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Abstract: In many real-world situations, the available data consist of a set of several asymmetric
pairwise proximity matrices that collect directed exchanges between pairs of objects measured or
observed in a number of occasions (three-way data). To unveil patterns of exchange, a clustering
model is proposed that accounts for the systematic differences across occasions. Specifically, the goal
is to identify the groups of objects that are primarily origins or destinations of the directed exchanges,
and, together, to measure the extent to which these clusters differ across occasions. The model is
based on two clustering structures for the objects, which are linked one-to-one and common to all
occasions. The first structure assumes a standard partition of the objects to fit the average amounts
of the exchanges, while the second one fits the imbalances using an “incomplete” partition of the
objects, allowing some to remain unassigned. In addition, to account for the heterogeneity of the
occasions, the amounts and directions of exchange between clusters are modeled by occasion-specific
weights. An Alternating Least-Squares algorithm is provided. Results from artificial data and a real
application on international student mobility show the capability of the model to identify origin
and/or destination clusters with common behavior across occasions.

Keywords: asymmetric dissimilarities; three-way data; clustering; origin/destination cluster; directed
exchange; skew-symmetric matrix; Alternating Least-Squares

1. Introduction

Three-way proximity data are a structure of relationship data that is collected or
measured between pairs of objects under multiple occasions, i.e., sources, settings, times,
and experimental conditions. They extend the standard two-way proximity data, where the
same objects are the entities in relation, to a three-dimensional framework. The additional
dimension is given by the occasion on which the single pairwise proximity (similarity or
dissimilarity) was collected. Three-way proximity data are typically arranged as a set of
square data matrices (one for each occasion), each containing the proximities between all
pairs of objects, and can be either symmetric or asymmetric.

In the latter case, where the relationship between the objects A and B is different from
that between B and A, the asymmetry denotes a certain disequilibrium (imbalance) in the
pairwise relationship. As a result, not only the presence of such relationships but also their
directionality and magnitude, both of which are significant and cannot be ignored, define
the true pattern of the data.

This phenomenon occurs in a variety of disciplines, including psychology, sociology,
marketing research, social sciences, behavioral sciences, environmental sciences, and be-
yond, to name a few. Asymmetric proximity data can stem from diverse sources, such as
judgments concerning the similarity between stimuli (confusion data), interactions among
social actors (social networks), patterns of mobility, transitions between employment sec-
tors, brand switching behaviors, or commercial transactions and trades between countries.

Symmetry 2024, 16, 752. https://doi.org/10.3390/sym16060752 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16060752
https://doi.org/10.3390/sym16060752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8170-4581
https://orcid.org/0000-0002-2821-2991
https://doi.org/10.3390/sym16060752
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16060752?type=check_update&version=1


Symmetry 2024, 16, 752 2 of 22

When dealing with asymmetric data, it may be of interest to unveil common behaviors
of exchange in order to identify groups of objects that are primarily either origins or
destinations of the exchanges, and in the presence of multiple occasions, such common
patterns can also be analyzed and compared across them. For instance, the international
student mobility between countries over several years yields a three-way asymmetric
proximity array, where, in each annual matrix, the rows and columns correspond to the
origins and destinations of the mobile students, respectively. The identification of possible
pathways of student mobility over time can be an important source of information for
policy makers.

Specially designed multiway models and methods are required to analyze such data.
Within this framework, clustering three-way data is a complex and challenging task since
asymmetric proximity matrices may subsume different classifications of the objects due
to the heterogeneity across occasions, and the asymmetry may contain some information
relevant to clustering efforts.

When analyzing asymmetric data, the asymmetry is often ignored by symmetrizing
the proximities by averaging the two different values for each pair of objects. Nevertheless,
asymmetry can be substantial and prominent, and deserves attention because it contains
important information about the real patterns in the data, in terms of both the direction
and the magnitude of the relationships.

A review of the literature on cluster analysis reveals a notable disparity: methods for
asymmetric proximity data have received less attention compared with the large number
of models and methods that have been proposed for symmetric proximity data, and even
less for three-way data.

Clustering methods for asymmetric data have been developed for a single data matrix
mainly following two approaches (see [1–3] for extended reviews of clustering methods for
asymmetric data).

In the first approach, two different classification structures are estimated, one for
the rows and one for the columns of the asymmetric matrix, since rows and columns
are assumed to refer to two different sets of objects. Within this approach, the major-
ity of the proposed clustering algorithms generally estimate hierarchical trees and iden-
tify non-overlapping clusters, i.e., each object belongs to only one cluster [4–7]. A non-
hierarchical clustering algorithm, called GENNCLUS, that provides either overlapping
or non-overlapping clusters for asymmetric or symmetric data has been proposed as a
generalization of ADCLUS [8].

In the second approach, a single classification structure is estimated from both rows
and columns of the asymmetric matrix because, in accordance with their true nature,
they refer to the same set of objects. Within this approach, most of the methodologies
extend the classical aggregative hierarchical methods [9–12], while few proposals concern
non-hierarchical methods. Some of the latter are basically extensions of the k-means cluster-
ing [13–15]. In the same vein but with a different modeling, more recent proposals [16,17]
concern non-hierarchical clustering methods that simultaneously fit both the symmetric
and the skew-symmetric parts of the data resulting from the algebraic decomposition of the
asymmetric matrix (see Section 1.1 for the definition). Specific clustering models for skew-
symmetric data have been proposed by Vicari [18] and Vicari and Di Nuzzo [19]. In the first
model, possible external covariates for the objects have been included, while the second
proposal relies on the between-cluster effects modeled by Singular Value Decompositions
that exploit the peculiar properties of the skew-symmetric matrices.

Regarding three-way asymmetric proximities, several models have been proposed
within the framework of Multidimensional Scaling (MDS) (see [3] for a review of MDS
methods for multiway asymmetric data), but to our knowledge, only one clustering model
has been proposed in order to analyze three-way asymmetric proximity data. The proposal
of Chaturvedi and Carroll [20] generalizes the INDCLUS model [21] to the asymmetric
case by identifying two different sets of (overlapping) clusters of the objects (for the rows



Symmetry 2024, 16, 752 3 of 22

and the columns of the data matrices, respectively) common to all occasions, while the
three-way heterogeneity is accounted for by occasion-specific weights for the clusters.

We can observe that since Generalized INDCLUS [20] aims at finding two different sets
of (possibly overlapping) clusters of objects, the identification of origins and destinations
of exchange patterns is rather complicated from an interpretative point of view. This is
because the clusters are only partially matched, which often leads to non-parsimonious
solutions. Conversely, in many scenarios, when dealing with this type of data, the goal is
to analyze the exchange between the same groups of objects that serve as either origins or
destinations, because they contain objects with common exchange behavior toward the
other groups across occasions, both in magnitude and in direction.

Accordingly, in the lack of proposals for clustering three-way asymmetric proximities,
our research objectives are (1) to identify the same groups of objects (for the rows and
columns of the data matrices) that are primarily origins or destinations of the exchanges
and, together, (2) to measure the extent to which these clusters differ across occasions.

To fill this research gap, we start from the clustering model proposed by Vicari [17], which
addresses the first issue and accounts for between-cluster effects when only a single dissimi-
larity matrix is available (two-way case). In the present paper, we generalize the model [17] to
the three-way case with the aim of also accounting for heterogeneity across occasions.

The model is based on the decomposition of each asymmetric matrix into the sum of its
symmetric and skew-symmetric components, which are modeled jointly. The asymmetric
dissimilarities are assumed to subsume two clustering structures common to all occasions:
the first defines a standard partitioning of all objects that fits the symmetric component of
the exchanges; the second one, which fits the imbalances, defines an incomplete partition
of objects, some of which are allowed to remain unallocated to any cluster. In both clus-
tering structures, objects within the same cluster share the same behavior with respect to
exchanges that are directed to objects in different clusters so that “origin” and “destina-
tion” clusters are identified. Objects possibly unassigned to any cluster of the incomplete
partition represent “nearly” symmetric objects, characterized by small imbalances. As a
novel contribution, this paper accounts for heterogeneity across occasions by estimating
occasion-specific sets of weights that can capture both the average magnitude and the
direction of exchange between clusters. This makes it possible to analyze the role of the
common clusters as either origin or destination, which may differ across occasions.

This paper is organized as follows: After an illustrative example to introduce the
problem (Section 1.1), the model is formalized in a general framework in Section 2 and
an appropriate algorithm is proposed in Section 3. Applications to the artificial data of
Section 1.1 and to real mobility data are presented in Sections 4 and 5, respectively, to
illustrate the usefulness and effectiveness of the proposal, also in comparison with the
Generalized INDCLUS [20]. Finally, Section 6 summarizes the findings and concludes with
directions for future developments.

1.1. Illustrative Example: Artificial Data

Before discussing the model in detail, an illustrative example of the heterogeneous
three-way asymmetric data we are dealing with is presented.

Let us consider a three-way array of asymmetric dissimilarity data pertaining to
pairwise exchanges between N = 9 objects measured at H = 3 occasions. The three
matrices Xh (h = 1, 2, 3) in Figure 1, containing the exchanges of each of the three occasions,
have been artificially generated from model (4), which will be fully formalized in Section 2,
and by assuming three clusters of objects, namely, C1 = {a, b, c, d}, C2 = {e, f }, and
C3 = {g, h, i}.

Exchanges are generally asymmetric: for example, the exchange from a to e is different
from the exchange from e to a in each occasion. Furthermore, the exchanges from a to all
other objects are greater than the exchanges from all other objects to a in occasions 1 and 3,
while the opposite is true for occasion 2.
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X1 a b c d e f g h i X2 a b c d e f g h i

a 0 49.1 47.9 33.4 66.2 65.4 63.1 65.9 66.6 a 0 13.7 13.1 24.7 9.5 5.7 30.6 33.0 29.8

b 19.2 0 30.3 16.3 51.1 51.0 47.6 46.4 50.3 b 42.7 0 30.9 43.2 17.5 20.3 47.6 43.8 44.4

c 12.3 31.0 0 16.7 50.4 50.8 46.7 47.6 45.4 c 43.5 30.9 0 44.0 17.7 15.7 47.9 44.9 43.7

d 27.6 48.5 49.7 0 65.3 65.5 61.8 61.9 65.9 d 26.7 16.4 14.2 0 3.9 3.3 28.8 33.1 26.6

e 1.8 19.5 15.4 4.9 0 29.2 19.6 17.6 19.2 e 56.3 39.5 43.3 55.9 0 28.8 47.3 47.7 45.5

f 4.0 20.0 18.8 2.9 32.4 0 11.3 11.7 17.4 f 57.7 44.5 46.3 57.7 29.2 0 46.8 45.1 44.4

g 30.5 45.6 45.7 26.0 43.4 45.9 0 33.1 32.9 g 59.4 48.0 48.7 55.2 17.7 21.6 0 29.4 25.7

h 29.9 45.2 46.4 25.5 48.8 50.3 32.1 0 37.0 h 58.8 44.4 45.9 60.7 18.3 22.7 30.4 0 24.8

i 26.6 44.3 48.8 30.1 44.6 48.8 28.3 28.4 0 i 56.6 45.0 44.5 59.6 26.7 21.6 29.1 27.6 0

X2 a b c d e f g h i

a 0 13.7 13.1 24.7 9.5 5.7 30.6 33.0 29.8

b 42.7 0 30.9 43.2 17.5 20.3 47.6 43.8 44.4

c 43.5 30.9 0 44.0 17.7 15.7 47.9 44.9 43.7

d 26.7 16.4 14.2 0 3.9 3.3 28.8 33.1 26.6

e 56.3 39.5 43.3 55.9 0 28.8 47.3 47.7 45.5

f 57.7 44.5 46.3 57.7 29.2 0 46.8 45.1 44.4

g 59.4 48.0 48.7 55.2 17.7 21.6 0 29.4 25.7

h 58.8 44.4 45.9 60.7 18.3 22.7 30.4 0 24.8

i 56.6 45.0 44.5 59.6 26.7 21.6 29.1 27.6 0

Figure 1. Artificial three-way dissimilarity data. Darker shades of blue represent higher magnitudes.

In addition, using the Gower decomposition [22], each matrix Xh (h = 1, 2, 3) can be
decomposed into its symmetric and skew-symmetric components Sh and Kh, respectively,
as shown in Figure 2.

Let us recall the Gower decomposition [22] of any square matrix Xh (h = 1, . . . , H), which
can be uniquely decomposed into the sum of a symmetric matrix Sh and a skew-symmetric
matrix Kh, both of size (N × N) and orthogonal to each other (i.e., trace(ShKh) = 0),

Xh = Sh + Kh =
1
2
(Xh + X′

h) +
1
2
(Xh − X′

h) , (h = 1, . . . , H) , (1)

as elementary linear algebra can easily prove. The entry sijh ∈ Sh represents the average
amount of the exchange between objects i and j at occasion h (h = 1, . . . , H), while the
entry kijh ∈ Kh represents the imbalance between i and j, i.e., the amount by which kijh
differs from its mean sijh (i, j = 1, . . . , N and h = 1, . . . , H). Thus, each element of the skew-
symmetric matrix Kh is, by definition, such that kijh = −kijh, and conveys information
about the direction of the exchange.

According to this decomposition, every exchange between a pair of objects in matrix
Xh (h = 1, 2, 3), for example, xae1 = 66.2 from the object a to the object e in the first occasion,
can be decomposed into the sum of two entries: (1) the average amount of the exchange
between a and e, sae1 = 34.0 in S1, and (2) the imbalance between the exchanges from a to e
and from e to a, kae1 = 32.2 in K1, i.e., the amount by which the exchange between a and e
differs from its mean sae1.

Based on the Gower decomposition, it is also possible to measure the percentage
of asymmetry of each matrix Xh as the squared ratio between the Frobenius norm of its

skew-symmetric component Kh and the Frobenius norm of Xh, i.e.,
∥Kh∥2

∥Xh∥2 100, which is a

measure in [0, 100].
The percentage of asymmetry of each of the matrices in Figure 1 is not negligible

(15.5%, 17.8%, and 17.0%), which confirms that the structure of the data is characterized
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by the direction and magnitude of the exchanges, which are both relevant and cannot
be ignored.

The underlying pattern in the data is evident from Figure 1. In each heatmap, different
shades of blue represent different magnitudes of exchange between pairs of objects in
different clusters, with darker shades representing higher magnitudes. With a view of
searching for origin/destination clusters, we are interested in modeling the exchange
between clusters, while the exchange within clusters is not of interest here. Thus, the
diagonal blocks are left white for better clarity. The heatmap of each data matrix shows
three “blue” off-diagonal blocks, corresponding to the three clusters C1 = {a, b, c, d},
C2 = {e, f }, and C3 = {g, h, i}, each with a common pattern across matrices.

Furthermore, the same clustering structure can be identified in both symmetric and
skew-symmetric components Sh and Kh across all occasions (Figure 2).

  
 

S1 a b c d e f g h i

a 0 34.1 30.1 30.5 34.0 34.7 46.8 47.9 46.6

b 34.1 0 30.6 32.4 35.3 35.5 46.6 45.8 47.3

c 30.1 30.6 0 33.2 32.9 34.8 46.2 47.0 47.1

d 30.5 32.4 33.2 0 35.1 34.2 43.9 43.7 48.0

e 34.0 35.3 32.9 35.1 0 30.8 31.5 33.2 31.9

f 34.7 35.5 34.8 34.2 30.8 0 28.6 31.0 33.1

g 46.8 46.6 46.2 43.9 31.5 28.6 0 32.6 30.6

h 47.9 45.8 47.0 43.7 33.2 31.0 32.6 0 32.7

i 46.6 47.3 47.1 48.0 31.9 33.1 30.6 32.7 0

S2 a b c d e f g h i

a 0 28.2 28.3 25.7 32.9 31.7 45.0 45.9 43.2

b 28.2 0 30.9 29.8 28.5 32.4 47.8 44.1 44.7

c 28.3 30.9 0 29.1 30.5 31.0 48.3 45.4 44.1

d 25.7 29.8 29.1 0 29.9 30.5 42.0 46.9 43.1

e 32.9 28.5 30.5 29.9 0 29.0 32.5 33.0 36.1

f 31.7 32.4 31.0 30.5 29.0 0 34.2 33.9 33.0

g 45.0 47.8 48.3 42.0 32.5 34.2 0 29.9 27.4

h 45.9 44.1 45.4 46.9 33.0 33.9 29.9 0 26.2

i 43.2 44.7 44.1 43.1 36.1 33.0 27.4 26.2 0

S3 a b c d e f g h i

a 0 20.6 18.8 20.4 40.6 40.9 25.7 27.0 25.5

b 20.6 0 17.4 21.9 39.6 41.6 25.5 23.8 23.1

c 18.8 17.4 0 18.7 40.5 40.3 25.0 21.4 26.0

d 20.4 21.9 18.7 0 39.8 41.7 22.9 24.2 24.4

e 40.6 39.6 40.5 39.8 0 20.2 32.5 33.0 32.4

f 40.9 41.6 40.3 41.7 20.2 0 31.8 32.0 33.7

g 25.7 25.5 25.0 22.9 32.5 31.8 0 19.7 19.2

h 27.0 23.8 21.4 24.2 33.0 32.0 19.7 0 20.4

i 25.5 23.1 26.0 24.4 32.4 33.7 19.2 20.4 0

Symmetric component

K1 a b c d e f g h i

a 0 15.0 17.8 2.9 32.2 30.7 16.3 18.0 20.0

b -15.0 0 -0.3 -16.1 15.8 15.5 1.0 0.6 3.0

c -17.8 0.3 0 -16.5 17.5 16.0 0.5 0.6 -1.7

d -2.9 16.1 16.5 0 30.2 31.3 17.9 18.2 17.9

e -32.2 -15.8 -17.5 -30.2 0 -1.6 -11.9 -15.6 -12.7

f -30.7 -15.5 -16.0 -31.3 1.6 0 -17.3 -19.3 -15.7

g -16.3 -1.0 -0.5 -17.9 11.9 17.3 0 0.5 2.3

h -18.0 -0.6 -0.6 -18.2 15.6 19.3 -0.5 0 4.3

i -20.0 -3.0 1.7 -17.9 12.7 15.7 -2.3 -4.3 0

K2 a b c d e f g h i

a 0 -14.5 -15.2 -1.0 -23.4 -26.0 -14.4 -12.9 -13.4

b 14.5 0 0.0 13.4 -11.0 -12.1 -0.2 -0.3 -0.3

c 15.2 0.0 0 14.9 -12.8 -15.3 -0.4 -0.5 -0.4

d 1.0 -13.4 -14.9 0 -26.0 -27.2 -13.2 -13.8 -16.5

e 23.4 11.0 12.8 26.0 0 -0.2 14.8 14.7 9.4

f 26.0 12.1 15.3 27.2 0.2 0 12.6 11.2 11.4

g 14.4 0.2 0.4 13.2 -14.8 -12.6 0 -0.5 -1.7

h 12.9 0.3 0.5 13.8 -14.7 -11.2 0.5 0 -1.4

i 13.4 0.3 0.4 16.5 -9.4 -11.4 1.7 1.4 0

K3 a b c d e f g h i

a 0 15.9 14.6 0.1 26.6 28.2 12.2 14.8 16.4

b -15.9 0 0.4 -14.8 13.1 10.6 0.0 0.8 4.0

c -14.6 -0.4 0 -14.0 10.5 11.3 0.7 0.2 4.7

d -0.1 14.8 14.0 0 25.5 27.0 13.1 12.7 17.6

e -26.6 -13.1 -10.5 -25.5 0 -0.5 -10.8 -13.7 -8.0

f -28.2 -10.6 -11.3 -27.0 0.5 0 -10.4 -10.9 -9.2

g -12.2 0.0 -0.7 -13.1 10.8 10.4 0 -0.8 4.9

h -14.8 -0.8 -0.2 -12.7 13.7 10.9 0.8 0 2.5

i -16.4 -4.0 -4.7 -17.6 8.0 9.2 -4.9 -2.5 0

Skew-symmetric component

Figure 2. Artificial three-way dissimilarity data: symmetric and skew-symmetric components. Darker
shades of blue represent higher magnitudes.
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By analyzing the symmetric and skew-symmetric components of each data matrix, it
becomes easier to disclose the pattern of the data and determine which groups of objects
serve primarily as the origin or destination of the exchanges.

Objects in the same cluster have a common behavior towards objects in different
clusters, in terms of outgoing and incoming exchanges, but the magnitude and direction
of the exchanges change across occasions. As an example, if we look at the first and third
occasions, it is clear that the outgoing exchanges from all objects in C2 directed to objects in
C1 and C3 are smaller than the incoming exchanges. This results in negative imbalances for
the exchanges from all objects in C2 to objects in either C1 or C3. Cluster C2 can therefore be
considered as the origin cluster for these two occasions. Conversely, in the second occasion,
C2 serves as a destination cluster, as its outgoing amounts towards C1 and C3 are greater
than its incoming ones, resulting in positive imbalances.

By inspecting all the symmetric and skew-symmetric components, we may also note
that both the objects b and c (in cluster C1) present a common behavior across occasions:
they have almost symmetrical exchanges with the objects g and h (in cluster C3) and small
imbalances with all other objects belonging to either cluster C2 or C3.

In order to have a better understanding of the underlying patterns and identify the
common behaviors of the objects across the different occasions, the model formalized in
Section 2 is fitted to the artificial data and the results analyzed in Section 4, together with
the results from the Generalized INDCLUS model [20] for comparison.

2. The Model

Let us assume that Xh (h = 1, . . . , H) is a square asymmetric matrix where the ele-
ment xilh represents the pairwise dissimilarity between the objects i and l (i, l = 1, . . . , N)
observed at the occasion h (h = 1, . . . , H) and is generally different from xlih.

The model proposed here aims at clustering the N objects by accounting for both the
symmetric and the skew-symmetric effects from the decomposition (1) of the observed
asymmetries Xh (h = 1, . . . , H).

In particular, the data are assumed to subsume two clustering structures that are
common to all occasions: the first one defines a standard partitioning of all objects fitting
the average amount of the exchanges; the second one, which fits the imbalances, defines
an “incomplete” partitioning of the objects, where some of them are allowed to remain
unassigned.

Specifically, the clustering structure consists of two nested partitions into J clusters{
C1, . . . , Cj, . . . , CJ

}
and

{
G1, . . . , Gj, . . . , GJ

}
, such that

• Every object belongs to one and only one non-empty cluster Cj (j = 1, . . . , J);
• If object i belongs to cluster Cj, it can either belong to cluster Gj or remain unassigned

to any cluster of the partition
{

G1, . . . , Gj, . . . , GJ
}

.

The partition
{

C1, . . . , Cj, . . . , CJ
}

is referred to as a complete partition because every
object must be assigned to some cluster Cj, while

{
G1, . . . , Gj, . . . , GJ

}
is called an incomplete

partition because a number of N0 (N0 ≤ N) out of N objects are allowed to remain unas-
signed to any cluster. Note that the complete and the incomplete partitions are common
to all occasions and linked together, the latter being constrained to be nested within the
former (Gj ⊆ Cj for j = 1, . . . , J).

The complete partition is uniquely identified by an (N × J) binary membership matrix
U = [uij] (uij = {0, 1} for i = 1, . . . , N and j = 1, . . . , J and ∑J

j=1 uij = 1 for i = 1, . . . , N),
where uij = 1 if object i belongs to cluster Cj, and uij = 0 otherwise.

The incomplete partition is identified by an (N × J) binary membership matrix V = [vij]
(vij = {0, 1} for i = 1, . . . , N and j = 1, . . . , J), where vij ≤ uij (i = 1, . . . , N and j = 1, . . . , J);
i.e., any object i can either remain unassigned to any cluster or belong to cluster Gj if it
belongs to cluster Cj in the complete partition.

Hereafter, IN denotes the identity matrix of size N; 1AB and 1A denote the matrix of
size (A× B) of all ones and the column vector with A ones, respectively; ĨN = (1NN − IN) is
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the (N × N) matrix of ones except for the zeros on the main diagonal; and Y = [Y1, . . . , YH ]
is the (M × PH) augmented matrix obtained by collecting the H matrices Y1, . . . , YH of size
(M × P) next to each other.

Let us consider the Gower decomposition (1) of each matrix Xh (h = 1, . . . , H) into the
sum of its symmetric and skew-symmetric components Sh and Kh, respectively. Both of
these components can be modeled by defining two clustering structures that depend on
the matrices U and V, respectively, as introduced in Vicari [17] for a two-way asymmetric
dissimilarity matrix.

Specifically, the symmetric component Sh and the skew-symmetric component Kh for
the occasion h (h = 1, . . . , H) are modeled by the two clustering structures introduced in
Vicari [16,18] and depend on the common complete and incomplete membership matrices
U and V, respectively, as follows:

Sh = URhŨ′ + ŨRhU′ + EhS , (h = 1, . . . , H) , (2)

Kh = VThṼ′ − ṼThV′ + EhK , (h = 1, . . . , H) , (3)

where

• Ũ = 1NJ − U and Ṽ = 1NJ − V;
• Rh = diag(rh) and Th = diag(th) with rh = [r1h, . . . , rJh]

′ and th = [t1h, . . . , tJh]
′

being the occasion-specific weight vectors of size J associated with the clusters of the
complete and incomplete partition, respectively;

• The error terms EhS and EhK represent the parts of Sh and Kh not accounted for by the
model, respectively.

For identifiability reasons, any matrix (VTh) is constrained to sum to zero: i.e.,
1′N(VTh)1J = 0 (h = 1, . . . , H).

Models (2) and (3) can be combined and plugged into (1) to specify the model account-
ing for the asymmetric dissimilarities between clusters at the occasion h, as follows:

Xh = Sh + Kh + bh ĨN + Eh

=
[
URhŨ′ + ŨRhU′

]
+

[
VThṼ′ − ṼThV′

]
+ bh ĨN + Eh , (h = 1, . . . , H), (4)

where bh is an additive constant term and the general error term Eh represents the part of
Xh not accounted for by the model.

Models (2) and (3) can be expressed in compact notation in terms of S = [S1, . . . , SH ]
and K = [K1, . . . , KH ], which denote the (N × NH) augmented matrices obtained by
collecting the H matrices Sh and Kh next to each other, respectively, as follows:

S =
(
1′H ⊗ U

)
R
(

IH ⊗ Ũ′
)
+

(
1′H ⊗ Ũ

)
R
(
IH ⊗ U′)+ ES , (5)

K =
(
1′H ⊗ V

)
T
(

IH ⊗ Ṽ′
)
−

(
1′H ⊗ Ṽ

)
T
(
IH ⊗ V′)+ EK , (6)

where ⊗ denotes the Kronecker product, and R and T are the two (HJ × HJ) diagonal
matrices with the HJ-vectors r =

[
r′1, . . . , r′h, . . . , r′H

]′ and t =
[
t′1, . . . , t′h, . . . , t′H

]′ as main
diagonals, respectively, ES = [E1S, . . . , EhS, . . . , EHS] and EK = [E1K, . . . , EhK, . . . , EHK].

Recall that, given any two matrices A = [aij] and B of sizes (N × J) and (M × P),
respectively, the Kronecker product between A and B is the (NM × JP) matrix, as follows:

A ⊗ B =

 a11B · · · a1JB
...

...
aN1B · · · aNJB

.

Finally, model (4) can be expressed in compact notation in terms of the augmented
matrix X = [X1, . . . , XH ] by combining models (5) and (6) as follows:
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X = S + K + (b′ ⊗ ĨN) + E

=
(
1′H ⊗ U

)
R
(

IH ⊗ Ũ′
)
+

(
1′H ⊗ Ũ

)
R
(
IH ⊗ U′)+(

1′H ⊗ V
)
T
(

IH ⊗ Ṽ′
)
−

(
1′H ⊗ Ṽ

)
T
(
IH ⊗ V′)+

(b′ ⊗ ĨN) + E , (7)

where b = [b1, . . . , bh, . . . , bH ]
′ and E = [E1, . . . , Eh, . . . , EH ].

It is important to note that, in the model, in addition to a common clustering structure,
occasion-specific weight vectors rh and th are assumed to account for the heterogeneity of
the occasions. These weights allow for measuring the extent to which exchanges vary across
occasions, providing quantifications of the exchanges between clusters at the occasion h in
terms of magnitude and direction.

3. The Algorithm

In model (4), the complete and the incomplete membership matrices U and V, the
weight vectors rh and th, and the constants bh (h = 1, . . . , H) can be estimated by solving
the following least-squares fitting problem:

min F(U, V, rh, th, bh) =

∑H
h=1

∥∥∥Xh −
(

URhŨ′ + ŨRhU′
)
−

(
VThṼ′ − ṼThV′

)
− bh ĨN

∥∥∥2

∑H
h=1

∥∥∥Xh

∥∥∥2 (8)

subject to

uij = {0, 1} (i = 1, . . . , N; j = 1, . . . , J) and
J

∑
j=1

uij = 1 (i = 1, . . . , N) , (9)

vij = {0, 1} (i = 1, . . . , N ; j = 1, . . . , J) and vij ≤ uij (i = 1, . . . , N) , (10)

1′N(VTh)1J = 0 (h = 1, . . . , H) . (11)

Problem (8), subject to constraints (9)–(11), can be reformulated in compact form in
terms of model (7) as follows:

min F(U, V, R, T, b) =
1∥∥∥X
∥∥∥2

∥∥∥X −
(
1′H ⊗ U

)
R
(
IH ⊗ Ũ′)− (

1′H ⊗ Ũ
)
R
(
IH ⊗ U′)−

(
1′H ⊗ V

)
T
(
IH ⊗ Ṽ′)+ (

1′H ⊗ Ṽ
)
T
(
IH ⊗ V′)− (

b′ ⊗ ĨN
)∥∥∥2

=∥∥∥S −
(
1′H ⊗ U

)
R
(
IH ⊗ Ũ′)− (

1′H ⊗ Ũ
)
R
(
IH ⊗ U′)− (

b′ ⊗ ĨN
)∥∥∥2

∥∥∥X
∥∥∥2 +

∥∥∥K −
(
1′H ⊗ V

)
T
(
IH ⊗ Ṽ′)+ (

1′H ⊗ Ṽ
)
T
(
IH ⊗ V′)∥∥∥2

∥∥∥X
∥∥∥2 =

FS(U, R, b) + FK(V, T) , (12)

where the equivalence is due to the orthogonality of S and K.
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The equivalent constrained optimization problems (8) and (12) can be solved by using
an Alternating Least-Squares (ALS) algorithm, which alternates the estimation of a set of
parameters while maintaining all the others fixed as detailed below.

After an initialization step in which all parameters satisfying the constraints are chosen,
the algorithm alternates between two main steps.

In the first step, in order to ensure that the relative loss function (12) is non-increasing,
the two membership matrices U and V are jointly updated row by row in N substeps by
solving assignment problems for the different rows of U and V satisfying the constraints (9)
and (10). Specifically, for a given row i, setting uij = 1 for j = 1, . . . , J implies that either
vij = uij or vij = 0; i.e., object i in matrix V can either be assigned to the same cluster j as in
matrix U or remain unassigned. For the row i and given the remaining rows of U and V, all
possible 2J assignments of the object i are considered: either to the corresponding clusters
Cj and Gj (uij = 1 and vij = 1) or to the cluster Cj only (uij = 1 and vij = 0). For each of
them, the weight vectors rh and th (h = 1, . . . , H) are also estimated as optimal solutions of
constrained regression problems. Finally, by evaluating the relative loss function (12) for
all possible potential assignments and selecting the one corresponding to the minimum
loss value, the assignment of the object i in U and V is chosen. Note that the relative loss
function cannot increase at each substep, since the whole space of feasible solutions for
both U and V is explored for each object.

In the same step, the weight vectors rh and th are estimated as solutions of constrained
regression problems for each possible choice of the different rows of U and V, respectively.

In the second step, the constant b is then estimated by successive residualizations of
the three-way data matrix.

The two main steps are alternated and iterated until convergence. The relative loss
function (12) does not increase at each step, and the algorithm stops when the loss decreases
less than a fixed arbitrary positive and small threshold.

In order to increase the chance of finding the global minimum, the best solution over
different random starting parameters is retained.

Moreover, in order to estimate the matrices R and T, model (7) is reformulated as a
regression problem with respect to the unknown vectors r and t, as follows:

x = s + k + (b ⊗ ĩ) + e

= QU r + QV t + (b ⊗ ĩ) + e , (13)

where

– x is the column vector of size HN2 of the vectorized matrix X, i.e., x = vec(X) =
[x111, . . . , xN11, . . . , x11h, . . . , xN1h, . . . , x1NH , . . . , xNNH ]

′;
– s = vec(S) and k = vec(K) are the column vectors of size HN2 of the vectorized

matrices S and K, respectively;
– QU =

[(
IH ⊗ Ũ

)
|⊗|

(
1′H ⊗ U

)]
+

[(
IH ⊗ U

)
|⊗|

(
1′H ⊗ Ũ

)]
is a matrix of size

(HN2 × HJ), where |⊗| denotes the Khatri–Rao product [23,24];
– QV =

[(
IH ⊗ Ṽ

)
|⊗|

(
1′H ⊗V

)]
−
[(

IH ⊗V
)
|⊗|

(
1′H ⊗ Ṽ

)]
is a matrix of size (HN2 × HJ);

– ĩ is the column vector of size N2 of the vectorized matrix ĨN ;
– e = vec(E) is the column vector of size HN2 of the error term.

Recall that, given any the two matrices A and B with the same number J of columns,
the Khatri–Rao product of A and B is the column-wise Kronecker product, i.e.,
A|⊗|B = (a1 ⊗ b1, . . . , aj ⊗ bj, . . . , aJ ⊗ bJ), where aj and bj are the j-th (j = 1, . . . , J)
column of A and B, respectively.

Therefore, by taking into account (13), the relative loss function (12) becomes as follows:
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F(U, V, r, t, b) = FS(U, r, b) + FK(V, t)

=

∥∥∥s − QU r − (b ⊗ ĩ)
∥∥∥2

∥x∥2 +

∥∥∥k − QV t
∥∥∥2

∥x∥2 . (14)

A detailed description of the steps of the algorithm, implemented in MATLAB R2023a,
is given below.

Initialization step.
Initial estimates of the parameters Û, V̂, r̂, t̂, and b̂ are chosen randomly or in a rational

way, but they are required to satisfy the set of constraints (9)–(11).

Step 1. Updating the membership matrices U and V and weight-vectors r and t. (see
Algorithm 1)

Given the current estimates of b̂, U, and V, the weight vectors r, and t are estimated
by minimizing (14) subject to constraints (9)–(11).

The loss function (14) is minimized sequentially for the different rows of U and V by
solving N assignment problems. Finally, the column sums of the estimated Û are checked
to avoid empty clusters.

Furthermore, the weight vectors r and t are estimated in two nested substeps as
follows. Given the current Û and b̂, for every possible binary choice for the different rows
of U, the vector r is estimated by solving the following regression problem:

FS(r; Û, b̂) =

∥∥∥s − QÛ r − (b̂ ⊗ ĩ)
∥∥∥2

∥x∥2 . (15)

Similarly, given the current V̂, for every admissible choice for the different rows of V, the
weight vector t is obtained as the solution of the following constrained regression problem:

FK(t; V̂) =

∥∥∥k − QV̂ t
∥∥∥2

∥x∥2 , (16)

subject to constraints (11).
The pseudocode for updating the i-th row of U and V, holding all other rows constant,

and for updating r and t is as follows.
In the following, let 0 be the J-column vector of zeros; p(j) be the J-dimensional vector

with all entries equal to 0 except for the j-th one, which is 1; and ui and vi denote the
vectors corresponding to the i-th row of U and V, respectively.
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Algorithm 1 Step 1.

begin
for i := 1 to N do

for j := 1 to J do
u(j)

i = p(j);

U(j) =
[
u1, . . . , u(j)

i , . . . , uN

]′
;

r(j) =
(

Q′
U(j) QU(j)

)−1
Q′

U(j)

(
s − (b̂ ⊗ ĩ)

)
; (17)

comment: solution of the regression problem (15) corresponding to the possible
assignment of object i to cluster j of the complete partition (U);

for w := 1 to 2 do
if w = 1 then v(j,w)

i = u(j)
i , else if w = 2 then v(j,w)

i = 0; end;

V(j,w) =
[
v1, . . . , v(j,w)

i , . . . , vN

]′
;

NV =
(

1′NV(j,w)1J

)
;

comment: number of assigned objects in the incomplete partition;

t̃(j,w) =
(

Q′
V(j,w) QV(j,w)

)−1
Q′

V(j,w) k; (18)
comment: solution of the regression problem (16) corresponding to the possible

assignment of object i to the cluster j of the incomplete partition (V);
for h := 1 to H do

t(j,w)
h = V(j,w)+

(
V(j,w) t̃(j,w) − 1′N V(j,w) t̃(j,w)

NV
V(j,w)1J

)
; (19)

comment: constraint (11) is imposed; V(j,w)+ is the Moore–Penrose
inverse of V(j,w);

end

t(j,w) =
[
t(j,w)′
1 , . . . , t(j,w)′

h , . . . , t(j,w)′
H

]′
;

f (j,w)(u(j)
i , r(j), v(j,w)

i , t(j,w)) = FS
(

U(j), r(j); b̂
)
+ FK

(
V(j,w), t(j,w)

)
;

end
end

(l, g) = arg min
1≤j≤J

(
arg min
w∈{1,2}

( f (j,w))
)

;

ûi = p(l);
r̂ = r(l);
if g = 1 then v̂i = ûi, t̂ = t(l,1), else if g = 2 then v̂i = 0, t̂ = t(l,2); end;

end

Step 2. Updating constant b.
Given the current estimates of Û, V̂, r̂, and t̂, the estimate of b is given by the following:

b̂ =
[
(IH ⊗ ĩ′)(IH ⊗ ĩ)

]−1
(IH ⊗ ĩ′)(s − QÛ r̂) , (20)

where the inverse always exists, since
[
(IH ⊗ ĩ′)(IH ⊗ ĩ)

]
is a full-rank diagonal matrix of

size H with diagonal elements all equal to N(N − 1).

Stopping rule.
The relative loss function value is computed for the current values of Û, V̂, r̂, t̂, and b̂

and since F
(
Û, V̂, r̂, t̂, b̂

)
is bounded from below, it converges to a point that is expected to

be at least a local minimum. When the loss function (14) has not decreased considerably
with respect to a tolerance value, the process is assumed to be converged. Otherwise, steps
1 and 2 are repeated in turn.
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3.1. Meaning of the Parameter Estimates

In order to evaluate the meaning of the estimated weights r̂ of the complete partition, let
us consider the membership matrix Û = [ûij](i=1,...,N; j=1,...,J) that uniquely identifies the
clusters of the complete partition {C1, . . . , Cj, . . . , CJ}.

From Equation (17), the estimated weight r̂jh of the cluster Cj in the h-th occasion is
the average amount of the exchanges between objects in cluster Cj and objects in clusters
different from Cj, corrected for the mean of the average amounts between all clusters
different from Cj. Hence, large (small) values of r̂jh indicate clusters characterized by large
(small) amounts of exchanges on average.

Similarly, let us consider the incomplete partition {G1, . . . , Gj, . . . , GJ} identified by the
matrix V̂ = [v̂ij](i=1,...,N; j=1,...,J). Then, from (18) imposing the constraint (11), the weight
t̂jh of the cluster Gj in the occasion h is as follows:

t̂jh =
1

N × NGj

N

∑
i=1

N

∑
l=1

kilhv̂ij ˜̂vl j , (j = 1, . . . , J; h = 1, . . . , H),

where NGj is the number of objects assigned to the cluster Gj.
Note that t̂jh is the average imbalance from all objects in the cluster Gj towards all

objects in clusters other than Gj, at the occasion h, corrected for the average imbalance
originating from all clusters different from Gj. Therefore, a positive (negative) weight t̂jh
qualifies the cluster Gj as a “destination” (“origin”) cluster of the exchanges at the occasion
h, and the objects belonging to such a cluster have a similar pattern in terms of exchanges
directed towards the other clusters.

Given the occasion h and due to (3), all objects belonging to the same cluster Gj
have the same weight t̂jh, and the weighted sum of them over all clusters is zero due to
constraint (11). Constraint (11) is necessary to guarantee the identifiability of the model
and the uniqueness of the solution: this is because the weights are defined by difference.
In a general and widely applicable framework, such a choice implies that the model
defines a closed exchange system in the sense that the total imbalance between clusters
within each occasion is zero. Note that, in specific contexts, a value other than zero could
generally be chosen to handle appropriate assumptions. Only (19) in the algorithm should
be modified accordingly.

Furthermore, the objects that remain unassigned to any cluster of the incomplete parti-
tion are actually objects that generate (almost) zero mutual imbalances and, equivalently,
almost symmetric exchanges in all occasions.

The constant term b̂h is assumed to be added to all dissimilarities in the h-th occasion
and, thus, only affects the average amounts of exchanges between objects (symmetric
component Sh). Therefore, the additive constant b̂h in (20) represents the baseline average
dissimilarity, independent of any clustering and direction, and plays the same role as the
intercept of a linear regression model.

Finally, it is worth noting that, for each occasion h, model (7) accounts for the between-
cluster effects, while the exchanges within clusters are fitted only by the constant term b̂h,
which actually also represents the average exchange between objects within clusters.

4. Illustrative Example: Results

In order to detect the underlying clustering structure common to all occasions and iden-
tify “origin” and “destination” clusters, the model proposed here was fitted to the artificial
data of Figure 1, together with the Generalized INDCLUS model [20] for comparison.

Let us briefly recall the generalization of the INDCLUS model [20] to fit three-way
asymmetric similarity data Yh (h = 1, . . . , H). The model assumes that there exist two
sets of J overlapping clusters (i.e., two coverings) of the same set of N objects in row and
column, and that they are common to all occasions, namely, P = [pij] and Q = [qij], where
pij and qij assume values in {0, 1} (for i = 1, . . . , N and j = 1, . . . , J); i.e., each object is
allowed to belong to more than one cluster or none at all. In addition, a single set of weights
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is assumed for both set clusters, but different for each occasion. The model can be written
as follows:

Yh = PWhQ′ + ch1NN + E∗
h , (h = 1, . . . , H) , (21)

where Wh is the non-negative diagonal weight matrix of order J for the occasion h, ch is a
real-valued additive constant for the occasion h, and E∗

h is the error term.
Since model (21) fits similarities, the original artificial dissimilarities in [0, 100] of

Figure 1 were simply converted into similarities by taking Yh = 100 − Xh (h = 1, 2, 3).
The best solution in J = 3 clusters was retained over 100 random starts of the algorithm.
None of the two best coverings in three overlapping clusters obtained by the General-

ized INDCLUS model (relative loss function equal to 0.0228) identify the true generated par-
tition of the objects. The common coverings P and Q for the sets of objects in the rows and in
the columns, respectively, consist of three row clusters, CIr

1 = {a, b, c, d}, CIr
2 = {e, f }, and

CIr
3 = {b, c, g, h, i}, and three column clusters, CIc

1 = {b, c, e, f }, CIc
2 = {a, b, c, d, e, f , g, h, i},

and CIc
3 = {a, b, c, d, g, h, i}. The first covering identifies row clusters of objects with similar

outgoing exchanges to the column clusters, which contain groups of objects with similar
incoming exchanges.

The estimated weights of the three clusters of both coverings in each occasion and the
constants are reported in Table 1. The constants represent the average exchange between all
objects within each occasion, regardless of the direction. Thus, the second occasion has the
highest average level of exchange (c2 = 59.7) and the first occasion the lowest (c2 = 49.6).

Table 1 displays the weights of the outgoing row clusters and incoming column
clusters, where a large positive weight for any two corresponding clusters CIr

j and CIc
j

(j = 1, 2, 3) qualifies CIr
j as the origin of the exchanges directed to the destination CIc

j .

Therefore, in the second occasion, CIr
1 = {a, b, c, d} is an origin cluster to CIc

1 = {b, c, e, f }.
In addition, it can be noted that, in occasion 2, Generalized INDCLUS fails to identify the
true behavior of objects {g, h, i} in C3 as destination from C1 = {a, b, c, d} and origin to
C2 = {e, f } (Figure 1). Instead, objects {g, h, i} are estimated here to have mutual exchanges
with all other objects due to their membership in several column clusters.

Table 1. Artificial data: occasion-specific weights and constants from Generalized INDCLUS.

Cluster Constant

Row CIr
1 CIr

2 CIr
3

Column CIc
1 CIc

2 CIc
3

w1h w2h w3h ch

Occasion 1 0 38.0 18.5 49.6
Occasion 2 25.1 0 0 59.7
Occasion 3 0 22.8 26.8 55.7

Moreover, in the first and third occasions, the clusters CIr
2 = {e, f} and CIr

3 = {b, c, g, h, i}
are origins toward CIc

2 , which contains all objects, and CIc
3 = {a, b, c, d, g, h, i}, respectively.

We can observe that, in the special case when the clusters from Generalized INDCLUS
form a partition (they do not overlap), model (21) reduces to estimating only the exchanges
from any CIr

j row cluster to its corresponding CIc
j column cluster. Conversely, in the

presence of overlapping clusters, objects common to different clusters also contribute to the
estimation of the exchange between different clusters. That is why, in Table 1, due to the
large cluster overlap, it is very cumbersome to extract the directions of the exchange from
any row cluster CIr

j to any other column cluster CIc
j . It becomes necessary to look at the

whole full-size (N × N) estimated matrices and analyze the estimated exchanges between
pairs of objects.

For the sake of clarity, we observe that, in this well-structured artificial situation, the
lowest weights are exactly zero, which is generally not the case.
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Model (4) proposed here was fitted to the artificial data of Figure 1, and the best
solution in J = 3 clusters was retained over 100 random starts of the algorithm.

The best resulting partition (relative loss equal to 0.0026) correctly identifies the
complete partition from the symmetric components consisting of clusters C1 = {a, b, c, d},
C2 = {e, f }, C3 = {g, h, i}, and the incomplete partition formed by clusters G1 = {a, d},
G2 = {e, f }, G3 = {i}, which are nested in the corresponding clusters of the former.

The objects b, c, g, and h remain unassigned to any cluster in the incomplete partition
from the skew-symmetric components due to their almost zero mutual imbalances and
almost symmetric exchanges at each occasion.

Table 2 reports the estimates of the weight vectors r̂ and t̂ and the constant b̂. In
addition, for each occasion h, the estimated between-cluster components, both the sym-
metric (Ŝh) from the complete partition and the skew-symmetric (K̂h) from the incomplete
partition, are shown in Figure 3.

Table 2. Artificial data: occasion-specific weights from the proposed model.

Complete Partition Incomplete Partition Constant

C1 C2 C3 G1 G2 G3

r̂1h r̂2h r̂3h t̂1h t̂2h t̂3h b̂h

Occasion 1 8.8 −6.0 5.8 16.2 −15.3 −1.9 31.8
Occasion 2 6.9 −4.4 9.7 −13.2 12.3 1.8 28.4
Occasion 3 6.4 14.5 −1.6 14.1 −12.5 −3.4 19.7

  
 

Figure 3. Artificial three-way dissimilarity data: estimated symmetric and skew-symmetric compo-
nents from the proposed model.

The estimated constants b̂h (Table 2) represent the baseline average exchange level at
each occasion, regardless of any clustering, and take on different values in the occasions:
the highest (b̂1 = 31.8) in the first, while the third has the lowest (b̂3 = 19.7).

Given the occasion h, the weight r̂jh of the cluster Cj (j = 1, 2, 3) represents the
average exchange between the cluster Cj and every other cluster, in addition to the additive
constant. Thus, from the occasion-specific weights r̂h (h = 1, 2, 3) in Table 2, we observe
that, in occasion 1, C1 subsumes the highest average exchange with the other two clusters
(r̂11 = 8.8), while in occasion 2, the highest average exchange concerns C3 (r̂32 = 9.7). In
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contrast, in occasion 3, cluster C3 has the lowest weight (r̂33 = −1.6), while C2 has the
highest (r̂23 = 14.5). This is consistent with what can be seen from the data in Figure 2.

In addition, the different role of each cluster can be identified from the occasion-specific
weights t̂h (h = 1, 2, 3) of the clusters of the incomplete partition, which allow for qualifying
origins and destinations. Since each t̂jh represents the weighted average imbalance at the
occasion h from the cluster Gj to all other clusters, in Table 2, the negative weight of G1
in the second occasion (t̂12 = −13.2) qualifies G1 as an origin cluster, while it acts as a
destination cluster in occasions 1 and 3, where its corresponding weights are both positive
(t̂11 = 16.2 and t̂13 = 14.1, respectively). The reverse is true for both clusters G2 and G3.

As an example, we can see from Figure 3 that the estimated symmetric part of the
exchange between the clusters C1 and C2 in occasion 1 is 34.6, which is the sum of the
estimated weights of C1 and C2 (r̂11 = 8.8 and r̂21 = −6.0, respectively) plus the constant
value (b̂1 = 31.8), i.e., (ŝ121 + b̂1) = 8.8 − 6.0 + 31.8 = 34.6.

Moreover, the corresponding estimated imbalance between G1 and G2 yields k̂121 = 31.5,
which is the difference of the estimated weights of the clusters G1 and G2 (t̂11 = 16.2 and
t̂21 = −15.3, respectively), i.e., k̂121 = 16.2+ 15.3 = 31.5.

Finally, the estimated between-cluster dissimilarity between C1 and C2 in the first
occasion is the sum of (ŝ121 + b̂1) and k̂121, hence x̂121 = 66.1.

Remark 1. From Figure 3, we can easily derive the summary of what emerges from the detailed
results, since the full-size exchange matrices between objects (Figure 2) are synthesized into reduced-
size exchange matrices between clusters with a very limited loss of information. This makes it
possible to show the role played by each cluster of objects as an origin or destination of exchange,
exactly reflecting the original data in Figure 1.

5. Application to Student Mobility Data

The data analyzed in this application have been taken from the OECD (Organization
for Economic Co-operation and Development) Education Statistics Database, which collects
data annually on international student exchanges in tertiary education.

The three-way data array consists of H = 5 asymmetric matrices of exchanges of
international student mobility observed in N = 20 countries (objects) from 2016 to 2020
(H = 5 occasions). The data report the number of international tertiary students who
received their prior education in the origin country (the rows of each year matrix) enrolled
in the host country (the columns of each year matrix). The countries are the twenty founding
members of the OECD: Austria (AT), Belgium (BE), Canada (CA), Denmark (DK), France
(FR), Germany (DE), Greece (EL), Iceland (IS), Ireland (IE), Italy (IT), Luxembourg (LU),
Netherlands (NL), Norway (NO), Portugal (PT), Spain (ES), Sweden (SE), Switzerland (CH),
Turkey (TR), United Kingdom (UK), and United States of America (US).

Between 2016 and 2020, the total population of mobile international students in
the twenty founding members of the OECD experienced a remarkable growth of 16.8%.
Specifically, the number jumped from 555,920 students in 2016 to 649,376 students in 2020,
reflecting a significant increase in the number of tertiary students enrolled abroad. As
highlighted in [25], the COVID-19 pandemic had a very uneven impact on international
student exchanges across countries during 2019–2020. Nevertheless, the percentage of
tertiary students enrolled abroad increased in several of the twenty OECD countries and
remained unchanged in many others. Overall, there were about three international students
for every national student studying abroad in OECD countries in 2016–2020, but this ratio
is equal to or greater than ten in the United Kingdom and the United States [25,26]. In
contrast, Luxembourg is among the twenty OECD founder countries with the lowest ratio
of international students to national students abroad [25].

The aim here is to explore both the magnitude and the direction of the international
mobility of the tertiary students to identify clusters of countries that are the main origins or
destinations of the student exchanges across 5 years (2016–2020).
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First, the data were transformed by calculating for each country the percentage share
of outgoing mobile students moving to each of the other countries for tertiary education.

5.1. Mobility Data: Results from Generalized INDCLUS

The Generalized INDCLUS model (21) was first fitted directly to the original similar-
ity data.

The algorithm was run by varying the number of clusters J from 2 to 7, and the best
solution in 100 runs from different random starting partitions was retained to prevent from
falling into local minima.

The choice of the optimal number of clusters was determined by looking at the decrease
in the relative loss function as J increases. From the scree plot (Figure 4(a), the partition in
J = 5 clusters was chosen as the best solution for Generalized INDCLUS.

  
 

Figure 4. Mobility data: scree plot of the loss values of (a) Generalized INDCLUS and (b) the
proposed model.

Table 3 shows the row and column clusters, while the occasion-specific weights are
reported in Table 4.

Table 3. Mobility data: row and column clusters from Generalized INDCLUS.

Row Cluster Column Cluster

CIr
1

Austria, Belgium, Denmark, Greece, Ireland, Italy,
Luxembourg, Norway, Portugal, Spain, Switzerland,

United States
CIc

1 Germany, United Kingdom

CIr
2 Canada, Denmark, Iceland, Ireland, Norway, Sweden CIc

2 Denmark, United Kingdom, United States

CIr
3

Belgium, Canada, France, Germany, Greece, Ireland, Italy,
Netherlands, Portugal, Spain, Sweden, Switzerland,

Turkey, United Kingdom, United States
CIc

3 France, Netherlands, United Kingdom, United States

CIr
4

Austria, France, Germany, Luxembourg, Netherlands,
Switzerland CIc

4 Austria, Belgium, Germany, Switzerland

CIr
5 Austria, Canada, Turkey, United States CIc

5 Germany, United States

All countries belong to at least one cluster of the row covering, but while Iceland and
the United Kingdom belong to only one cluster (CIr

2 and CIr
3 , respectively), Austria, Canada,

Ireland, Switzerland, and the United States belong to three clusters. The strong overlap
of the row clusters indicates a very heterogeneous situation of student mobility with, in
principle, many countries from which students leave.

On the other hand, only nine countries belong to at least one column cluster, while
the remaining countries are not assigned to any cluster; i.e., they correspond to zero row
profiles in the membership matrix Q. This reveals a greater concentration of incoming
flows in a few countries than that of outgoing flows from the countries of origin.
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The cluster weights of the two coverings (Table 4) are quite similar over time, indicating
that the mobility pattern is quite stable over the years considered.

Table 4. Mobility data: occasion-specific weights and constants from Generalized INDCLUS.

Cluster Constant

Row CIr
1 CIr

2 CIr
3 CIr

4 CIr
5

Column CIc
1 CIc

2 CIc
3 CIc

4 CIc
5

Year w1h w2h w3h w4h w5h ch

2016 15.398 17.778 9.298 9.852 20.682 1.145
2017 15.145 17.496 9.357 9.689 20.175 1.185
2018 16.961 16.366 8.234 9.545 21.392 1.268
2019 18.168 15.490 7.929 9.836 21.011 1.268
2020 17.361 15.808 8.010 9.859 21.213 1.288

Every year, student mobility is directed from almost all European countries (CIr
1 and

CIr
2 ) to two main European destinations (Germany and UK), as well as to the US from

Canada and Northern Europe.
From the solution, we can say, for example, that Norway and Sweden, together in

cluster CIr
2 and separately in clusters CIr

1 and CIr
3 , respectively, have outgoing flows mainly

to Denmark, UK, and the US. Swedish students also move to France and the Netherlands,
while Norwegian students to Germany. Swedish and Norwegian mobility to all other
countries results to being reciprocal to the same extent.

5.2. Mobility Data: Results from the Proposed Model

In order to fit our proposed model that fits dissimilarity data, the proportions of
outgoing students in each year were converted to pairwise dissimilarities by taking their
complements to 100.

As before, the algorithm was run with J varying from 2 to 7, and the best solution
in 100 runs from different random starting partitions was retained. The scree plot of the
loss values in Figure 4(b) shows an elbow at the partition with J = 6 clusters selected
for analysis.

The complete partition and the incomplete partition estimated from the symmetric and
skew-symmetric components of the exchanges, respectively, are reported in Table 5, where
countries not assigned to the corresponding clusters of the incomplete partition are indi-
cated in italics.

Table 5. Mobility data: complete and incomplete partition from the proposed model. Italics indicate
unassigned countries in the incomplete partition.

Complete Partition Incomplete Partition

C1 Germany, United States G1 Germany, United States

C2 Greece, Ireland, Turkey G2 Greece, Ireland, Turkey

C3 Denmark, Iceland, Norway, Sweden G3 Iceland, Norway, Sweden

C4
Belgium, France, Luxembourg, Netherlands,

Portugal, Spain G4 Luxembourg, Portugal

C5 Austria, Canada, Italy, Switzerland G5 Canada, Italy, Switzerland

C6 United Kingdom G6 United Kingdom

The six clusters are shown in Figure 5, where different colors indicate different clusters
and the unassigned countries of the incomplete partition are shown in light colors on the
color scale.
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Figure 5. Mobility data: complete and incomplete partition from the proposed model. Different colors
indicate different clusters: blue = C1, green = C2, violet = C3, red = C4, sky blue = C5, yellow = C6,
and the unassigned countries of the incomplete partition are shown in light colors on the color scale.

The clusters C1, C2, and C6 coincide with G1, G2, and G6, respectively, while six coun-
tries (Austria, Belgium, Denmark, France, Netherlands, and Spain) do not belong to any
cluster of the incomplete partition because their mutual mobility is basically symmetrical.

The two nested partitions highlight the strength of proximity factors, such as language,
historical ties, geographical distance, bilateral relationships, and political framework con-
ditions (e.g., the European Higher Education Area) as key determinants for international
student mobility. As an example, the Scandinavian countries in cluster C3 share the same
patterns of international student mobility directed to the other OECD countries.

Austria and Belgium, which belong to different clusters (C3 and C4, respectively) but
remain unassigned in the incomplete partition, show small mutual mobility exchanges
over time (0.7195% in 2016 and 0.8485% in 2020) with minimal imbalances (0.3077% in 2016
and 0.5077% in 2020).

The constants b̂h (h = 1, . . . , 5) increase slightly over the years (Table 6 and Figure 6):
this means that since the model has been fitted to the complements to 100 of the share of
outgoing students in each year, the baseline average mutual exchange between countries
(100 − b̂h, h = 1, . . . , 5) shows a slight decrease over the years. This also implies that the
average mutual mobility within clusters tends to decrease slightly over time, as the baseline
fits the within-cluster mobility in each year.

Table 6. Mobility data: year-specific weights for the complete partition and constants from the
proposed model.

Complete Partition Constant

C1 C2 C3 C4 C5 C6

Year r̂1h r̂2h r̂3h r̂4h r̂5h r̂6h b̂h

2016 −5.653 2.757 3.676 2.913 1.273 −10.221 93.135
2017 −5.483 2.684 3.655 2.818 1.267 −10.069 93.158
2018 −6.232 2.496 3.519 2.602 1.074 −10.192 93.570
2019 −5.473 2.447 3.478 2.518 0.987 −10.892 93.589
2020 −6.122 2.461 3.534 2.453 1.174 −10.087 93.575
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Figure 6. Mobility data: year-specific constants from the proposed model.

In addition to the baseline exchange (b̂h), the estimated average annual mobility
between clusters of countries depends on the weights r̂h (Table 6). The average mobility has
remained relatively stable over time, with very small increases (i.e., very small decreases in
the weights r̂jh (h = 1, . . . , 5), taking into account the transformation of the percentages to
obtain dissimilarities) in almost all clusters until 2019. Fluctuations can be observed for
some clusters: in 2019, a slight increase in the average mobility was observed for the United
Kingdom (r̂6,2019 = −10.892 vs. r̂6,2018 = −10.192), in contrast with a slight decrease for
the cluster C1 with Germany and the United States (r̂1,2019 = −5.473 vs. r̂1,2018 = −6.232).
Conversely, the situation is reversed in 2020, probably due to the impact of Brexit.

Each year, the ranking of the clusters based on the increasing weights r̂h consistently
ranks the United Kingdom (C6) with the highest average share of reciprocal mobility (re-
gardless of direction), followed by Germany and the United States (C1), while Scandinavian
countries (C3) have the lowest, as can be seen in Figure 7.

 

Figure 7. Mobility data: year-specific weights of the complete partition from the proposed model.

As for the directions of the mobility, the analysis of the cluster weights of the in-
complete partition (Table 7) reveals a consistent pattern over the years: throughout the
2016–2020 period, the mobility originates from countries in the clusters G2, G3, G4, and G5
(the weights t̂jh assigned to these clusters are always negative over time) mainly directed to
Germany and the United States (G1), as well as to the United Kingdom (G6).
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Table 7. Mobility data: year-specific weights of the incomplete partition from the proposed model.

Incomplete Partition

G1 G2 G3 G4 G5 G6

Year t̂1h t̂2h t̂3h t̂4h t̂5h t̂6h

2016 5.158 −2.568 −1.772 −1.836 −1.223 10.048
2017 5.051 −2.469 −1.770 −1.842 −1.211 9.932
2018 5.467 −2.497 −1.743 −2.000 −1.308 9.711
2019 4.814 −2.413 −1.738 −2.009 −1.208 10.466
2020 5.470 −2.403 −1.755 −2.087 −1.377 9.839

In all years, the cluster ranking based on the increasing weights t̂h places Greece,
Ireland, and Turkey (G2), followed by Luxembourg and Portugal (G4), as the main countries
of origin of the international students. As can be seen from the direction of the arrow in
Figure 8, the cluster G5, which includes Canada, Italy, and Switzerland, is an origin cluster
of mobile students toward G1 and G6 and, to a greater extent, a destination cluster from G2,
G3, and G4. Similarly, the Scandinavian students (G3) move to Germany, the US, and the
UK (G1 and G6) and to G5, while the Scandinavian countries have incoming mobility from
G2. This differs in part from the results of Generalized INDCLUS, which does not capture
the imbalance of the international mobility from Greece, Ireland, and Turkey directed to
the Scandinavian countries.

 

Figure 8. Mobility data: year-specific weights of the incomplete partition from the proposed model
(arrow indicates the direction of mobility).

The countries in the two clusters C2 and C4 have comparable average mobility over
time (the green (C2) and red (C4) lines overlap in Figure 7), but with different levels of
imbalances: in fact, the student outflows from Greece, Ireland, and Turkey (G2) are always
larger than those from Luxembourg and Portugal (G4), as can be seen in Figure 8.

English is the most widely spoken language in the globalized world, with one in four
people worldwide using it [27]. Not surprisingly, English-speaking countries are always
the most attractive study destinations overall: the UK is the top destination in Europe; the
United States and Germany are destinations for international students from Europe and
Canada and are the source of student mobility to the United Kingdom. Among the top
3 destinations, Germany is the major recipient country in the European Union.

A few countries (clusters G1 and G6) are net “importers” of students; that is, they have
more students coming in to study than those leaving to study abroad. In contrast, some
clusters of countries, such as G2 and G4, are net “exporters” of students.
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6. Results and Discussion

In a complex situation where the available data represent asymmetric proximities
between pairs of objects measured or observed in different occasions, the proposed model
aims to unveil a common clustering structure that accounts for the systematic differences
between occasions.

The model proposed here proved to be effective in identifying clusters of objects that
share a common pattern of exchange across different occasions, even with a different role
as origin or destination. The artificial data and the real application have shown as main
results (1) the capability of the model to identify clusters of objects with similar exchange
behavior in magnitude and direction (origin/destination clusters) and (2) the flexibility to
capture possible differences in the directions of such cluster exchanges across occasions,
compared with the Generalized INDCLUS model.

Actually, the goal of Generalized INDCLUS is not to summarize the average exchanges
of each cluster, and compared with our model, it provides much more complicated solutions
in order to derive the behavior of each cluster because of the overlap between clusters,
as can also be seen from the simple and small illustrative example. We can observe that,
in the special case where the clusters from Generalized INDCLUS form a partition (they
do not overlap), as in our model, it actually accounts for the variability within clusters
and is not able to capture the exchanges between clusters, which is the very goal of our
proposal. However, as shown in Sections 4 and 5, we experienced that, in the general case,
the clusters resulting from Generalized INDCLUS have (often many) objects in common,
which, on the one hand, guarantees flexibility and the possibility to estimate the exchange
between pairs of objects belonging to different clusters. On the other hand, this comes at
the expense of ease of interpretation and synthesis, since the behavior of objects belonging
to the same cluster is not the same regardless of the destination cluster.

Thus, within the scarcity of methods for clustering three-way asymmetric proximity
data, our proposal is effective, more parsimonious, and promising when the aim is to obtain
a synthesis of the average behavior of exchange between clusters across occasions (which
could be useful for policy makers, for example). If, instead, the estimation of any pairwise
exchange is the main concern, Generalized INDCLUS might be more flexible in general
due to the possible overlap.

Further developments may consider the possibility of assuming a fuzzy clustering,
where, instead of a crisp membership of an object to each cluster (uij in {0, 1}), a member-
ship degree in [0, 1] is allowed. In addition, the inclusion of possible covariates in the model,
if available, could also be taken into consideration to better investigate the determinants of
the exchanges.
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