Nonlinear extensions of classical Maxwell’s electromagnetism are among the prominent candidates for theories admitting regular black hole solutions. A quest for such examples has been fruitful, but mostly unsystematic and littered by the introduction of physically unrealistic Lagrangians. We provide a procedure which admits the reconstruction of a nonlinear electromagnetic Lagrangian, consistent with the Euler–Heisenberg Lagrangian in the weak-field limit, from a given metric representing a regular, magnetically charged black hole.

Lagrangian reverse engineering for regular black holes / Bokulić, Ana; Franzin, E; Jurić, Tajron; Smolić, Ivica. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 854:(2024), pp. 1-5. [10.1016/j.physletb.2024.138750]

Lagrangian reverse engineering for regular black holes

Franzin E;
2024

Abstract

Nonlinear extensions of classical Maxwell’s electromagnetism are among the prominent candidates for theories admitting regular black hole solutions. A quest for such examples has been fruitful, but mostly unsystematic and littered by the introduction of physically unrealistic Lagrangians. We provide a procedure which admits the reconstruction of a nonlinear electromagnetic Lagrangian, consistent with the Euler–Heisenberg Lagrangian in the weak-field limit, from a given metric representing a regular, magnetically charged black hole.
2024
nonlinear electromagnetic fields; regular black holes; magnetically charged black holes
01 Pubblicazione su rivista::01a Articolo in rivista
Lagrangian reverse engineering for regular black holes / Bokulić, Ana; Franzin, E; Jurić, Tajron; Smolić, Ivica. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 854:(2024), pp. 1-5. [10.1016/j.physletb.2024.138750]
File allegati a questo prodotto
File Dimensione Formato  
Bokulic_Lagrangian_2024.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 482.82 kB
Formato Adobe PDF
482.82 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1712902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact