In many real-world situations, the available data consist of a set of several asymmetric pairwise proximity matrices that collect directed exchanges between pairs of objects measured or observed in a number of occasions (three-way data). To unveil patterns of exchange, a clustering model is proposed that accounts for the systematic differences across occasions. Specifically, the goal is to identify the groups of objects that are primarily origins or destinations of the directed exchanges, and, together, to measure the extent to which these clusters differ across occasions. The model is based on two clustering structures for the objects, which are linked one-to-one and common to all occasions. The first structure assumes a standard partition of the objects to fit the average amounts of the exchanges, while the second one fits the imbalances using an “incomplete” partition of the objects, allowing some to remain unassigned. In addition, to account for the heterogeneity of the occasions, the amounts and directions of exchange between clusters are modeled by occasion-specific weights. An Alternating Least-Squares algorithm is provided. Results from artificial data and a real application on international student mobility show the capability of the model to identify origin and/or destination clusters with common behavior across occasions.

Clustering Model for Three-Way Asymmetric Proximities: Unveiling Origins and Destinations / Bocci, Laura; Vicari, Donatella. - In: SYMMETRY. - ISSN 2073-8994. - 16:(2024), pp. 1-22.

Clustering Model for Three-Way Asymmetric Proximities: Unveiling Origins and Destinations

Laura Bocci;Donatella Vicari
2024

Abstract

In many real-world situations, the available data consist of a set of several asymmetric pairwise proximity matrices that collect directed exchanges between pairs of objects measured or observed in a number of occasions (three-way data). To unveil patterns of exchange, a clustering model is proposed that accounts for the systematic differences across occasions. Specifically, the goal is to identify the groups of objects that are primarily origins or destinations of the directed exchanges, and, together, to measure the extent to which these clusters differ across occasions. The model is based on two clustering structures for the objects, which are linked one-to-one and common to all occasions. The first structure assumes a standard partition of the objects to fit the average amounts of the exchanges, while the second one fits the imbalances using an “incomplete” partition of the objects, allowing some to remain unassigned. In addition, to account for the heterogeneity of the occasions, the amounts and directions of exchange between clusters are modeled by occasion-specific weights. An Alternating Least-Squares algorithm is provided. Results from artificial data and a real application on international student mobility show the capability of the model to identify origin and/or destination clusters with common behavior across occasions.
2024
asymmetric dissimilarities; three-way data; clustering; origin/destination cluster; directed exchange; skew-symmetric matrix; Alternating Least-Squares
01 Pubblicazione su rivista::01a Articolo in rivista
Clustering Model for Three-Way Asymmetric Proximities: Unveiling Origins and Destinations / Bocci, Laura; Vicari, Donatella. - In: SYMMETRY. - ISSN 2073-8994. - 16:(2024), pp. 1-22.
File allegati a questo prodotto
File Dimensione Formato  
symmetry-16-00752.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 808.93 kB
Formato Adobe PDF
808.93 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1711860
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact