
Software Impacts 20 (2024) 100641

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

OptDNN: Automatic deep neural networks optimizer for edge computing
Luca Giovannesi, Gabriele Proietti Mattia ∗, Roberto Beraldi
Department of Computer, Control and Management Engineering ‘‘Antonio Ruberti’’ Sapienza University of Rome, Via Ariosto 25, 00185, Rome, Italy

A R T I C L E I N F O

Keywords:
Deep neural networks
DNN acceleration
DNN compression
Edge computing

A B S T R A C T

DNNs are widely used for complex tasks like image and signal processing, and they are in increasing demand for
implementation on Internet of Things (IoT) devices. For these devices, optimizing DNN models is a necessary
task. Generally, standard optimization approaches require specialists to manually fine-tune hyper-parameters
to find a good trade-off between efficiency and accuracy. In this paper, we propose OptDNN, a software that
employs innovative and automatic approaches to determine optimal hyper-parameters for pruning, clustering,
and quantization. The models optimized by OptDNN have a smaller memory footprint, faster inference time,
and a similar accuracy to the original models.

Code metadata

Current code version v1 (Optimizer v1.0.0, Edge Software v1.0.0)
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-D-24-82
Permanent link to Reproducible Capsule https://codeocean.com/capsule/8344517/tree/v1
Legal Code License GNU GPLv3
Code versioning system used git
Software code languages, tools, and services used python3.9
Compilation requirements, operating environments & dependencies TensorFlow, Numpy, WebSockets, FastAPI, SQLAlchemy
If available Link to developer documentation/manual https://github.com/edgelab-sapienza/optdnn/blob/main/README.md
Support email for questions giovannesi@diag.uniroma1.it

1. Introduction

DNNs are widely used for complex tasks like image and language
processing, and they are in increasing demand for implementation
on Internet of Things (IoT) devices. These devices work with limited
resources such as computing power, memory, and energy requirements.
Then, optimizing DNN models becomes critical for reducing memory
consumption and calculation time.

Actually, when a DNN is optimized, some hyper-parameters must
be set; if these parameters are too aggressive, the optimizations signif-
icantly reduce the model’s accuracy, whereas if they are too soft, the
benefits of the optimization are not visible, so the inference time and
model size are similar to the ones of the original model.

Finding the best balance between these two sides is critical. Nowa-
days, the most common approach is to manually set these hyper-
parameters, and after a few trials, an expert can determine the optimal
balance point.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: giovannesi@diag.uniroma1.it (L. Giovannesi), proiettimattia@diag.uniroma1.it (G.P. Mattia), beraldi@diag.uniroma1.it (R. Beraldi).

The purpose of our software, called OptDNN, is to completely
automate this process.

To the best of our knowledge, OptDNN is the first open-source soft-
ware that, starting from a DNN model, can build an optimized model
ready for deployment on an edge device without a prior understanding
of DNN optimization by the user. The entire method is delegated to the
program.

This software relies on the following DNN optimization strategies:

• Pruning. DNNs may contain redundant parts [1]. The main idea
of pruning is to remove these parts, in particular, OptDNN em-
ploys Global Magnitude Pruning [2], which removes all weights
with absolute values less than a specific threshold.
The crucial part is to find the optimal balance point between
removed weights and accuracy.
https://doi.org/10.1016/j.simpa.2024.100641
Received 22 March 2024; Accepted 4 April 2024

2665-9638/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2024.100641
https://www.journals.elsevier.com/software-impacts
https://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2024.100641&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-D-24-82
https://codeocean.com/capsule/8344517/tree/v1
https://github.com/edgelab-sapienza/optdnn/blob/main/README.md
mailto:giovannesi@diag.uniroma1.it
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:giovannesi@diag.uniroma1.it
mailto:proiettimattia@diag.uniroma1.it
mailto:beraldi@diag.uniroma1.it
https://doi.org/10.1016/j.simpa.2024.100641
http://creativecommons.org/licenses/by/4.0/


L. Giovannesi, G.P. Mattia and R. Beraldi Software Impacts 20 (2024) 100641
• Weight Clustering [3]. The amount of unique values of the
weights are reduced, grouping them in clusters. As a result,
several weights are represented by a single value.
The problem here is to minimize the number of clusters without
significantly compromising model accuracy.

• Quantization [4]. The weights are transformed from their orig-
inal floating point data type to an integer data type, which is
typically represented by 8 bits. Additionally, also the activation
functions can be updated to use the new data type.

Each applied optimization brings benefits in terms of reduced model
size and inference time but also introduces an inevitable drop in
accuracy. The essential element of DNN optimization is achieving the
optimal balance between accuracy loss and performance increases.

2. Software description

OptDNN is an automatic software for neural network optimization,
once it has take as inputs: a keras model, a dataset, and some other
information, it springs in action its newel algorithms to return a Ten-
sorFlow Lite optimized model with an accuracy close to the one of the
original model, but with a speed-up of the inference time and a smaller
model size.

The optimization procedure is completely automated, and is not
required by the user any prior DNN optimization experience.

The user can interact with OptDNN using two interfaces: a CLI or
HTTP APIs; it is also available a Docker image to be used on a server
using the HTTP APIs.

2.1. Software components

OptDNN is composed by two software, the optimizer and the edge
software.

The optimizer is the software which applies the optimizations to a
model, it relies on TensorFlow library and require a host provided with
GPU to be run smoothly.

The edge device’s software waits for a model and a validation
dataset from the optimizer, then evaluates the model and provides the
measured metrics to the server. Also this software is released as Docker
container for a fast and easy deployment.

2.2. How it works

Initially, the program examines the input model and establishes an
accuracy baseline for subsequent operations. Then it begins to prune
the network with its revolutionary methods. After experimenting with
several hyper-parameters, it returns the best pruned model.

Next, weight clustering is applied, starting from the pruned model,
the program invokes the algorithm particularly intended to determine
the optimal number of clusters, returning a model pruned from the
previous step and clustered with the current one.

Finally, it tests multiple quantization approaches on the generated
model, ordered from the more aggressive to the gentler, and returns
the first that matches the desired target accuracy.

At this stage, the software has generated the optimized model based
on all of the previously determined optimal parameters.

Then, the program tests the model on one or more edge devices to
provide to the user a real-world feedback of the applied optimization.

In the edge devices, there is a WebSocket server that listens for
incoming commands from the optimizer. With these commands, the
edge software receives instructions to download the model and the
dataset via HTTP GET requests, which are solved by an HTTP server
expressly created by the optimizer for this purpose.

When the edge device has all the necessary data, it evaluates the

Since multiple edge devices can be used, this evaluation part may
also be utilized to assess how an optimized model performs on various
edge devices, allowing a comparison between the architectures.

Indeed, if any edge devices are not provided to the optimizer, the
software use the local machine for the evaluations.

An overall overview of the entire workflow is shown in Fig. 1.
The optimization procedure takes time, especially with large model,

furthermore only one model at time can be processed. When the
software is used with the HTTP APIs, the requests are handled asyn-
chronously. The requests for new optimization tasks are queued on a
list stored on a SQLite server. Then the stored tasks will be processed
when there is not any model being processed.

3. Impact

This software’s target users include: researchers of IoT or edge
computing projects, companies, amateurs, and anyone who wants to
deploy a DNN on an edge device. OptDNN allows them to easily run
efficient DNN models on their edge devices without effort.

OptDNN allows for large models, which were previously impossible
to be executed on low-performance hardware, to be run on these
devices. The software allows also to optimize a model specifically for 8-
bit devices with a slight accuracy loss, expanding the pool of compatible
devices.

In general, since the inference time has been reduced, the compute
unit spends more time in idle state. As a result, energy consumption
is reduced [5,6], bringing also an extension of the battery life for
battery-powered devices.

Given that the optimization process is totally automated, the pre-
sented software can be incorporated into a CI/CD pipeline via the HTTP
APIs, ensuring that new features are automatically distributed on target
devices.

This software expands the capabilities in research projects, for
example, all projects that require image processing on edge devices,
such as for animal or nature phenomenal monitoring, usually use small
boards for computation, commonly powered by batteries recharged by
solar panels, making the computational efficiency a priority. OptDNN
enables them to run neural networks that meet the efficiency con-
straints, previously, this was not possible without an expert in opti-
mization techniques on the team.

Moreover, while researchers are focused on other tasks, OptDNN
optimizes the provided models in background. This allows the team to
dedicate more time to the critical aspects of their projects, delivering
high-quality results.

Even companies take advantage of OptDNN. The productivity is in-
creased since human resources are not needed for model optimization,
allowing them to reduce labor costs or move the human resources to
other vital tasks.

Furthermore, this method has a quick scalability. If the amount
of different neural network models increases, the software can be
allocated on new GPUs to increase the parallelization, while with the
previous manual method, looking for new experts with the desired skills
could take time.

Users who will use the final device will also benefit from this
software because low-power boards can be adapted by manufacturers,
which are usually cheaper, and as previously stated, the adoption of
this software reduces labor costs, allowing the final product to be priced
lower.

Because the final items will have faster software, the device’s quality
will increase, providing the user with a better usage experience. Finally,
as previously reported, due to lower energy consumption, battery de-
vices have a longer battery life, requiring fewer recharges by the user.
This advantage also allows for some devices to be powered by a solar
panel, making installation easier and free from power plugs.

This software has been developed within the project ‘‘EdgeVision

models and returns the results over WebSocket. against Varroa (EV2): Edge computing in defence of bees’’, which is

2



L. Giovannesi, G.P. Mattia and R. Beraldi Software Impacts 20 (2024) 100641

f
a
W
d
O
t

4

n
p
p
p
p
i

c
u

s

Fig. 1. Overall optimization procedure workflow.

ounded by the Italian MUR PRIN2022 (ERC PE6) research program
nd by European Union - Next Generation EU (project no. 202277
MAE CUP B53D23012820006). In this study, solar-powered edge

evices use computer vision to identify Varroa mites in beehives.
ptDNN allows to increase the efficiency of the DNN model used for

he detection.

. Conclusion

This article proposes the first version of an automatic deep neural
etwork model optimizer, which can be easily integrated into deploy
ipelines bringing advantages for a large set of users. However, the
roposed solution’s simplicity allows for future refinement. For exam-
le, by employing the same search algorithms, we may utilize superior
runing strategies, such as filter pruning, to significantly boost the
nference time.

The present version of the framework can only handle models for
lassification tasks, thus our next goal is to implement the most often
sed object detection and segmentation tasks.

Actually, because a large number of fine-tuning phases are neces-
ary, the optimizer can take a long time to converge, especially with big

models; therefore, it would be desirable to improve the used algorithms,
employing more targeted solutions to reduce convergence times.

The proposed software produces promising results, optimizing
ResNet50 [7] in 125 min on a nVidia RTX 1080, returning a model
with a size reduction of 6.35x and a speedup of 2.91x on a Radxa Rock
5B.

CRediT authorship contribution statement

Luca Giovannesi: Software, Writing – original draft, Investigation,
Writing – review & editing, Methodology. Gabriele Proietti Mattia:
Conceptualization, Formal analysis, Methodology, Writing – review
& editing, Supervision, Validation. Roberto Beraldi: Funding acqui-
sition, Methodology, Project administration, Supervision, Validation,
Conceptualization, Formal analysis, Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
3



L. Giovannesi, G.P. Mattia and R. Beraldi Software Impacts 20 (2024) 100641
References

[1] M. Denil, B. Shakibi, L. Dinh, M.A. Ranzato, N. de Freitas, Predicting parameters in
deep learning, in: C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Weinberger
(Eds.), in: Advances in Neural Information Processing Systems, vol. 26, Curran
Associates, Inc., 2013.

[2] S. Han, J. Pool, J. Tran, W.J. Dally, Learning both weights and connections for
efficient neural networks, 2015.

[3] J.S. Larsen, L. Clemmensen, Weight sharing and deep learning for spectral data,
in: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP, 2020, pp. 4227–4231.

[4] M. Nagel, M. Fournarakis, R.A. Amjad, Y. Bondarenko, M. van Baalen, T.
Blankevoort, A white paper on neural network quantization, 2021.

[5] I. Galanis, I. Anagnostopoulos, C. Nguyen, G. Bares, D. Burkard, Inference and
energy efficient design of deep neural networks for embedded devices, in: 2020
IEEE Computer Society Annual Symposium on VLSI, ISVLSI, 2020, pp. 36–41.

[6] L. Papa, G. Proietti Mattia, P. Russo, I. Amerini, R. Beraldi, Lightweight and
energy-aware monocular depth estimation models for IoT embedded devices:
Challenges and performances in terrestrial and underwater scenarios, Sensors 23
(4) (2023).

[7] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
2015.
4

http://refhub.elsevier.com/S2665-9638(24)00029-0/sb1
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb1
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb1
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb1
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb1
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb1
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb1
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb2
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb2
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb2
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb3
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb3
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb3
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb3
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb3
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb4
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb4
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb4
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb5
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb5
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb5
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb5
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb5
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb6
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb6
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb6
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb6
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb6
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb6
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb6
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb7
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb7
http://refhub.elsevier.com/S2665-9638(24)00029-0/sb7

	OptDNN: Automatic deep neural networks optimizer for edge computing
	Introduction
	Software description
	Software components
	How it works

	Impact
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


