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Nonlinear extensions of classical Maxwell’s electromagnetism are among the prominent candidates for theories 
admitting regular black hole solutions. A quest for such examples has been fruitful, but mostly unsystematic 
and littered by the introduction of physically unrealistic Lagrangians. We provide a procedure which admits the 
reconstruction of a nonlinear electromagnetic Lagrangian, consistent with the Euler–Heisenberg Lagrangian in 
the weak-field limit, from a given metric representing a regular, magnetically charged black hole.
1. Introduction

The ubiquitous presence of singular spacetimes in general relativ-
ity [1–5] is usually taken as a signal of a certain incompleteness of the 
theory. Although it is expected that singularities will be absent in the 
underlying quantum theory of gravitation or the corresponding effec-
tive field theory counterpart [6], there is an intriguing possibility that 
spacetime may be “regularized” at energies well below those at which 
quantum gravitational effects become prominent. This motive is one of 
the many threads in the extensive quest for regular black holes [7–11]. 
If we set aside invocation of novel fields and interactions, arguably the 
most conservative approach is to turn to modifications of the classical 
Maxwell’s electromagnetism, coming either from low-energy effective 
quantum field theory [12], e.g. the Euler–Heisenberg electromagnetic 
Lagrangian [13], or theoretical constructions motivated by symmetry 
arguments, e.g. the Born–Infeld model [14,15] and the recently pro-
posed ModMax theory [16]. Unfortunately, neither of these three the-
ories leads to regular black hole solutions [17–21]. On the other hand, 
over the past several decades, we have witnessed a deluge of proposed 
electromagnetic theories [22–24], some of which apparently manage to 
de-singularize black holes. Nevertheless, all such proposals should be 
taken with a grain of salt and put under scrutiny, as most of them fail to 
meet some of the basic physical requirements which will be discussed 
below.

Let us consider nonlinear electromagnetic (NLE) theories based on a 
Lagrangian density L (F, G) which is a function of two electromagnetic 
invariants, F ∶= 𝐹𝑎𝑏 𝐹 𝑎𝑏 and G ∶= 𝐹𝑎𝑏 ⋆𝐹𝑎𝑏. This is the most general 
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Lagrangian density constructed from the electromagnetic tensor 𝐹𝑎𝑏, 
the spacetime metric 𝑔𝑎𝑏 and the Levi–Civita tensor 𝜖𝑎𝑏𝑐𝑑 , but it does not 
include theories with higher derivatives of 𝐹𝑎𝑏 or nonminimal coupling 
to gravitation. We sort NLE theories into a simpler, so-called F-class for 
which L = L (F), and a more general FG-class for which L = L (F, G). 
Furthermore, it is convenient also to introduce the quantity H ∶= (F2 +
G2)1∕2. Special attention is dedicated to the properties of theories for 
weak fields, where we have abundance of experimental insights. We 
say that a NLE theory respects the Maxwell’s weak field (MWF) limit if 
L = −F∕4 + 𝑜(H) or the QED weak field (QEDWF) limit if L = −F∕4 +
𝜅(4F2 + 7G2) + 𝑜(H2), with 𝜅 = 𝛼2∕(360 𝑚4

𝑒
), 𝛼 being the fine-structure 

constant and 𝑚𝑒 the electron mass, in some neighbourhood of the origin 
of the F-G plane.

One of the central objectives in this subfield of research is to find a 
black hole spacetime, regular in some sense (e.g. having well-behaved 
curvature scalars and possibly being geodesically complete [25]), which 
is a solution of the Einstein-NLE field equations, with an NLE La-
grangian satisfying the QEDWF limit. In addition, one might ask from 
the proposed NLE theory a possibility of fitting (with a proper choice 
of free parameters) to even higher orders of quantum corrections in the 
weak field limit. Unfortunately, as far as we are aware of, this goal has 
not yet been reached, although there are some candidates which come 
pretty close to it.

The seminal paper which stirred the activity around NLE theories, 
the Ayón-Beato–García’s solution [26], has a serious drawback as it tac-
itly uses different Lagrangians for different parts of the spacetime [27]. 
On the other hand, their NLE interpretation [28] of the Bardeen’s met-
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ric [29] does not even satisfy the MWF limit. Similar objections may 
be addressed to numerous other examples of regular black holes with 
NLE fields that have appeared in the literature (e.g. some Lagrangians 
have a pole [30] or are not well-behaved [31] at the origin of the F-G
plane, while others, even if they satisfy the MWF limit [32], fail at the 
QEDWF limit, etc.). An interesting FG-class NLE theory, introduced by 
[33] and re-examined in [24] (note that 4𝐹𝑎𝑏𝐹 𝑏𝑐𝐹𝑐𝑑𝐹 𝑑𝑎 = 2F2 + G2), 
admits a regular magnetic black hole solution, but it seems that the 
proper QEDWF limit is inconsistent with the condition for the existence 
of horizons.

An important stumbling block on this road was revealed by the Bron-
nikov’s theorem [27], originally proven only for the F-class theories 
but recently generalized [34] to FG-class theories, which asserts that an 
electrically charged static, spherically symmetric black hole cannot have 
bounded curvature scalars at its centre, given that the NLE Lagrangian 
satisfies the MWF limit. On top of this, there is a series of additional 
theorems [34] (see also [35]) which constraint such an endeavour even 
in the presence of a magnetic charge.

A possible way forward is to start from a metric with desired prop-
erties and then find the corresponding NLE theory, a procedure which 
we refer to as “Lagrangian reverse engineering”. An effective approach 
in the case of F-class theories was paved by Bronnikov [27,36] and re-
discovered by Fan and Wang [32] (cf. objections in [37]). Still, it is not 
quite evident how to systematically achieve the goals that we have set 
above. The aim of this paper is to partially fill this gap by providing a 
procedure which works at least for magnetically charged black holes.

Conventions and notation. Apart from the notation introduced above, 
we use the abbreviations LF ∶= 𝜕FL , LG ∶= 𝜕GL , etc. for partial 
derivatives of the Lagrangian density. Throughout the paper we use 
the standard Bachmann–Landau’s “big 𝑂” and “small 𝑜” notation. Also, 
for any 𝜎 > 0, we write 𝐹 (𝑟) =𝑂∞(𝑟−𝜎) as 𝑟 →∞ if 𝐹 (𝑘)(𝑟) =𝑂(𝑟−(𝜎+𝑘))
for all 𝑘 ∈N0 as 𝑟 →∞.

2. Static spherically symmetric spacetime with NLE fields

For simplicity, we shall focus on static, spherically symmetric black 
holes (cf. remarks in [38,39] and [40]), with the metric of the form

d𝑠2 = −𝑓 (𝑟) d𝑡2 + 1
𝑓 (𝑟)

d𝑟2 + 𝑟2(d𝜃2 + sin2 𝜃 d𝜑2) , (1)

where

𝑓 (𝑟) = 1 − 2𝑚(𝑟)
𝑟
. (2)

The regularity of the spacetime shall be analysed through three ba-
sic curvature invariants, i.e. the Ricci scalar 𝑅 ∶= 𝑔𝑎𝑏𝑅𝑎𝑏, the “Ricci 
squared” 𝑆 ∶= 𝑅𝑎𝑏𝑅𝑎𝑏, and the Kretschmann scalar 𝐾 ∶= 𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑 , 
which for our metric read

𝑅 = 2
𝑟3

(𝑟2𝑚′)′

𝑆 = 2
𝑟4

(4𝑚′ 2 + 𝑟2𝑚′′ 2)

𝐾 = 4
𝑟6

(
4(3𝑚2 − 4𝑟𝑚𝑚′ + 2𝑟2𝑚′ 2) + (4𝑚− 4𝑟𝑚′ + 𝑟2𝑚′′)𝑟2𝑚′′

)
.

We assume that the electromagnetic field inherits spacetime symmetries 
[41] and the corresponding ansatz reads

𝐅 = −𝐸𝑟(𝑟) d𝑡 ∧ d𝑟+𝐵𝑟(𝑟)𝑟2 sin2 𝜃 d𝜃 ∧ d𝜑 . (3)

From here, it is straightforward to evaluate the electromagnetic invari-
ants,

F = 2(𝐵2
𝑟
−𝐸2

𝑟
) , G = 4𝐸𝑟𝐵𝑟 . (4)

The generalized Maxwell’s equations (gMax) may be put in the form 
2

[34]
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𝐵𝑟 =
𝑃

𝑟2
, LF𝐸𝑟 −LG𝐵𝑟 = − 𝑄

4𝑟2
, (5)

where 𝑃 and 𝑄 are the magnetic and electric charges of the black hole. 
The assumed symmetries lead to the reduction of the Einstein’s field 
equations to the system of differential equations

−𝑚
′(𝑟)
𝑟2

= L −
𝑄𝐸𝑟

𝑟2
(6)

−𝑚
′′(𝑟)
2𝑟

= L − 4𝑃 2

𝑟4
LF −LGG . (7)

Have we proposed a theory with a given L , the next step would be to 
find the “mass function” 𝑚(𝑟) and the electric field 𝐸𝑟(𝑟). However, we 
shall attack the problem from the opposite direction.

3. Reverse engineering

Assuming that one has chosen an appropriate mass function 𝑚(𝑟), 
with the corresponding regular curvature invariants, we may ask 
whether it is possible to find an NLE Lagrangian density L (together 
with an electric field 𝐸𝑟), such that the field equations are satisfied and 
L obeys the weak field limits defined above. In general, this is a quite 
formidable task and, despite being mathematically exact, reverse engi-
neering will be usually fraught with ambiguities. Namely, one has aim 
to reconstruct a Lagrangian L (F, G) on some domain of the F-G plane 
(if possible, on the whole plane). However, the invariants of the elec-
tromagnetic field which is a solution of the Einstein–gMax equations 
typically cover only some smaller subset of the F-G plane. Therefore, 
the strategy is either to (a) reconstruct L as much as possible from one 
solution and then extrapolate the rest of the function (relying on ex-
perimental hints or some theoretical principles), or (b) reconstruct L
from two or more different classes of solutions. We shall follow the first 
option, with a couple of small tricks.

The first simplification is that we look at a special class of NLE La-
grangians of the form

L (F,G) = J(F) +K(G) . (8)

In order to satisfy the QEDWF limit, we further assume that

J(F) = −1
4
F + 4𝜅F2 + 𝑜(F2) as F→ 0 and

K(G) = 7𝜅G2 + 𝑜(G2) as G→ 0 .

In particular, we assume that KG(0) = 0. The second simplification is 
that we focus on the special, purely magnetic case, with 𝑄 = 0 and 𝐸𝑟 =
0. As an immediate consequence we have that G = 0 and LG = 0, so that 
the gMax equation (5) is automatically satisfied and the Einstein’s field 
equations are reduced to

−𝑚
′(𝑟)
𝑟2

= J(F) , (9)

−𝑚
′′(𝑟)
2𝑟

= J(F) − 4𝑃 2

𝑟4
JF(F) . (10)

Now, as F = 2𝐵2
𝑟
, that is 𝑟 = (2𝑃 2∕F)1∕4, it follows that the on-shell 

substitution

J(F) = −𝑚
′(𝑟)
𝑟2

|||𝑟=(2𝑃 2∕F)1∕4
(11)

may recover the sought function J. A nice feature of this procedure is 
that the other equation is automatically satisfied. In this way the prob-
lem is essentially reduced to the well-known reverse engineering for 
F-class theories [27,32], but we shall upgrade it to meet more stringent 
demands that we have set from the beginning.

To summarize, we search for a function 𝑚(𝑟) such that

(a) the invariants 𝑅, 𝑆 and 𝐾 are bounded.
This may be achieved if, for example, there is a real constant 𝑀
such that 𝑚(𝑟) =𝑀 +𝑂∞(𝑟−1) as 𝑟 →∞ and 𝑚(𝑟) = 𝑂(𝑟3), 𝑚′(𝑟) =

𝑂(𝑟2) and 𝑚′′(𝑟) =𝑂(𝑟) as 𝑟 → 0.
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(b) The substitution (11) generates a Lagrangian density with the 
proper QEDWF limit.
As lim𝑟→∞ F = 0, this condition may be achieved if

𝑚′(𝑟)
𝑟2

=
𝛽1
𝑟4

+
𝛽2
𝑟8

+ 𝑜(𝑟−8) as 𝑟→∞

with some appropriate real constants 𝛽1 and 𝛽2.
(c) The solution represents a black hole spacetime.

The existence of a black hole horizon follows if 𝑓 (𝑟) has at least 
one zero on ⟨0,+∞⟩.

In addition, given that the metric asymptotically approaches the 
magnetic Reissner–Nordström metric,

𝑓 (𝑟) = 1 − 2𝑀
𝑟

+ 𝑃
2

𝑟2
+ 𝑜(𝑟−2) as 𝑟→∞ , (12)

we may identify 𝑀 and 𝑃 as the black hole mass and magnetic charge, 
respectively. Note that, strictly speaking, as F > 0 by construction in 
the magnetic case, this procedure allows us to reconstruct J(F) only for 
positive F, but we shall propose a “natural” extension of the function J.

4. Rational solution

It is expected that the problem defined above has infinite, albeit 
nontrivial solutions. We choose our candidate out of an arguably sim-
pler family, a rational function

2𝑚(𝑟) = 2𝑀 − 𝑃 2𝑟−1 + 𝑠𝑟−5

1 + 𝑏𝑟−8
, (13)

with some positive parameters 𝑠 and 𝑏. Note that this ansatz has 
been built around the classical magnetic Reissner–Nordström solution, 
2𝑚RN(𝑟) = 2𝑀 − 𝑃 2∕𝑟, which was then expanded by adding carefully 
chosen powers of the radius in the numerator and denominator. First 
of all, we have 𝑓 (𝑟) = 1 − 2𝑀∕𝑟 + 𝑃 2∕𝑟2 + 𝑂(𝑟−6) as 𝑟 → ∞ and the 
corresponding invariants are well behaved at the centre,1

𝑅 = 12𝑠
𝑏

+𝑂(𝑟4) , 𝑆 = 36𝑠2

𝑏2
+𝑂(𝑟4) , 𝐾 = 24𝑠2

𝑏2
+𝑂(𝑟4) (14)

as 𝑟 → 0. In addition, all three invariants are bounded for 𝑟 ∈ [0,∞⟩
and fall-off as 𝑂(𝑟−6) or faster at infinity. The Reissner–Nordström limit 
(𝑠, 𝑏) → (0, 0) brings us back to 𝑅 = 0 and unbounded 𝑆 = 𝑂(𝑟−8) and 
𝐾 = 𝑂(𝑟−8) as 𝑟 → 0, but this limit may not be applied directly to the 
Taylor series above (just as e.g. the limit 𝑏 → 0 applied to the Taylor 
series of the function 𝜓(𝑟) = 1∕(𝑟 + 𝑏) around 𝑟 = 0 does not lead to the 
associated Laurent series 1∕𝑟).

Black hole horizons appear at roots of the polynomial equation 
𝑓 (𝑟) = 0, that is

ℎ(𝑟) = 𝑟8 − 2𝑀𝑟7 + 𝑃 2𝑟6 − 𝑠𝑟2 + 𝑏 = 0 . (15)

First, note that ℎ(0) = 𝑏 > 0. Furthermore, a convenient way to write 
the polynomial ℎ is

ℎ(𝑟) = 𝑟6(𝑟− 𝑟−)(𝑟− 𝑟+) + 𝑏(1 − (𝑟∕𝑟0)2) (16)

with 𝑟± = 𝑀 ±
√
𝑀2 − 𝑃 2 and 𝑟0 =

√
𝑏∕𝑠. Assuming that 𝑀 > 𝑃

and 𝑟0 < 𝑟+, the intersection 𝑉 ∶= (
⟨
𝑟−, 𝑟+

⟩
∩ ⟨𝑟0,+∞⟩) ⊆ ⟨0,+∞⟩ is 

nonempty and for any 𝑟 ∈ 𝑉 we have ℎ(𝑟) < 0. Thus, by the intermedi-
ate value theorem, the polynomial ℎ has (at least) one zero on ⟨0,+∞⟩, 
implying that (at least) one black hole horizon exists. In addition, as 
lim𝑟→∞ ℎ(𝑟) = +∞, we know that at least one more zero of ℎ (thus, one 
more horizon) exists.

1 We refrain from writing out the complete expressions for 𝑅, 𝑆 and 𝐾 ; we 
only note that they are rational functions with a denominator of the form (𝑟8 +
3

𝑏)𝑛, where 𝑛 = 3 for 𝑅 and 𝑛 = 6 for 𝑆 and 𝐾 .
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The thermodynamic properties of rotating black holes with NLE 
fields in FG-class theory were analysed in [42] in complete generality, 
via covariant phase space formalism (the generalized Smarr formula 
was proven earlier in [43]) and we shall not repeat the straightforward 
application of these formulas to this particular case.

Let us now turn to the central problem, i.e. the reconstruction of 
the Lagrangian. Taking the Taylor series with remainder of Eq. (11), we 
have

J(F) = −1
4
F + 5𝑠

8𝑃 4 F2 +𝑂(F11∕4) (17)

as F → 0+. Thus, the QEDWF limit will be satisfied by taking 𝑠 =
32𝜅𝑃 4∕5. It is convenient to write the other parameter as 𝑏 = 𝜅𝓁2𝑃 4, 
where 𝓁 is some dimensional constant with dimension of length. This 
leads us to the final form of the function J,

J(F) = − 1
5
(
4 + 𝜅(𝓁F)2

)2
(
20F − 320𝜅F2 + 𝛾F11∕4 − 35𝜅𝓁2F3

+ 48𝜅2𝓁2F4) , (18)

with 𝛾 = 80 4
√
2 ⋅𝜅𝓁2𝑀𝑃−3∕2. Now that the F-dependent part of the NLE 

Lagrangian has been reconstructed, one should “read everything back-
wards” and look at the Lagrangian parameters (𝜅, 𝛾 and 𝓁 in Eq. (18)) 
as our starting point, part of the definition of the theory. Here we notice 
that the mass 𝑀 and the magnetic charge 𝑃 are not independent in this 
theory, a feature known in many other NLE theories2 [24]. This fact can 
be interpreted at least in two ways, either (a) the mass 𝑀 is completely 
of electromagnetic origin, given by 𝑀 = 𝛾𝑃 3∕2∕(80 4

√
2 ⋅𝜅𝓁2), or (b) the 

allowed magnetic charge is given by 𝑃 3∕2 = 80 4
√
2 ⋅𝜅𝓁2𝑀∕𝛾 . An obsta-

cle for the extension of the Lagrangian to negative values of F appears 
with the noninteger power in the F11∕4 term, but may be resolved if we 
replace F11∕4 with sgn(F)|F|11∕4. In this way the function J will be at 
least of class 𝐶2 on the domain F ∈R.

It is known that for NLE [22,42] the null energy condition (NEC) 
holds iff LF ≤ 0, while the dominant energy condition (DEC) holds iff 
LF ≤ 0 and 𝑔𝑎𝑏𝑇𝑎𝑏 ≤ 0. As in our theory, for this particular metric, 
we have LF = −7𝑟8∕(4𝑏) + 𝑂(𝑟9) and 𝑔𝑎𝑏𝑇𝑎𝑏 = −48∕(5𝜋𝓁2) + 𝑂(𝑟4) as 
𝑟 → 0, we know that NEC and DEC hold at least in some neighbourhood
of the centre 𝑟 = 0 (cf. remarks in [46,47]).

Now, the important question is whether this metric ansatz may be 
extended in order to admit fitting of the associated function J to even 
higher orders of some established corrections to Maxwell’s electromag-
netic Lagrangian. We note that the generalized function

2𝑚(𝑟) =
2𝑀 − 𝑃 2𝑟−1 + 𝑠1𝑟−5 +⋯+ 𝑠𝑘𝑟−(4𝑘+1)

1 + 𝑏𝑟−4(𝑘+1)
(19)

with real parameters (𝑠1, … , 𝑠𝑘, 𝑏) asymptotically behaves as the mag-
netic Reissner–Norström black hole and has regular invariants at the 
centre,

𝑅 =
12𝑠𝑘
𝑏

+𝑂(𝑟4) , 𝑆 =
36𝑠2
𝑘

𝑏2
+𝑂(𝑟4) , 𝐾 =

24𝑠2
𝑘

𝑏2
+𝑂(𝑟4) (20)

as 𝑟 → 0, given that 𝑏 ≠ 0. A technical obstacle in the analysis of the 
horizon structure for this metric is that we have to deal with a polyno-
mial equation of high degree. Furthermore, the ansatz (19) leads to a 
Lagrangian function J, with the convenient form

J(F) = −1
4
F +

5𝑠1
8𝑃 4 F2 +⋯+

(4𝑘+ 1)𝑠𝑘
2𝑘+2𝑃 2𝑘+2 F𝑘+1 +𝑂(F(4𝑘+7)∕4) (21)

as F → 0. The formal extension of the function J to negative values of 
F may be performed as above.

2 We note in passing that mass-charge dependence is absent in somewhat dif-
ferent approach to regular black holes with electromagnetic field nonminimally 

coupled to gravity [44,45].
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As was stressed from the beginning, our construction rests upon 
the simplification that the black hole is purely magnetically charged, 
which “hides” any G-dependent terms in the Lagrangian. A next step 
would be the generalization of the NLE Lagrangian reconstruction from 
dyonic regular black holes. Noting that F2 + G2 = 4(𝐸2

𝑟
+ 𝐵2

𝑟
)2 and 

F +
√
F2 + G2 = 4𝑃 2∕𝑟4, a possible Lagrangian candidate could be read 

off from one of the Einstein’s field equations,

L (F,G) =
𝑄𝐸𝑟 −𝑚′(𝑟)

𝑟2
|||∗ (22)

where ∗ stands for the substitution 𝑟 = (4𝑃 2∕(F +
√
F2 + G2))1∕4 and 

𝐸𝑟 = G𝑟2∕4𝑃 . However, this equality holds only on-shell, for the par-
ticular solution, and there is no a priori guarantee that this procedure 
reconstructs the general corresponding Lagrangian. Also, a highly non-
trivial consistency check is that the rest of the field equations are 
satisfied with such an ansatz (which is not automatic as in the purely 
magnetic case). We leave the investigation of this question for future 
work.

5. Final remarks

We have outlined a programme focused on the quest for more real-
istic models of regular classical black holes, which do not invoke novel 
fields or extensions of general relativity, but are based upon nonlinear 
electromagnetic fields which agree with the weak field limits of quan-
tum corrections to Maxwell’s electromagnetic Lagrangian. Due to no-go 
theorems [27,34], the “price” to be paid here is the introduction of a 
magnetic charge and the crucial question is whether a small amount 
(consistent with astrophysical constraints) might be sufficient to “de-
singularize” black holes. Resting upon the elements of previously used 
reverse engineering procedures, our model establishes a first step in this 
quest. The next, important one would be the generalization to static reg-
ular dyonic black holes and then, even more ambitious, the generaliza-
tion to rotating regular black holes (see [48] for an attempt to construct 
a regular rotating black hole with F-class NLE Lagrangian, alas without 
a functional form of the Lagrangian, and criticism of Newman–Janis al-
gorithm in [49]). Finally, given that we have an example of rotating 
regular black hole, with an NLE Lagrangian passing all the criteria set 
above, one has to analyse its stability [50] and questions about “mass 
inflation” at the inner horizon [51,52] in order to corroborate the in-
clusion of such solution among physically realistic models.
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[34] A. Bokulić, I. Smolić, T. Jurić, Constraints on singularity resolution by nonlinear 

electrodynamics, Phys. Rev. D 106 (6) (2022) 064020.
[35] R. Tsuda, R. Suzuki, S. Tomizawa, Existence conditions of nonsingular dyonic black 

holes in nonlinear electrodynamics, 2023.
[36] K.A. Bronnikov, Dyonic configurations in nonlinear electrodynamics coupled to gen-

eral relativity, Gravit. Cosmol. 23 (4) (2017) 343–348.
[37] K.A. Bronnikov, Comment on “Construction of regular black holes in general rela-

tivity”, Phys. Rev. D 96 (12) (2017) 128501.
[38] R. Pellicer, R.J. Torrence, Nonlinear electrodynamics and general relativity, J. Math. 

Phys. 10 (1969) 1718–1723.
[39] J. Diaz-Alonso, D. Rubiera-Garcia, Electrostatic spherically symmetric configura-

tions in gravitating nonlinear electrodynamics, Phys. Rev. D 81 (2010) 064021.
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