Shapley values from cooperative game theory are adapted for explaining machine learning predictions. For large feature sets used in machine learning, Shapley values are approximated. We present a protocol for two techniques for explaining support vector machine predictions with exact Shapley value computation. We detail the application of these algorithms and provide ready-to-use Python scripts and custom code. The final output of the protocol includes quantitative feature analysis and mapping of important features for visualization.

Protocol to explain support vector machine predictions via exact Shapley value computation / Mastropietro, Andrea; Bajorath, Jürgen. - In: STAR PROTOCOLS. - ISSN 2666-1667. - 5:2(2024). [10.1016/j.xpro.2024.103010]

Protocol to explain support vector machine predictions via exact Shapley value computation

Mastropietro, Andrea
Primo
;
2024

Abstract

Shapley values from cooperative game theory are adapted for explaining machine learning predictions. For large feature sets used in machine learning, Shapley values are approximated. We present a protocol for two techniques for explaining support vector machine predictions with exact Shapley value computation. We detail the application of these algorithms and provide ready-to-use Python scripts and custom code. The final output of the protocol includes quantitative feature analysis and mapping of important features for visualization.
2024
chemoinformatics; support vector machines; explainable artificial intelligence; shapley values; protocol
01 Pubblicazione su rivista::01a Articolo in rivista
Protocol to explain support vector machine predictions via exact Shapley value computation / Mastropietro, Andrea; Bajorath, Jürgen. - In: STAR PROTOCOLS. - ISSN 2666-1667. - 5:2(2024). [10.1016/j.xpro.2024.103010]
File allegati a questo prodotto
File Dimensione Formato  
Mastropietro_Protocol_2024.pdf

accesso aperto

Note: https://doi.org/10.1016/ j.xpro.2024.103010
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1709034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact