutions to (P) is proven below by
a constructive approach similar to that in [?], relying on a suitable family of approximating
problems (see Subsection ?7). As in [?], the solutions thus obtained are called constructed
solutions. An important qualitative property of theirs is the weak* continuity from the right
of the positive and negative singular parts ¢ — u*(t) at every point of [0,7T"). Combined with
the continuity of the difference w := p —m at the intersection point (see (??)), this additional
property allows to determine the behaviour for ¢ € [tg, T] of uZ(t) for any constructed solution
u of (P) with initial data as in (??) (similar results hold in the general case; see Lemma ?7).
Different situations occur, depending on the sign of w(ty) :

- if w(tg) > 0, by (??) there holds us(tg) = w(tg) oy € M*(R), thus us(tg) = ul(to) and
ug (tp) = 0. Then by the weak™ continuity from the right and the nonincreasing character of
uj there holds uj (t) = 0 for any ¢ € [tg, T] (see equalities (?7));

- if w(tg) < 0, we obtain similarly that u}(t) = 0 for any ¢ € [to, T];

- if w(tp) =0, then u*(¢) =0 for any t € (to,T].

Finally, another important feature of constructed solutions is that they satisfy a more
general version of the compatibility conditions (see Definition ?? and Theorem ?7). In the
forthcoming paper [?] we shall prove that, as in [?, ?], the compatibility conditions identify
a class of uniqueness for problem (P). Therefore, well-posedness of problem (P) in the same
class follows from the present constructive proof of existence. It is also worth observing
that in [?, 7], for bounded nonlinearities @, existence of solutions satisfying the compatibility
conditions has been proven by a different constructive approach (see Subsection ?7?), not
relying on regularization arguments of the initial measure. Thus, construction of solutions
by the approximating problems in Subsection 77 is one of the major features of the present
paper, and makes our construction consistent with respect to smoothing and regularization
of initial data.
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1.3. Plan of the paper and notations. The paper is organized as follows. After intro-
ducing our concepts of solution in Section ??, the main results of the paper are presented in
Section 77. Sections 7?7, 7?7 and 77 are devoted to proofs. Some general results used in the
existence proofs are stated and proven in the Appendix.

Let us establish some notations. For all u € R we set u. := max{xu,0}, and for any
f R=R fi(u)=[f(u)]s (uweR), thus f = f, — f-. We shall make use of the truncation
T, (u) := max{-n,min{u,n}} (n € Nyu € R). We denote by |-| the Lebesgue measure. A Borel
set £ ¢ R such that |E| = 0 is called a null set, and “almost everywhere”, or shortly “a.e.”,
means “up to null sets”.

By M(R) (respectively M*(R)) we denote the space of finite signed (respectively, the cone
of finite nonnegative) Radon measures on R. The space M(R) is ordered by the inequality
“<” defined as follows: pu < v if u(F) < v(E) for any Borel set E ¢ R (u,v € M(R)). For
any p € M(R) (i) pae and ps denote the absolutely continuous and the singular part of u
with respect to the Lebesgue measure, thus g = jigc + pts, and g, € L*(R) is the density of
tac; (i7) p* and p~ are the positive and the negative part of u, thus g = p* — u~ (notice
that [ps]* = [p*]s = p¥); (4i4) |u|(R) = p*(R) + u~(R) is the total variation of u. The space
M(R) is a Banach space with norm |u|rqr) = [u[(R) . For any ¢ € C.(R) the symbol {1, ()
denotes the duality between p € M(R) and ¢. Similar remarks hold for the space M(S) of
finite signed Radon measures on S :=R x (0,T).

For any Borel set E ¢ R, the restriction uL F of p € M(R) to E is defined by setting
(L E)(A) == u(En A) for every Borel set A cR.

For every a € R and p € M(R), we denote by T,u the translated measure of p,

(1.16) (Tats, p) = {1, p(- +a)) for all pe C.(R).

2. SOLUTION CONCEPTS AND RELATED NOTIONS

Let us recall that u e M*(S) belongs to the space LS, (0,7; M*(R)), if for a.e. t € (0,T)
there exists u(t) € M*(R) such that:
(@) for every ¢ € C.(S) the map t — (u(t),((-,t)) is Lebesgue measurable, and

(2.1) (.0) = [ (0,00 e

(ii) there exists a constant C' > 0 such that esssupeo 1y |[u(t) | mE) < C
(e.g., see [7, Chapter 4]). We set [uf 1= (0, mam(r)) = esssupeqo, 1y [u(®) [ mer)-

If we LY(0,T; M*(R)), it is easily seen that wuge, us € L% (0,T; M*(R)) and u, €
L*=(0,T; L' (R)). We say that a finite Radon measure u € M(S) belongs to L2, (0, T; M(R))
if both uy and u- belong to L% (0,T; M*(R)).

Our first concept of solution is given by the following definition.

Definition 2.1. Let ug € M(R), and let (A2) hold. By a solution of problem (P) we mean
any u e L2, (0,T; M(R)) such that for any ¢ € C1(S), ¢(-,T) =0
T T
22) [ (w®.Ge0)d+ [ o) dadt+Co [T ul(0).G(,0) dt == {uo,¢(,0))
Since u, € L=(0,T; L*(R)) ifu € L. (0, T; M(R)), by assumption (Az) there holds ¢(u,.) €
L>=(0,T; L*(R)), thus equality (??) is well posed. From (??) by a proper choice of ¢ and
standard regularization results we get the following:

Lemma 2.1. Let ug € M(R), let (A2) hold, and let u be a solution of problem (P). Then
the map t — u(t) has a representative defined for all t € [0,T] and continuous in [0,T] with
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respect to the weak* topology of M(R). Moreover, u(0) = ug in M(R), and for any 7 € [0,T]
and p € C1(R)

(2.3) ().} = (w0 p) + [ [ olun)p! (o) dudt + Co [ (ut (),

Remark 2.1. In view of Lemma ?7?, for any solution u of (P) the measure u(t) is defined
for all t € [0,T]. In the following, for simplicity of notations, for every t € [0,T] we always set

us(t) = [w(®)]s, us(t):=[[u(®)]s]*,
lus (D)) = [[w(®)]s],  ur (1) = [u()](-).

Definition 2.2. Let ug € M(R), and let (A2) hold. By an entropy solution of problem (P)
we mean a solution u such that, for all k€ R and ¢ € C1(S), (>0, ¢((-,T) =0,

(2.4) ffs {luy = KIC + sgn (ur - B)[0(uy) - 9(k)] Co ) dvdt +
T T
o [ (Ol GCovd+ Co [ (o). ) de >

>~ [ o K. 0) de— (luge] C.0))

Remark 2.2. Let u be an entropy solution of problem (P). Summing equality (??) to
inequality (??) gives for all ke R and ¢ € CL(S), (>0, ¢(-,T) =0,

(2.50) ] Al =k G s (= B () = ()] o} dadt +
o [ 0.6 0y o [0, G )2
>~ [ [uor = k). C(a.0) do = {us, (-, 0))

Similarly, subtracting (??) from (??) gives for all £ € R and ¢ as above
T
@5) [ {lur=k1-Gowsgn—(u ~ )e(ur) = (0]} dade + [ uz(0). G 0) dt >
>~ [ Tuoy = k1- ¢(,0) da = (u5, . (. 0)) -
3. RESULTS

3.1. Monotonicity and support properties of the singular part of entropy solutions.
For general initial measures ug € M(R), entropy solutions have the following monotonicity
property:

Proposition 3.1. Let ug € M(R), let (As) hold, and let u be an entropy solution of problem
(P). Then

(3.1a) ul (t2) < Teg(ta-tr)Us (t1)  for a.e. 0<t; <t < T,
(3.1b) ug(t) < Togrugs  for a.e. t€(0,T),
(3.1¢c) ug (t2) < ug(t1) < ugy for ae. 0<ty <ta<T.

Let us address the case where ugs is the sum of a finite number of Dirac masses - namely,
assumption (A4;) holds. In view of Proposition ??, the map t — u} (t) (respectively ¢t — uj (t))
is nonincreasing along the segment P; (respectively M ; see (?7)). More precisely, there exist
nonincreasing functions p; : [0,7] = [0,po; |, mu : [0,T] = [0,m; ] and a null set N < (0,T)
such that

P, M.
(3.2) ug(t) = Zpi(t) Bas+Cots  Ug(t) = Z my(t)op, for any te (0,7) N N.
i=1 =1
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By the monotonicity of p; and my, for all 4, there holds

(3.3) P <pi(t), mu(t) Smi(t) forany te (0,T),

where p; (t*) = lim, 4 p; (7) and my(t*) := lim, 4= m;(7). Without loss of generality, we may
assume the functions p; and m; to be continuous at any point ¢ € (0,7) \ N.

To pursue our analysis we need the following proposition, which shows that both the
absolutely continuous and the singular part of an entropy solution of (P) are weakly™ time
continuous in the whole interval [0,T].

Proposition 3.2. Let (A1)-(As2) hold, and let u be an entropy solution of problem (P). Then
for any to € [0,T] and p € C.(R) there holds

(3.4a) esstli_gt fRu,«(x,t)p(;v)dx:/Rqu(m,to)p(x)dx,
(3.4b) ess Jim {us (1)) = {us(0).p)

The following result follows at once from (?7?).

Proposition 3.3. Let (A1)-(Az) hold, and let u be an entropy solution of problem (P). Then

P, M-
(3.5a) us(t) = Y pi(t*) basecor — . mu(t*) oy, for allte(0,T),
i=1 1=1
P, M.
(35b) ué(O) = UQs » ué(T) = Zpi(T_) 5@1+COT - Z ml(T_) (Sbl .
i=1 =1

Remark 3.1. Let us point out that the weak™ continuity of the map t — u(t) in the whole
interval [0,T] (see Proposition ?7?) need not hold separately for the maps t — u*(¢). This
indeed happens if Cyp = 0 (even in the strong topology of M(R); see [?, Corollary 1], [?,
Proposition 3.20-(i)]). However, as already observed, two segments P; and M; can intersect
if Cp # 0, in which case the continuity of the map ¢ — uZ(t) at the intersection point need not
be true.

Corresponding remarks hold for the maps p;, m; in (??). By (??) and (??), what definitely
applies for all t € (0,7") are the inequalities:

(3.6a) ug(t) < ipi(f) Oa;+Cot < ipi(t_) Oa;+Cot »
M. M.
(3.6b) ug (t) < ; my(t") oy, < l; my(t7) oy, ,
whereas for all ¢ € [0,T"] there holds (see (?7?)):
(3.6¢) suppu (t) € fjl{(m,t)|x:ai+00t}, suppu, (t) € jL/[Jl{(m,tHx:bl}.

3.2. Existence. As already pointed out, existence of entropy solutions of (P) is proven by
a constructive approach analogous to that used in [?] for the nonnegative case. Consider the
approximating problems

(P,) { Unt + [n(un)], =0 in S

un:’uon inRX{O},
where

(3.7 pn(u) = p(Ty(u)) + Couy, T, (w) == max{-n, min{u,n}} (neN,ueR),
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and {ug,} € BV(R) is defined by (77?).
To prove existence the following assumption is used:

for any £ € R there exist a,b>0, a +b >0 such that
(4s) o Lz
 is strictly convex or concave in [€ —a,& +b],

(see Section ?? and Theorem ?7?; let us mention that (As) is a weaker form of assumption
(C3) used in [?, Theorem 3.7]). Our main existence result can be stated as follows.

Theorem 3.4. Let assumptions (A1)-(As) hold. Then there exists an entropy solution u
of problem (P). Moreover, u is obtained as a limiting weak* point of the sequence {u,} of
entropy solutions of the approximating problems (P,,), in the sense that

(3.8) Un (- 1) > u(t) in M(R) for all te[0,T].
Definition 3.1. Let assumptions (A4;)-(As) hold. By a constructed entropy solution of (P)
we mean any entropy solution obtained as in the proof of Theorem 77.

3.3. Additional continuity properties of constructed entropy solutions. The follow-
ing theorem shows that for any constructed entropy solution w the mappings t — u?(t) are
weakly* continuous from the right in [0, 7). As a consequence, we get the structural equalities
(??) below, which hold everywhere in [0,T) and improve on equalities (?7?).

Theorem 3.5. Let assumptions (A1)-(Asz) hold. Let u be a constructed entropy solution of
problem (P). Then for any t € [0,T) there holds

(3.9a) wt(r) & ut(t) in M(R) as T > t*,
P, M.

(3.9b) ug () = 2 pi(t") dajecor,  ug(t) = 3 mu(t")dy, -
i1 =1

3.4. Compatibility conditions. Let us first state the following definition.

Definition 3.2. Let (A;)-(A3) hold, and let 7€ (0,7].
(i) Let a;+Co7 € suppul (7). An entropy solution of (P) satisfies the compatibility conditions
in [0,7] at a; (i=1,...,P,) if for all e CL(0,7), 3>0, and k € R there holds

5—0* +Cot

(3.10a) limsup = {f faa +COt+ign_(u,«(x,t) -k)[p(up(x,t)) - p(k)]B(t) dedt —

- fofug(t)((aﬁ()ot,ai+Cot+5))5(t)dt} <0

(3.10b) lim inf {/-/;a +COtsgn (ur(z,t) = k) [@(ur(z,t)) = 9(k)]B8(t) dedt -

6—0* +Cot-6

- Gy /(:Tu;(t)((ai +Cot = 8,a; + Cot) ) (L) dt} >0
where ¢(u) := p(u) - Cou = gp(u) + Cou- (ueR).

(it) Let b; € suppu; (7). An entropy solution of (P) satisfies the compatibility conditions in
[0,7] atb; (I=1,...,M_) if for all 3e CL(0,7), B3>0, and k € R there holds

(3.11a) limsup — {//bﬁésgnJr(ur (z,t) = k)[e(ur(z,t)) — p(k)]8(t) dadt +

6—0*

+ cofOTu;(t)((bl,bl+5))5(t)dt} <0
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(3.11b) hmmf{ff sen s (ur (2,1) — k) [@(ur (2, 8)) — o(k)]8(t) dadt +

+ 00fOTu;(t)((bl—5,bl))5(t)dt} >0

We can now point out another remarkable feature of constructed entropy solutions.

Theorem 3.6. Let assumptions (A1)-(As) hold. Then every constructed entropy solution of
problem (P) satisfies the compatibility conditions.

Remark 3.2. If Cy = 0, inequalities (??) read

A

6—0+

+limsup { A [ " (1) - ) (1)) - (k) ]B(E) ddt < 0,

which corresponds to (??). Similarly, inequalities (??) when Cj = 0 read

AN

+limsup + { S s ) = ot (,00) - D130 ot < 0,

6—0*

which corresponds to (?7).

4. MONOTONICITY AND SUPPORT PROPERTIES OF THE SINGULAR PART: PROOFS

Proof of Proposition ??7. We only prove inequality (??), the proof of (??)-(??) being similar.
Let t € (0,T) be fixed. Choosing in (??) ((x,t) = p(x - Co(t —t2)) h(t) with pe CL(R), p>0
and h e CY([0,T]), h>0, h(T) =0, for any k >0 we get

T A
(4.1) [ @, - Colt - ) Wt +
// [ur(z,t) = k)]s p(x = Co(t —t2)) ' (t) dedt +
/] sgn 4 (uy — k) [op(ur(z,1)) = op(k)] p'(x = Co(t - t2)) h(t) dzdt >
> —h(0) {[R[uw k. p(x + Cota) da + (u, , p(- + cot2)>} .
Letting & - oo in the above inequality, by the Dominated Convergence theorem, we obtain
T
(42) [ ). p( = Col = 12)) W(0)dt 2 = h0) (s o0+ Cit2))
Choosing in (?7)
0 1 )
h(t) := (t t+ 2) X[tr-3.0+3] (D) * X(t1+3,10-3) () + 5 (t2 t3 —f) X[t2-4 12431 (1)
with § > 0 sufficiently small gives
1 [ta+s
(@8) g [, @l o=t < 5 f (S (0), (= Colt = t2)))

Since ug € Ly, (0,7; M*(R)), there exists a null set N ¢ (0,T) such that for all ¢ €
(0,T)~ N and ¢ € C.(S) there holds

(1.4 i < 0.0 (0 (10). - 0)

6—0*

(e.g., see the proof of [?, Lemma 3.1]). Then letting § - 0% in (??) we get
(ui(t2), p) < (ui(tr), p(- = Colts —12)))
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for any t, to € (0,7) ~ N and p € C}(R), p>0. Hence the result follows. O

Remark 4.1. Let u be an entropy solution of problem (P). Since u, € L=(0,T; L' (R)) and
uj € Ly, (0,75 M*(R)), by standard separability arguments there exists a null set N ¢ (0,7")
such that for all ¢g € (0,7) N\ N, ( € C.(S) and k € R there hold both (??) and

t0+g

(4.5) lim +

6-0% 0 Jto-2

dtfR[uT CK]uCda = fR[ur(ac,to) ~ k] Ca to) d.

Without loss of generality, we assume that inequalities (??) hold in (0,7) \ N.
Let 7€ (0,7)\ N be fixed, and choose in (??) ((z,t) = p(z-Co(t-7)) h(t) with p e CL(R),
p >0 and

1 )
(16) () = X0y O+ 5 (745 =) Xrmg et O
with ¢ > 0 sufficiently small. Then letting § — 0* in (??) for any k> 0 we get
(4.7) fR[ur(x,T) —k]y p(z)dx + (ul(7),p) <

< [R[UOT — ks p(z + Cot) dz + (uly, p(- + CoT)) +

+ fOT[R sgn 4 (ur — k) [op(ur) — (k)] p'(x = Co(t - 7)) dadt .

Similarly, choosing in (??) ((x,t) = p(x)h(t) with h as in (??) and letting 6 — 0% we obtain
for any ke R

(48) [ [urw,m) = k) p(@)do + (i (7). p) <
< [ lwor = k1 p(e) da + Guop) + [ [ sen-(ur - W)p(ur) - p(0)] /(&) dudt

To prove Proposition ?? the following lemma is needed.

Lemma 4.1. Let (A1)-(As) hold, let u be an entropy solution of problem (P), and let N ¢
(0,T) be the null set in Remark ?77. Let tg € [0,T] and let {rn,} € (0,T) N\ N satisfy 7, — to.
Then there erist f.y € L'(R), fz) 20 a.e. in R such that, up to subsequences,

(4.9) [ ()]s = foy in M(R).

Proof. Observe preliminarily that, since ¢ is bounded in R, there exist two sequences {&;} €
R, {£;} € R such that lim, e &; = limg o0 & = 00, and

1 . 1
(4.10) Sugp[wb(Z) — ()] < 7’ inf [op(2) = @u(&)] > 3 for all g e N.
z2> q z2 q
Similarly, there exist {£,} € R, {é,']} ¢ R such that limg e & = lim, . §~(’I = —o00, and
. ~ 1 ~ 1
(4.11) méf [p(2) =p(E)] > ==,  sup[p(z) - p(&,)] < p for all g e N.
2%8q 2<€l

We only prove (??) with “+” since the other case is similar, using (??) and (??) instead
of (??) and (?7?). Since [u,], € L=(0,T; L*(R)), for all k > 0 there exist p, up € M*(R) such
that, up to subsequences,

(4.12) [urCom)]s 2 s [wnComa) = K]y 2 e in M(R).
On the other hand, since
[ur(, )]+ = min{k, [w, (70 ) ]+ + [ur (-, 7m) — K]+ for all k>0,



12 BERTSCH, SMARRAZZO, TERRACINA, AND TESEI

and {min{k, [u,(-,7,)]+}} is bounded in L= (R) n L'(R), letting n — oo there holds
(4.13) [pr]s =ps in M(R) forall k>0.

Fix 7 € (0,7) ~ N, and recall that supp ug, = {a1,-,a, } with a; <az < <a Let

i=1,...,P,. Weset z; = z;(1) := a; + Co7 and, for i < P;,
Io=Io(7) = (=00,21), Ip =1, (7):=(2,,00), [1i=1i(T)=(zi2i1)
Ip(0) = (=00,a1), 1, (0):=(a,,,00),  Li(0):=(asain).

By (?7?) there holds

(4.14) ui(r) L (1) = ug, L 1;(0) =0 fori=0,Ps.

Pyt

Foralli=1,...,P,—1,let a;1 € C1([2i,2i+1)), iz € C1((24,2i41]) be nonnegative, such that

;1 + ;0 = 1in Ii = IZ(T) Set also
M, (2) = j(x - Zz')X[Zi’m;](x) X (o0

]((E),
](CU)

sZi+1

Na,ij(x) = X[ () + j(zin —m)X(

1 1
Zi72i+1—jj| Zit+l17T G %0+l

for any j € N large enough. Observe that by (??) there holds
(4.15) (ug (), iamig) = (ugs, [aaam,i (- + Cor)) = 0.
Let &; be as in (??). Choosing k = ¢, and p= ;17 ,,; in (?7), by (??) and (??) we get

A[Ur($, 7') - fq]+ Oéi,l(l’)’lh,i)j (.T) dr < A[UOT - 5q]+[771,i,j04i,1:|($ + C()T) dx +
’ fOTfR sgn ¢ (ur = &g)[on(ur) = u(8g)] [ijoi 1] (w = Co(t - 7)) dwdt +
+ fonR sgn s (ur = £) (o (ur) = 06(Eg) ] [0 4 jevin ](x = Co(t = 7)) dadt <

Aq+1

< fa [vor = &qlv dz + 2[pp ool 1 oo [{1r > &g} + sup [ (2) = @6 (€)1 T M4 411 <
i 228,
Ai+1 , T

< fa [uor = &qlv dz + 2[pp ool 1 oo [{ur > &g} + .

Letting j — oo we obtain
Zi+l iyl T
@16) [ (o) gl an@dr s [ gl de 2ol > 3+

Similarly, choosing k =&, p= v 2m2,i; in (?7), and letting j — oo gives

Zit1 Qit1 T
@17) [ o) -gle i@y de s [ o) d s 2lguleolo ol [ > €3]
Since a1 + a2 =11in I;, from (??)-(??) for alli=1,..., P, — 1 we obtain

<> )+ 2+

(4.18) fl [ur(2,7) = kql+ dz < 2 0]loo (05 1 oo [{ur > g} + 0 o
. faa[uo Cg,]ede+ faa[uo — . da,

where k, := max{&,, £/ }. Similarly, for all p e C}(R), 0< p <1 there holds

(4.19) fID [uy (2, 7) = kgls p(x) do < /Io [ur(z,7) = &4 p(x) da <

< /: 1[U07-—£;]+ dr + 2”@})”00”/)1”00 |{Ur >£[,1}| . g’

[}
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(4.20) [ @) =klep@do < [ (o) =€) pla) do <

Py Py

e T
< Do = &dedr + 2Dl oo > &)+

Py

By inequalities (7?)-(??), for any p e C}(R), 0 < p <1 we obtain

(4.21) [R[ur(m,T) —kql+ pdadt < [ [uor — &+ d + foo [uor — &+ d +

ai

oo P+
Py -1 Qi1 @i+1
+ Z {f [uor — &4+ dx+f [uoT—fé]erx} +
-1 Waq a;
Pa-1
+ ; {201@bllo0 (05 1 oo Ktur > €3 + ] g lloo |[{ur > €1 3D} +

27 P,

+ 2leplloollp oo ({ur > €5 + [{ur > &G3) +

Choosing 7 = 7, in the above estimate and letting n — oo, by (?7?)-(??) we get

(s, 0) = ([, Js - p) < (ko p) = lim A[w(%m)—%]mdwdt <

a [}
< [ [uor — &1+ dx +/ [uor — &g+ dz +
—00 aP+
P-1
+

IR A T NEE A AN

P,-1

> 2lenleo(laf 1 oo Hur > €3 + [0 2llo0 [{ur > € 3D} +
i=1
2to P,

+

+

2 sl eoll oo (|{ur > €5} + 1{ur > €}1) +

Letting ¢ — oo in the above inequality gives (us, p) = 0 for any p € C1(R), 0 < p < 1. Therefore,
the limiting measure p in (??) is absolutely continuous with respect to the Lebesgue measure,
and from the first convergence in (?7?) we obtain (?7) with “+”. This completes the proof. O

Proof of Proposition 7?7. Let N ¢ (0,T') be the null set in Remark ??. Let tg € [0,T'] be fixed,
and let {7,} € (0,7) \ N be any sequence such that 7,, - to. Since u? € L% (0,T; M*(R)),
there exists v(4) € M*(R) such that, up to subsequences, there holds

(4.22) ut () > vy in M(R),
whence
(4.23) Us(Tp) =~ vi= V) — V) in M(R).

In view of Lemma 77, we also have that
(4.24) up( ) = fi=foy - o) in M(R),

with f(.) as in (?7), thus f € L'(R). Since u(7,) 2 u(to) by Lemma ??, from (??)-(?7) it
follows that

(4.25) u(tg) =f+v in M(R).
On the other hand, by inequalities (??) for any n € N there holds
+

ut (1) < Toyr, Ugs s uy (1) < ug, in M(R).
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Since Teyr, g, — Teytotis in M(R), letting n — oo in the above inequalities and using (?7)
we obtain

Viyy £ Tcotougsa v-y < Ugg in M(R).
Therefore, the measure v in (??) is singular with respect to the Lebesgue measure. By the
uniqueness of the Lebesgue decomposition, it follows from (??) that v = us(tg) in M(R),
f=T[ulte)]-(-) =u.(-,to) a.e. in R, and the convergences

(7)) = up (- t0), Us(Tn) = us(to) in M(R)

take place along the whole sequence {7, }. By the arbitrariness of {7,} we get (?7). O

5. EXISTENCE OF ENTROPY SOLUTIONS: PROOF

5.1. The approximating problems. Let ¢,, be defined by (??). Observe that ¢, € Lip (R),
on(2) = p(2) if |z| < n, and ¢, - ¢ uniformly on the bounded subsets of R. Let ug € M(R)
be any initial measure satisfying (A;). For any n € N set

1

1
I;i::(ai—ﬁ,ai+2—2) (i:l,..-,P+)a P, M-_
’ n n _
In::(UIfLi)U(UInl)-
Lo=(b- 2 e 2) (=1,...,00) a7

n,l I 2712’ I 2 ) ) 3

Observe that for n e N sufficiently large there holds Iy, n I3, = @ for any j # k, and
LD, =@ (i=1,...,Psl=1,...,M.).

n
Let po;, mo; be as in (Ay). Let {n,} be a sequence of standard mollifiers. For n € N we set

P, M-
(51) UOr,n:(Tn(uO'r‘)*nn)X[fn,n]\In; uOs,n:ZpOi nQXI:)i_ZmOI n2XI; z; UOn = UOr,n T UOs,n -
i=1 =1 '

Then ug, € BV (R), there exists My > 0 such that

(5.2) sup luon| 1wy < Mo,

and there holds

(5.3) Fluon) = f(uor) +Cjsupy —Cr_ug, in M(R)
for any f e C(R) such that

(5.4) lim 1% = ), €R.

The last statement follows from the the proof of [?, Lemma 5.2], since uq,., = ug, in L*(R)
and a.e. in R, and [ugsn ]+« Zoug, in M(R)).

For every n € N there exists a unique entropy solution wu,, € C([0,T]; L'(R)) n L=(S) of
the Cauchy problem (P,); moreover, there holds u,(-,t) € BV(R) for any t € [0,7] since
uon € BV(R). Hereafter we shall identify w,(-,t) with any of its representatives, which are
defined pointwise in R. Relying on the entropy inequalities:

6:5) [ ) =Ko s (1) = ) (i ,0)) = 0 (9] dnde
fR[un(x,tl)—kM(x,tl)dx—A[un(x,to)-k]+<(x,t0)dx,

v

[\

6:6) [ () =K sgnunot) = B) (a2 00) = on(R)] o} o
Jlwnet) = K)Cat) do = [ [ (e,t0) = ]G to) do

v

v
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61 [ = kG s GG t) = ) (a2 00) = e (R)] o e >
> [ waat) - Mot do = [ fun(a.to) - (. to) da

(which hold for any nonnegative ¢ € C1(S), k€ R, and 0 <ty <t; <T), it can be proven that
for all n € N there holds
(5.8) lwnl Lo, 7501 )y < luon]zr(®) < Mo.

Proposition 5.1. Let w, be the entropy solution of problem (P,) with ug, given by (?7),
and let xg € R be fixed.

(@) If un (2§, t1) = limy s up (z,t1) > n for some ty € (0,T], there holds

(5.9) un((zo + Co(to —t1))*,t0) 2n  for all to € [0,11).
(41) If upn(x§,t1) < —n for some t1 € (0,T], there holds
(5.10) un(x5,t0) < -n for all to € [0,t1).

Proof. Observe that the limits w, (z§,t1) exist, since u,(-,t) € BV(R) for all ¢ € [0,T]. To
prove (i), we choose in (??) k=n and ((z,t) = p(z — Co(t —t1)) with pe C}(R), p>0. Since
sgn 4 (un (7, 1) = n)[@n(un(z, 1)) —pn(n)] =

sgn (un (2,1) = ) [@p(Tn (un (2, 1)) = pp(n) + Co([un(z,t)]+ —n)] =

Cosgn 1 (up(x,t) = n)([un(z,t)]+ —n) = Colun(x,t) —n]y,

with this choice the left-hand side of (?7?) vanishes. It follows that

fR[un(ﬂs,tl)—n]+p(x)d$—fR[un(x,to)—n]+p($—Co(to—t1))d$ <0,

whence for all 0 <tg<t; <T

(5.11) fR[un(x+C’0(t0—t1),t0)—n]+p(m)dz2 fR[un(x,tl)—an(x)dx.

To prove (?7?), assume by contradiction that w, ((xg + Co(to —t1))",t0) < n for some tg €
[0,t1) (a similar argument holds for w,((xzg + Co(to — t1))",t0)). Then there exists § > 0
(possibly depending on ) such that [u,(z + Co(to —t1),t0) —n]+ =0 for a.e. x € (xg,x0+9).
Choosing p with suppp € (zg,xo +d) from (?7) we get fxz°+6[un(x,t1) -nlyp(x)dr <0, a
contradiction since uy, (z§,t1) > n. Hence the result follows in this case.

The proof of (i4) is similar, observing that
sgn _(un (z,t) + n)[@n(un(z,1)) - @n(-n)] =
= sgn_(un(z,t) + 1) [pp(Tn(un(z,1))) = pp(-n) + Colun(z,t)]+] = 0.
By (??), with k£ = -n and ((x,t) = p(x), p as above, we get for all 0 <ty <t; < T

fR[un(x,to) +n]_p(x)dz > [R[un(m,tl) +n]-p(x)dz,

whence the conclusion follows. O

5.2. Letting n — oo in the approximating problems. In view of inequality (??), Theorem
?? can be applied to the sequence {u,} of entropy solutions of the approximating problems
(see also Remark ?7). Hence there exist a Radon measure u € LS, (0, T; M(R)), a subsequence

of {u,} (not relabeled) and a Young measure v € Y(S x R) such that
(5.12) U, ~ u in L, (0,T; M())

(see (??7) and (?7?)), and up (o) (2, ) = fR £+ dvz 4y (€) belong to L (0, T LY(R)) (here ey
((z,t) € S) denotes the disintegration of v; e.g., see [?, Section 5.2]). Set

(5.13) Up = Up,(+) ~ Ub,(-) a.e.in S.
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In view of (??) (with f(§) = [£ - k]+) and (?7?)-(?7), it is easily seen that the results in
Theorem ?? and Remark ?? (with ® = ) hold along a suitable subsequence of {u,}. Then
we have the following theorem.

Theorem 5.2. Let (Ay1)-(Az) hold. Let u, {u,}, v and up be as in (?7)-(?7).
(i) There holds

(5.14) up =up a.e.in S.
(it) There exists a subsequence of {u,} (not relabeled) such that in L. (0,T; M(R))

*

(5.15) [un]e = Up,(+) T u: )

(5.16) flun) = f*+ Craul - Cpou;

for any f € C(R) such that (??) holds, with f* € L*=(0,T; L, (R)) defined by
(5.17) [ (x,t) = fRf(g) dvz4)(§)  for a.e. (x,t)€S.

Our next task is to characterize the disintegration v(, ;) of the Young measure v in Theorem
??. To this purpose, both assumption (A3) and a suitable parabolic approximation of the
entropy solution u,, of (P,) (for each n € N) are needed.

Arguing as in [?, Section 4] shows that u, is a limiting point in L'(S) (and weakly* in
L>(S)) as € > 0* of the family {u,} of solutions to the parabolic problems

(P) Opul + 0. [ 6 (u)] = €d?us, in S,
" us, = u,, in Rx{0}.

Here

(&) =(mexen)(§)  (§€R)
({ne} being a sequence of standard mollifiers), and {u,, } ¢ C°(R) satisfies

|Gl 21 (m)y < [won |1 ®) < Mo, |whnll =) < [won | L=(®)

X ugn in L=(R)

as € > 0. Relying on the above approximation, it can be checked that the disintegration
V(z,1) satisfies equality (?7) a.e. in S (the lengthy proof is modeled after the first part of that

of [?, Proposition 5.8], thus we omit it.) Then by (??) and Theorem ?? below we get the
following result.

Theorem 5.3. Let assumptions (A1)-(Az) hold. Then there holds
(5.18) Vzt) = Oup(a,p) Jfor a.e. (z,t)€S.

€ : 1 €
Ugp, = Uon 1IN L (R) ’ Uon,

5.3. Existence proof. By (??)-(??) and (??), for any ¢ € C.(S) and 0 < t; <ty < T there
holds, up to subsequences,

to to t2
(5.19) lim [ [R[un]ig“d:rdt:[tl fR[uT]iCdxdtwatl (W (1), ¢ 1)) dt,

n—o0o

(5.20) gg&fntzfmf(un)gdxdt:ftltszf(uT)gdxdt+

oo tn
+ C’f,+/t(J <’U,S (t)7<(7t)>dt - Cfr /t‘o <us (t)v<(7t))dt
for any f € C(R) such that (??) holds. Moreover,
to

to to
(5.21) lim [ Rgon(un)Cdxdt:ftl fRap(u,,)Cdxdt+Coftl (ut(t),CCo 1)) dt;

n—oo Jt
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(5.22) lim ftthfR|un—k|Cdxdt:/tthfR|u,.—k|Cdxdt+ftotl(|us(t)|,C(-,t))dt,

n—oo

(5.23) i, [ s () = )i (0 = 0 ()] v -
= ftltzjﬂ;sgn(ur—k)[@(ur)—w(k)]gd:z:dt+CO f: (uf (8), (o 8) dt

for all k € R. In fact, the convergence in (??) follows from (??) with f(s) = |s —k|. As for
(??) and (?7), it suffices to choose f(s) = p(s), respectively f(s) =sgn (s—k)[¢(s) — (k)] in
(??), since by (??) and (??) there holds

ffs [on(un) = @(un)|[C] dadt < 2[C[lo @b oo |{[tn] > n}| <

-0 asn— oo,

2Mo|[¢fles [0 oo
n

| [ s ar0) = ) i a.0)) = 0 ()] = i) = ()] € ] <
<[] entun) = o)l + lou(k) = ()]} ¢ dedt >0 asn— oo

Lemma 5.4. Let (A1)-(As) hold, and let u be the limiting measure in (?77). Then u is a
solution of problem (P). Moreover, for any sequence {u,} such that (?7)-(??) are satisfied
and for any t € (0,T] there holds

(5.24) un (1) = u(t) in M(R).

In (?7), at every ¢ € (0,7] we have identified u(¢) with its continuous representative (with
respect to the weak* topology of M(R)), whose existence is ensured by Lemma ?7?, since u
is a solution of (P).

Proof. Choosing f(s) =s in (??), we have

Uy — up  in M(R).

By the above convergence, (??) and (?7?), letting n — oo in the weak formulation of problems
(Pp) gives

(6:25) [ (0.6 00+ [ olu)edndt+Co [ (0.l 0) dh = ~{uo, ¢ )

for any ¢ € C}(S) such that ¢(-,T) = 0. Thus u is a solution of (P) with initial data wug.
Let us address the convergence in (??). To this aim, fix any ¢ € (0,7], and observe that the
sequence {uy(-,t)} is bounded in L'(R). Hence there exists ) ¢ M(R) such that, up to a
subsequences,

(5.26) Un(-t) =~ p® in M(R).
On the other hand, for any p € C}(R), taking the limit with respct to n — oo in the equality

[wnGtp@ydr= [won@pt)de+ [ [ pulun)o! (@) drde,

by (??) we obtain
ta
(5.27) lim fRun(z,t)p(x) dx = f fﬂ{(p(ur)p'(a:)da:dt +
n—oo t1

<Co [ (@)t + o) = (u0). )

(see (77)). From (??) and (?7?), it follows that x® = u(t) in M(R). O
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Proof of Theorem 7?7. In view of Lemma 7?7, it is enough to check that the limiting measure
u given by (?7) satisfies the entropy inequality (??). Clearly, this follows by (?7?), (??) and
the convergence

luon — k| = |uor — k| + |ugs] in M(R)  (keR)
(see (??) with f(s) =|s - k]|), letting n — oo in (?7). O

6. QUALITATIVE PROPERTIES OF CONSTRUCTED ENTROPY SOLUTIONS: PROOFS
6.1. Continuity properties of the singular part.

Lemma 6.1. Let assumptions (A1)-(A3) hold. Let u be a constructed entropy solution of
problem (P), and let {u,} be any sequence along which all convergences in the proof of The-
orem ?? hold true. Then there exists a null set N € (0,T) such that for every 7 € (0,T)~ N
the following holds:

(i) if a; + Cot esuppul (1) (i=1,...,Py), there exist {uy,} € {un} and {£;} <R such that

2
J J
(#)if by e suppug (1) (I=1,...,M_), there ewist {un,} € {un} and {§;} € R such that

1 1
(6.1a) a; + CoT - 3 < & <a;+Cor+ 3 U, (€7,7) = wlingli Up, (x,T) > ny;

1 1
(6.1b) bi-— <& <+ —, unj(f;,T) < -nj.

n’ n’
Proof. We only prove claim (i). Since u is an entropy solution of (P), there exists a null set
N ¢ (0,T) such that equalities (??) are satisfied for all ¢ € (0,7) N N. Let 7 € (0,T) \ N be
fixed, and observe that the limits in (?7?) exist since u,,(-,7) € BV (R).

By the first equality in (?7?) there exists an interval Is := (a; + Co7 = §,a; + CoT +6) (§ >0)

such that w!(7) L1s = pi(T) 04,407y - Set Jn i= (a; + Com — 25, a; + Com + =5 ) . We shall prove

the following
Claim: There exist {uy,} S {u,} and w € L'(I5) such that

(6.2) [, ()]s Xogos,, = w10 M(I5)

Part (¢) follows from this Claim. In fact, we prove below that by (??) there holds

: 1
(6.3) im — [[un, (- 7) el 2= (a,,) = 00,
J—>o0 ’n] J
hence there exists jy € N such that
Hunj(',T)HLOO(J”j) >2n,; forall j>jo.

By the above inequality, for any j > jo there exists ; € J,,; such that u,;(£5,7) > n;. Hence
(@) follows.

To prove (??) we argue by contradiction. Let there exist M > 0 and a subsequence (not
relabeled for simplicity) such that

‘||:unj(',7—):|+“Loo(Jnj) < Mnj forall jeN,
thus for any p € C.(I5)

[ T, @) pl@) da

i

lp]loo
2
n;

-0 asj—oo.

On the other hand, by (??) there holds
(6.5) f [tn, (z,7)]s p(x) dv — f w(zx) p(x)dz.
IsNdn, R
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From (??)-(??) we get [un, (-, 7)]+ % w in M(I5). Since
[unj ('7 7-)]+ = Un; ('7 T) + U;j ('7 T) 2 Un; ('7 T) )
the previous convergence and that in (?7?) give u(7) < w in M(Is). This implies that u}(7) L
Is =0, a contradiction.
Let us now prove the Claim. To this purpose, observe that the sequence [u, (-, 7)]+ X1saim

is bounded in L' (R), thus also in L'(I5). Therefore there exist {un,} ¢ {u,} and p € M*(Is)
such that

(66) [un]‘('vT)]+ XI(;\J,LJ. - H in M(I(S)
Moreover, for any k > 0 there exists u € M*(I5) such that [ug]s = ps and, up to subsequences,
(6.7) [, (1) = k] Xogos,, = he in M(L5).
Let {£,} € R be any sequence as in (??), namely
1
§g—> 00, suplpy(§) —wn(§g)] <~ forallgeN.

£2&q q

Set n; = n for notational simplicity, and
1

ap(x) =p (x —a; = Cot - E) X[ai+COT+n%,ai+Cor+nl—2+%](x) + X(ai+CoT+712+%,oo)(x) (peN).

Let ¢ € N be fixed, let n > &, and let s € C}(Is), 0 < ns < 1, ns(a; + Cor) = 1. Choosing in
(??) k=&, ¢(x,t) = ap(x— Co(t —7))ns(xz — Co(t — 7)) and integrating on (0,7) we get

(6.8) fR[un(x,T)—ﬁdJr ap(x)ns(z) de < /R[u()n(:ﬂ)—§q]+(ap775)(m+007) dx +
o [ sen (@) =€) (0T (un(.£))) = o(Tu () [eps](a = Colt = 7)) dad +
b [ s (un(8) = €T (un£))) = 9o (Ta(€))] [} (& = ot = 7)) it <

ai+5 T
< [ Ton- €dems(a s Cordda s gl + 2loule 7o (i (6) > €}

i+n2

here we have used that

sup[@n(Tn(€)) = pu(Tn(§g))] = sup[wp(T0n(§)) = ¢u(&4)] < suplwn(§) — i (§y)] < ! :
£2¢, £2¢, €, q

whence
T !/ T 4
[ sen () =€) on(Toun (,0) = 0(Ta€)] [ (2= Co(t=)) dadt < | .
o Jr q
>0
Since |ag,[1 =1 and 0 <55 < 1, letting p — oo in (?7) gives

a;+CoT+6 a;+6
69) [ a0 &) des [ o= &lons(a s Coryda+ T+

i+COT+n—2 ai+—3

ai+d T 2M0
+ 2||90b|\oo|\773\|oo|{un(%t)>§q}|S/ , [uOn—ﬁq]+de+5+ : lebllo 75 1oo
ait-s q

(see also (?7)). Arguing similarly, with {{;} as in the second inequality of (??7) we get

ai+C0T*W%2 ai*n% T 2MO
610) [ [un (2, 7) = Eems(@) o< [ Tuon ~ €1 da+ 4 220 e
ai+COT*5 ai75 q q
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Next, observe that in view of (A;)-(??) we can fix § > 0 so small that ugs,, =0 in (a; —0,a; +

6)~ (a; — 75, a; + 73 ), whence (again by (?7?))

a;+0 a;--%
(6.11) lim {/{; . [uOn—ﬁq]Jr dx +f . n [UOn —§;I|+ dx} =

n—oo i+”i2 a;—

. a;+6 ai—n% ,
lim [ | [uorn — &gl dz + f [Uorn = &gls dr b =
n—oo ai+n—2 a; -6

a;+6 a; ,
[ [uor — &q)+ dx +f [uor — &, ]+ d .
aj; ai—é

Set kq = max{{,,{;}. Since

(17;+C()T—n% a;+CoT+0
/ [un(z,7) = kqlims(x) dz + [ | [un(z, 1) = kglins(z) da <
a;+Co7=0 ai+COT+ﬁ

1

a;+CoT——=5
< [ @) gl do + [

,j+CUT—5

ai+Co‘r+6

[un(z,7) - fq]+776(x) dz,

1
a;+Cot+-%
i+Co n2

summing up (??)-(??) and passing to the limit with respect to n — oo, by (??) (combined
with the equality pus = p7 with k= k,) and (??7) we get

(pssms) = ([qu]santS) < <qu,775) < fa:[%r—ﬂ]hdw +

ai+é or 11
o L - geds e omtlalelile (£ )
a; q 5‘1 fq

Letting ¢ — oo in the above inequality, it follows that s = 0. This proves the Claim. O
Lemma 6.2. Let assumptions (A1)-(As) hold, and let u be a constructed entropy solution of

problem (P).
(3) If ul (to)({Z}) = 0 for some tg € [0,T), then there holds

(6.12) us(B){Z+Co(t—1t0)}) =0  for any t € (to,T).
(it) If ug(to)({x}) =0 for some to € [0,T), then there holds
(6.13) ug (t)({Z}) =0 for any te (to,T).

Proof. Let us address only claim (7), the proof of (ii) being similar. To fix the ideas, assume
that Cy > 0, and let g € [0,T) be fixed.

If ul (to)({Z}) = 0, there holds T # a; +Cytg for any i = 1,..., Py, thus Z+Cy(t—tg) # a;+Cot
for any such ¢ and ¢ € (0,7). Then by (??) there holds

P,
ug (1) ({z + Co(t —to)}) < Zpi(f) Sai+cot({T+ Co(t —19)}) =0,

and the conclusion follows in this case.

Now suppose that & = a; +Cytg for some i =1,..., P.. We argue by contradiction and prove
the following
Claim. Let there exists 79 € (t9,T") such that

(6.14) uy (10)({Z + Co(70 —t0)}) = u (o) ({ai + Como}) > 0,
and let N be the null set in (??). Then for all t € (tg,70) \ N
(6.15a) uf(t)L {a; + Cot} = pi(t) da;+cor > 0,

(6.15b) a; + Coto ¢ suppug(t) .
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Let us also observe for future reference that by (?7) and (??) there holds
(6.16) Pi(70 ) O, +Coro = Pi(T0) Sasrcore > us (7o) L {a; + Como} > 0.

Using the Claim we can prove the result. Since suppug () € {b1,...,b,, } (t €[0,T]), by
(??) there exists o > 0 such that

(6.17) ug (t) L (a; + Coto —o,a; + Cotg+0) =0 for a.e. t € (to,70) -

By (??) and (??), for any p € C.(a; + Coto — 0,a; + Coto+0), p >0, and for a.e. t € (ty,70) we
get

(us(t), p) = (ug (), p) > pi(7q) plai + Cot) ,
since the function p; is nonincreasing in [0,T']. The by (??) we obtain

{us(to), p) = ess lim (us(t), p) > pi(7o) p(a; + Coto) -

By the arbitrariness of p, it follows that

(618) u;(to) [ {ai + Cot()} 2> pi(T(;) 5ﬂz+coto .

Inequalities (??) and (??) contradict the assumption u?(t9)({a; + Coto}) = 0, thus the con-
clusion follows.

It remains to prove the Claim. Inequality (??) follows from the first equality in (??) and
(?7) since p; is noincreasing. To prove (?7) we argue again by contradiction. Let there exists
t € (to,70) N N such that
(6.19) a; + Coto € suppug (1) .

Since Cp > 0, for any fixed 7 € (tg,#) N~ N there holds
(620) a; < a; +O()t0 < a; +Co7'.

Since T € (tg,t) NN <€ (t9,70)\ IV, from (??) with ¢ = 7 we obtain that a;+Cy7 € suppu} (7).
Hence by Lemma ?7-(i) there exist {u,,} € {u,} and {{;} € R such that

1 1
(6.21) a;+CoT—— <& < ai+Cot+ = up, (§,7) >y
J J

(see (?7)). On the other hand, by (??) and Lemma ??-(4i) there exist a subsequence {u,, } ¢
{un,} and {&} ¢ R such that

(6.22) a; + Coto — % < & < a; + Coto + iz , Un,, (&55,1) < —nj, .
" I

By Proposition ??-(¢) and the last inequality in (??) there holds

(6.23) Un, ((& +Co(t-7))*,t) > n; forallte[0,7),

whereas by Proposition ??-(i) and the last inequality in (?7),

(6.24) Un, (&¢,t) < -nj, for all te[0,7).

Set t =T+ % . By (??)-(??), for any k € N large enough there holds

2 2

lg 2 1o — >0, te < to + ———
o, e,

< T.

To sum up, 0 <ty <7 <t and & = &, + Co(ty, — 7) for sufficiently large k € N, whence by
(?7) and (?7?) for ¢ =1}, we obtain —nj, >wun; (&, 1) 2 nj, , a contradiction. O
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Proof of Theorem ?7. Let to € [0,T) be fixed. We distinguish two cases.

(i) Assume that a; + Cotg # b; for 4 =1,...,Py and I = 1,...,M_. Then there exists h > 0
such that for any t € [to,tp + h) there holds a; + Cot # b; for all i,l, thus the measures
S pi(t%) 4,400t and Zf\f{ my(t*) 0p, are mutually singular. Now (??) holds, since, by (?7?)
for all ¢ € [tg,to + h) there holds

P, M-
(6.25) ui(t) = Y pi(t" )aecor,  ug(t) = D mu(t™)dy, .
i=1 =1

We only prove (??) with “+7”. Let {t;} ¢ (to,T), t; - t;. Let p € C.(R). Since
lim;j e pi (t5) = pi(t5), it follows from the first equalities in (77) and (??) that

P, P,
jﬁm (ug(ts),p) = jlim (sz‘(t;)ﬁ’(ai + Cotj)) = > pi(t3) plai + Coto) = (uf(to),p)-
=% o \i=1 i=1

Hence the conclusion follows in this case.

(it) Assume that a;, + Cotg = by, for some ig € {1,..., P}, lp € {1,...,M_}. Since by

assumption a;, # by, this is only possible if ¢, > 0. We address the case where moreover

a; + Cotg # by for all pairs (4,1) # (ig,lo), since the remaining case can be treated similarly.
Plainly, there exists h > 0 such that a; + Cot # b; for all ¢ € (to,to + h) and ¢,l. Hence

equalities (??) hold true for all ¢ € (tg,to + h). To prove (?7?), we observe that, by (??),

P, M.
(6.26) ws(to) = D pilt)dasrcoro — . multy) du, + [pig (tg) = mu, (15)1 0, =
i=1.i%40 1=T,1%lo
Py M_
= Z pi(tg) 6ai+00t0 - Z ml(tg) 651 + [piu (tg) - my, (ta)] 5510 .
i=1,i%ig 1=1,1#ly

Assume that p;, (t5) = my, (tg) Gf pi, (tg) < mu, (t5) the proof is similar). By assumption the
measures Zf:l,i#io pi(tﬁ) 6ai+COtO + [pio (tg) My, (tg)] 6610 and Z;\/:Ll,l#:lo my (tg) 6171 are mUtuaHy
singular, thus by the first equality in (??) there holds

P, M-
U; (to) = Z pl(t(_)) 6ai+cot0 + [plo(t(_)) - my, (ta)] 6bzo ) u;(to) = Z ml(ta) 6171 )
i=1,1#10 1=1,l#lp

whence uj (to)({bi,}) = 0. As a consequence, by Lemma ?7-(ii) (see (?7)) there holds
ug () ({b, }) =0 for a.e. t € (ty,T), whence (see the second equality in (?7))

my,(t) =0 for a.e. te(tg,T).
This implies that my, () = 0 and, since the function my, is nonincreasing in [0,7],
(6.27) my, (t*) =0 for all t € (to,T).

Since my, (t§) = 0, the second equality in (??) simply reads

P M
US(tO) = Zpl(ta) 5a¢+Cot0 - Z ml(ta) 5bz ’
i=1 1=1,1%lg
whence
P, M- M.
(6'28) ’U,;(t()) = Zpi(tS) 5ai+cot0 ) u;(to) = Z ml(tg) 61)1 = Z ml(tg) 5171, )
) 1=1,1%l, =1

since by assumption the measures Zi*l Di(t8) da;+Cot, and Zl]\/:[’l 14l my(t§) dp, are mutually
singular and my, (¢J) = 0. This proves (?7). In addition, by (??) and (?7),

P, M_
(6.29) ul (1) =Y. pi(t)basecor, us(t)= > my(t*)dy,, for all t € (to,to +h).
i=1 1=1,1%l,
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Since p;(t*) — p;(¢§) and my(t7) = my(¢f) as t > t§, it follows from (??) and (?7?) that

P, P,
tﬁﬂ% (ug (1), p) = thjg Y. pi(t)pla; + Cot) = - pi(t)p(ai + Coto) = {ug (o), p) »

) 0i=1 i=1
M_ M_
lim (ug(t),p) = lim > my(t)p(br) = Y mu(tg)p(bi) = (ug (o), p)
ity =G 121 1%, 1=1,1#lo
for any p € C.(R). This proves (??) and the result follows. O

6.2. Compatibility conditions. In the present subsection we prove Theorem ?7.

Proof of Theorem ?77. We only prove (?77). By Lemma ?7?-(i) and (??) there holds
1

(6.30) a;—— < zj<a;+

2 = 20
n; n;

tn, ((z5 + Cot)*,t) 2n; forall te[0,7],

where z; := &; - CoT (see (77)). Let 6 >0 and p e C}(a; - 6,a; +8), p>0. Let j € N be so large
that z; € (a; — 6,a; +9) (see (?7)). Then the function

(6.31) am(y) = my = 2) PWIX[z; 2+ 2 1) + WX (24 2 00) (¥)

has compact support in (a; — 9, a; +9) for sufficiently large m € N. By standard regularization
arguments we can choose in (??) ((z,t) = am(z — Cot) B(t) with B e CL(0,7), >0. Then

(6.32) /fs [, (2,1) = k] {am (@ = Cot) B(£) - Coadyy (2 — Cot) B(1)} dadt +

+ f/; sgn _(un, (z,t) = k) [pn, (un, (2,1)) = @n, (k)] o, (z = Cot) B(t) dedt 2 0.
Since for any y,k e R
(6.33)  —Coly—k]-+sgn_(y—k)[n; (y) - on,; (k)] =
= —Cosgn_(y-k)(y—k) +sgn_(y - k)[os(Tn; (y)) = pu(Tn; (k) + Co(ys —ks)] =
= sgn-(y = k) [@o(Tn,; (v)) = o6 (Tn; (k) + Co(y- = k-)] = gn, 1(y) ,

inequality (?7) reads
(6.34)

f[s [ttn, (2, ) = K] g (2 — Cot) B () daxdlt + f[S G, 1 (i, (,£)) 0, (2 — Cot) B(E) dadt > 0.

Let us now send m — oo in (??). To this purpose, observe that by (??) there holds

(6.35) f/s G, e (ttm, (2,1)) &y (2 = Cot) B(t) dadt =

T Zj+COt+1/m

- m f B(t) dt G, 1, (,8))p(x = Cot) dar +
0 Zj+C()t

T zj+Cot+1/m ,

. mfo Byt [ gy lun, (@) (@ = Cot = 2) p' (@ = Cot) da +
Zj 0
. f B(t) dt Gy 1 (ttn, (,1)) ' (2 = Cit) d
0 zj+Cot+1/m

Since un, (-,t) € BV(R) (t € (0,7")), by the second inequality in (??) and the very definition
of gn, x (see (??)), for any n; > k and for a.e. t € (0,7) there holds

zj+Cot+1/m

lim m gnj,k(un_j (iC, t))p(fﬂ - Cot) dz =0

m—oo k2 +Cot

and
zj+Cot+1/m
lim m In; e (un, (1)) (& = Cot = z;) p'(x — Cot) dz = 0.

m—oo zj+Cot
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Since uy, € L*=(S), for any j € N there exists C; > 0 such that for all m € N and t € [0, 7]

zj+Cot+1/m
m f G, (i, (2,))p(x = Cot) dz | < €,
Zj+Cot
zj+Cot+1/m ,
m f o Gy ke (Un; (2,1)) (2 = Cot — 25) p'(x — Cot) dx | < Cj.
Zj 0

Then by the Dominated Convergence Theorem there holds

T zj+Cot+1/m
(6.36) lim m B(t)dt Gk (Un, (2,1)) p(x = Cot) d =

m—oo 0 Zj+Cot '
T zj+Cot+1/m
= limm [ AB(t)dt Gn, k(un, (2,)) (x = Cot - z;) p'(x - Cot) dz = 0.
m—oo 0 zj+Cot

Moreover, it is easily seen that
(6.37) lim 5(1?) dt Gn; k(un, (2,)) p'(x = Cot) da =

m—oo 2;+Cot+1/m

- / B(t) dt f 0, i, (2.)) (2 = Ct) dr

(6.38)
lim ffs[unj (z,t)—k]- am(z-Cot) B'(t) dxdt = [ f . [tn, (x,t)~k]- p(x—Cot) B'(t) dadt .
m—oo 0 zZj+ ot

In view of (?7)-(??), letting m — oo in (??) we obtain
(6.39) f [ [, (2, ) = K- p( — Cot) B'(t) ddt >
0 Jz;+Cot
- [ [ Gy (i, (,1)) p/ (= Cot) B(t) devdlt
0 Zj+C()t

Since suppp € (a; - 6,a; +0) and z; € (a; - d,a; +0), from (?7) we get

(6.40) A [ L (@,8) = K] pla = Cot) |8 (1)) dardt >

i+Cot—0
_ f f Gny 3o (tn, (2, 1)) p (& = Cot) B(t) dadt .
0 Zj+C()t

The next step of the proof is sending j — oo in (??). As for the left-hand side, using (77?)
with f(y) = [y - k]-, we get

(6.41) tim [ f O (,8) = k] pla = Cot) |8 (1)) dardt =

J—oo +Cot—6

fOT 18 (1) dt fwcﬁ_é [, (2,1) - k]- p( — Cot) dz +
O ARTHON G e HIELGIEE
< Iolimumsan | ) 1801t [ o) - - o

+Cot—
+f0 u;(t)((ai+Cot—6,ai+Cot+6))|ﬁ’(t)\dt}.

To address the right-hand side of (?7?), set gr(y) :=sgn_(y — k)[&(y) — (k)] with $(z) =
op(2)+Coz_; z € R. Let pe Cl(a;~8,a;+6) satisfy: (i) 0< p<1, (i) p’ =0in [a;—20", a;+26']
for some ¢’ € (O, g), thus p’ € Mo([a; + 20", a; + d]). It follows that for sufficiently large j

a;+Cot+25" ,
[ 9 (tn, ) p' (& = Cot) B(¢) dardt = 0,

+Cot
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since z; € (a; —6',a; +¢"). Applying (??) with f(y) = gr(y) to un, (x + Cot,t), we obtain

(6.42) lim f B(t) dt f 91t (,6)) p' (2 = Cot) dr =

aj; Cot

hm f B(t)dt . +Cot s Gk (tn, (z,t)) p'(x - Cot) da =

fo syar [ g (e,)) p - Cot) da

a;+Cot+20’

- CofT(u;(t) L (a; + Cot + 28, a; + Cot + ), p' (- — Cot)) B(t) dt.
0

Since

Ik (tn,) = gi(uny) = sgn - (un, = k){[@o(Tn, (un, ) = @1(un, )] = [06(Tn; (k) = o5(k)1},

it easily follows that

(643)  limsup fo B(t) dt f o 190,y (@,8)) = g, (@, D) 0 (2 = Cot)] dr <
j—oo Zj 0

< 2@l Bl = 0.1y 10 L= (ai-6.0,+5) imsup [{(z,) € S+ fun, (@, )] > 15} = 0
]—)OO

(in the last equality use that {u,,} is bounded in L'(S)). From (??) and (??) we obtain

(6.44) Jlij{}lo fonz:c tgnj7k(unj(x,t))p'(x—Cot)ﬂ(t)da:dt =
T a;+Cot+
- [ s " g (2,0)) o/ (2 - Cot) dadt ~
0 a;+Cot+26"

- CO fOT (u;(t) L (ai + C()t + 25,704' + Cot + 5) , p/( — Cot)> 6(t) dt .

In view of (??) and (?7), sending j — oo in (?7?) and recalling that 0 < p <1, we get

(6.45) / 18 (t)|dtf Ly (. 8) — k] da +
fo (t)((a1+Cot s, al+COt+6))|B’(t)|dt >
T a;+Cot+d
- f B(t) " e Cun (1)) o (= Cot) dandt +
0 a;+Cot+26"

Co [0 (uo(t) L (a; + Cot + 26", as + Cot + 6, p'(- — Cot)) B(£) dt .

+

\%

+

Let g €N, ¢> 4. We choose in (??) 26’ = % and p = a, € Cl(a; - 0,a; + §) defined by

(6.46) a;(y)

N

_ %X<a +§ a;+5— ](y) + %(y_ai_6+%)X(aﬁ&—%,aﬁéf%](y)'

25

Let ¢ — o0. As for the right-hand side of (??), since [p} ()| < 67" and p}(2) > =6 ' X (4,,a:46) ()

for any z € [a;,a; + 0] (see (7)), and since u, € L=(0,T; L*(R)), us € L2, (0,T; M(R)),

w*

it
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follows from the Dominated Convergence Theorem that

a;+Cot+0
(6.47) lim {— f By [ gulurn(a.) al (e = Cot) da +

g—>o0 i+Cot+=

+ Co fOT (u;(t) \_(ai+00t+q_17a,i+00t+(5)7 a;(._cot)> B(t)dt} -

= f B(t) dt ( lim ﬁai+00t+6 gr(ur(2,1)) ag(x - Cot) das) +

q—>o 7;+Cot+%

+ Cof lim (u;(t) L (a; +Cot +q " a; + Cot +8) , al(- = Cot)) B(t) dt =

- - f f e (e (,1)) B(E) dardt

+Cot
- % u;(t)((ai +Cot,a; + Cot +6)) B(t) dt .
0

By (7?), it follows from (??) with p = o, that

(6.48) 5 {f syt [ ) B0 -

T , t dt a;+Cot+d k d
< - -
- fo 5] a;+Cot—5 [ur = k]-do +
+ f u;(t)((ai+C’0t—5,ai+Cot+6))|B’(t)|dt_
0

Finally, we send § — 0% in the above inequality. Observe that for a.e. ¢ € (0,7) there holds

Jim. u (t)((a; + Cot =8, a; + Cot +0)) = uy (t)({a; + Cot}) = 0,
since {a; + Cypt} € suppu} (¢) and supp v} (¢) nsuppu; (¢t) # @ only for finitely many ¢ in (0, 7).
Moreover,

ug () ((ai + Cot , a; + Cot +0)) < esssupge(o ry|us(t)] -
Letting 6 — 0* in (??), (??) follows from the Dominated Convergence Theorem. o
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APPENDIX A

A.1. Preliminaries. In this Appendix we recall the proof of some results used in the ex-
istence proof. We refer the reader to [?] for a more general presentation of the underlying
material.

Let T >0, S =R x (0,T), My >0 and {u,} < L, (0,T; M(RY)). Let

(Hy) sup lun L=, 0, rm@Ny) < Mo.
ne

Recall (e.g., see [?, Proposition 4.4.16]) that a sequence {u,} € L%, (0,T; M(RY)) weakly*
converges to € L, (0,T; M(RN)) (written g, — g in L2, (0, T; M(RN))), if

T T
[ @y de > [ a0 ) de for any ¢ e L0, T3 Co(RY)).
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Theorem A.l. Let (Hy) hold. Then there exist a subsequence of {u,} (not relabeled), a
Young measure v € Y(S;R) and Axy € L. (0,T; M*(RY)) such that

(A1) uh = ey + Ay in Ly, (0,T; MT(RY)),
where uy, .y € L= (0,T; L*(RY)),
(A2) oy (0,8) = [ Eedvun()  for ae (w,) €S,
and {v(5 )} denotes the disintegration of v, defined for a.e. (x,t) € S. If f € C(R) satisfies
(A.3) lim f(z) = Cj, €R,
zZ—>+00 .
then
(A.4) Funr) + Ctip = Crig, = f* + Crady = Cr-Ay

in Ly, (0,75 M(RY)), where f* € L=(0,T; LY(RY)), f*(x,t) := [g f(€) dv(an(E) for a.e.
(z,t)€S.

Proof. We split v into the sum of their absolutely continuous parts with densities [ty ]+ and
singular parts u’,. Concerning the sequence {[un,]s}, retracing the proof of [?, Lemmata
A.1-A.2] shows that there exist Radon measures ) € L3 (0,7; M*(RY)) and a Young
measure v € Y(S;R) such that, up to subsequences,

(A.5) [tnr]e = up () + ey 0 L35, (0,75 MF(RY))
with up, .y € L*°(0, T LY(RY)) given by (??), and
(A-6) F(une) > "+ Crapisy = Cpopiy in L (0, T3 M(RY))

with f* e L (0, T; LY (RN)), f*(@,t) = [ [ (&) dvpp)(§) for ae. (z,t) € S.
On the other hand, by (H;) there also holds, up to subsequences,

uis = T(x) in qujx-(oa Ta M(RN)) 5
for some 7(,) € L7, (0, T; M*(RY)). Setting A(+) = fi(+) + T(+) the conclusion follows. O
A.2. Characterization of the measures A(,).

Theorem A.2. Let {u,} and Ay be given by Theorem ??. Let ug € M(RY), {ug;n} <
LYRYN), {upsn} € M(RY), ® e O(R;RYN) be such that for all k>0

(A7) [worn F ks + ugsm X [uor F k]s +ui, in M(RYN) asn — oo,
(A.8) (5) = Mi eRY.
§%ioo
Moreover, assume that for all k € R and ( € Ccl (RN % [0,T)), ¢ 20, there holds
T T
(A.9) [ twn @Gy des [T 3 k)G dadt +
0 o Jry

T
[ X o) (@) - @(28)] - VC dadt >
> [ Do # K1C@, 0 d + {15, C (- 0)) + L (. . )

for some L*(n,k, () > 0 satisfying, for every ¢ as above,

(A.10) hm limsup L*(n, k, () =

k—oo pooo
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Then for a.e. 7 € (0,T) there holds
(A.11) Aoy (T) € Tazruf,  in M(RY).

Proof. We only prove (??) with (+). By Theorem ?? (in particular, see (?7?)) and (??), letting
n — oo in (?7) gives

(A.12) fo oy (.G (1)) dt+[f (fg K] du(xt)(f)) ¢, dwdt +
+f0 [RN([{M[@(g)_q>(k)]dy(z,t)(g))-vgdmmfo (Ao, M- VC( 1)) dt 2

/RN[UOT—ICLC(%O) dr + (ug,, C(+,0)) + limsup L*(n, k, (),

n—oo

[\

for every ¢ e CH(RYN x [0,T)), ¢ >0, and k > 0. Observe that, since uo, € L' (RY),
(A.13) [uor — k] =0 in LY(RY) ask - oo.

It is easily seen that for all £ € R there holds [ — k], > 0 as k > oo and [£ — k], < & €
LY(R; V(zz)) for a.e. (x,t) € S. Therefore, by the Dominated Convergence Theorem, for a.e.
(z,t)eS

[le=Rldvn(© = 0, [Tkl diun () < [ & dvgan(©) = un o (@,6) e L(S)

(see Theorem ?7?). Again by the Dominated Convergence Theorem, it follows that

(A.14) fR [€ = K]y dvepy (€) >0 in L(S) as k- oo.
By similar arguments, it is easily checked that
(A.15) f{5 (20O~ 2(0)]dve (€)= 0 in [LH($))Y sk oo,

In view of (??) and (?7)-(??), letting k — oo in (??) gives

T T
A (/\(+)(t)7Ct(7t)> dt + ‘/(; ()\(_,.),M;— : v<(7t)> dt > <ugsv<(70)> .
For any 7 € (0,T), p € CXRY), p > 0, and for any nonnegative h € C}([0,T)), choose
C(x,t) = h(t) p(x — M3 (t— 7)) in the above inequality. Then we obtain
T
[ O 00,9 M=) W0t 2 h(0) G-+ M)

Arguing as in the last part of the proof of Proposition 7?7 the claim easily follows. |

Remark A.1. Let {u,} and ® be as in Theorem ??. Then by (?7)

(A.16) Up > uwi=up+ A in L2 (0, T; M(RY)),

where

(ALT) wp = w4y —Up—y € L7(0,T; LN (RY)) and A=Ay - Ay € Lo, (0, T; M(RY)).

First suppose that Mg # 0 or Mz # 0. In this case we also assume that ugs is as in (A4;)
with a;, by € RY. Inequalities (??) imply that for a.e. ¢ € (0,7 the nonnegative measures
A(+)(t) are singular with respect to the Lebesgue measure in RY. Moreover, there holds

M_
Targ-( Ugs) Zp()l aredizts  Targr(ugs) = ZmOI‘SbﬁM;t’
i=1 =1
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hence )\(i)(t) have d15301nt supports for a.e. t € (0,7T") such that a; + Mjt # b, + Mzt for all
P.and I =1,--, M_. Therefore, A\(,y(t) are mutually singular for a.e. £ € (0,7"). Since
u( ) =up(-,t) + )\(+)(t) A(-)(t) in M(RN) we obtain that

(A.18a) Aoy (@) =ug(t), Xo(t)=ug(t), At)=wus(t) forae te(0,T),
(A18b) Ui(t) < 7}1;7“35 in M(RN)a

(A.18¢) uy=u, ae. in S=RYx(0,T).

Combining (??) with (??) gives for every f e C(R) satisfying (?7):

(A-19) Fung) = £+ Cpaul = Cpuy - in L3, (0, T M(RY))

where f* € L=(0,T; LY(RY)), f*(x,t) := Je F(E) dv(z1)(§) for ae. (z,t) €S.
If instead Mg = 0, inequalities (?7) read as

Ay (7) <ug, in M(RY) for ae. 7€ (0,7).
Arguing as above shows that (?7?)-(??) hold in this case, too.

A.3. Characterization of the Young measure disintegration v, ;) for N = 1. In this
subsection we assume that N = 1. For every ¢ € Lip(R) and U € C2(R), set

13
(A.20) 0y (€) :fc ¢'(s)U'(s)ds  (ceR).

Proposition A.3. Let v € Y(S;R) be the Young measure given in Theorem ??. Let there
exist ¢ € Lip(R) such that for a.e. (z,t) € S and for every U,V € C2(R) there holds

(a21) [ [0u(©) - 01 @V (©dvn(©) = [ [U) - U (.0]0v(€) v (©).
where
Op@t) = [[Ou(©dvsy, U@t = [[U©)drun(©
and Oy, Oy are defined by (??7). Let up be the function in (7?7). Then
(A-22) oun(,0) = [ (&) dan () for ace. (.)€ S.

Proof. Since for a.e. (z,t) € S the mapping & ~ [¢| belongs to L' (R; v(,.4)) and [ €] dv, ) (€) <
up+ (2, t) +up —(z,t) € L'(S) (see (??)), it can be checked that equality (??) holds true for all
U,V e Wh*(R). Arguing as in [?, Proposition 5.8], (??) follows from (?7?). O

Theorem A.4. Let the assumptions of Proposition ?7 hold. Suppose that

(A.23) for every & € R there exist a,b>0, a+b>0 such that
' ¢ is strictly convex or concave in [€ —a,&+b].

Then there holds

(A.24) V(zt) = Ouy(w,ty Jor a.e. (w,t) €S,

Proof. Let (x,t) € S be such that (??) is satisfied for all U,V € W1>=(R). Let Iy := uy(z,1).
Without loss of generality, we may assume that the map & = [¢] belongs to L' (R; v, 1))

In view of assumption (?7), there exists h > 0 such that ¢ is strictly convex (or concave)
in [l1,l1+h] orin [l; - h,l;]. To fix the ideas, let ¢ be strictly convex in [l1,1; + h]. For every
la € (l1,l1 +h) and k € N, let us consider the function

1
Vk(f)::k(f—ll)X[zl,lH%)(@+X[11+%712)(5)+k(12+g—§) X[la,l2+2 (5)
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Then, for all £ € R, in the limit as & - oo we have

(A.25) Vi(€) = X(11,121(6) 5

(A.26) Ov, (§)=flfVé(S)¢'(S)d8 = @ ()X (11,121 (€) + [0 (1) = (12) 1X (12,00) (£)

(observe that the right derivatives ¢/ (l1), ¢} (l2) € R, since ¢ € Lip(R)). Moreover, there
exists C' > 0 such that

(A.27) Vilze@ <C,  18v)l=@ < C-
Choosing U () =T (&) = max{-k, min{&, k}} and V(&) = Vi (&) in (?7), we get
(4.28)  [[05,(6) - O, () Ve(O)dvie (&) = [ITh(€) = T (2, )]0, (€) e,y €.

In order to take the limit as k — oo in (?7?), observe that for all £ € R there holds

(A.29) 16 - Ti @Ol < el + [ 1€l dvan(©) € L' Rovany).

3
(A.30) du(w,tﬁfo 16/ (5)| ds <

£
oy (x.0)-0n©)|< [ ‘ [0 s)las
<161 { [ 1€ldven(©) +16]} € I Rivian)

and (see also (??) and (?7))

(A.31) To(€) = TY (2, 1) — f—fRfdu(m)(f) —e—up(at) =61,

(A32)  O3,(@.0)-05,(8)> [ $(E)da.n(©)=0(8) =d(un(w. 1) ~0(E) =6(1) -0 (¢)
By (?7)-(??), (2?)-(??) and the Dominated Convergence Theorem, we get
S, (60 =03, . 0]Vi(© dey(©) > [ 10(6) =60 v (©).
SO ~TE (e 0] 0w (@ v ()= [ L)€~ 1) v (©) +
[ ) =0l ()] [ (60 v (©).
By the above convergences, letting k — oo in (??) gives
(A33) [ [60)=0() =6 (0)(E)re (€)= (6L~ ()] [ (E-h)dvan(©).

Since ¢ is strictly convex in [l1,l2], equality (??) follows from (??), arguing as in part (a) of
the proof of [?, Proposition 5.9]. |

Acknowledgement. F.S. acknowledges support by GNAMPA.
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