DNNs are widely used for complex tasks like image and signal processing, and they are in increasing demand for implementation on Internet of Things (IoT) devices. For these devices, optimizing DNN models is a necessary task. Generally, standard optimization approaches require specialists to manually fine-tune hyper-parameters to find a good trade-off between efficiency and accuracy. In this paper, we propose OptDNN, a software that employs innovative and automatic approaches to determine optimal hyper-parameters for pruning, clustering, and quantization. The models optimized by OptDNN have a smaller memory footprint, faster inference time, and a similar accuracy to the original models.

OptDNN: Automatic deep neural networks optimizer for edge computing / Giovannesi, Luca; Mattia, Gabriele Proietti; Beraldi, Roberto. - In: SOFTWARE IMPACTS. - ISSN 2665-9638. - 20:(2024). [10.1016/j.simpa.2024.100641]

OptDNN: Automatic deep neural networks optimizer for edge computing

Giovannesi, Luca
Primo
Software
;
Mattia, Gabriele Proietti
Secondo
Methodology
;
Beraldi, Roberto
Ultimo
Supervision
2024

Abstract

DNNs are widely used for complex tasks like image and signal processing, and they are in increasing demand for implementation on Internet of Things (IoT) devices. For these devices, optimizing DNN models is a necessary task. Generally, standard optimization approaches require specialists to manually fine-tune hyper-parameters to find a good trade-off between efficiency and accuracy. In this paper, we propose OptDNN, a software that employs innovative and automatic approaches to determine optimal hyper-parameters for pruning, clustering, and quantization. The models optimized by OptDNN have a smaller memory footprint, faster inference time, and a similar accuracy to the original models.
2024
Deep neural networks; DNN acceleration; DNN compression; Edge computing
01 Pubblicazione su rivista::01a Articolo in rivista
OptDNN: Automatic deep neural networks optimizer for edge computing / Giovannesi, Luca; Mattia, Gabriele Proietti; Beraldi, Roberto. - In: SOFTWARE IMPACTS. - ISSN 2665-9638. - 20:(2024). [10.1016/j.simpa.2024.100641]
File allegati a questo prodotto
File Dimensione Formato  
Giovannesi_OptDNN_2024.pdf

accesso aperto

Note: https://doi.org/10.1016/j.simpa.2024.100641
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 376.05 kB
Formato Adobe PDF
376.05 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1709792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact