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SUMMARY

Shapley values from cooperative game theory are adapted for explaining
machine learning predictions. For large feature sets used in machine learning,
Shapley values are approximated. We present a protocol for two techniques
for explaining support vector machine predictions with exact Shapley value
computation. We detail the application of these algorithms and provide ready-
to-use Python scripts and custom code. The final output of the protocol includes
quantitative feature analysis andmapping of important features for visualization.
For complete details on the use and execution of this protocol, please refer to
Feldmann and Bajorath1 and Mastropietro et al.2
BEFORE YOU BEGIN

This protocol details the use of the Shapley value-expressed Tanimoto similarity (SVETA) and the

Shapley value-expressed radial basis function (SVERAD) algorithms for the exact computation of

Shapley values to explain support vector machine (SVM) predictions in chemistry. The SVETA

approach was specifically designed for SVM models relying on Tanimoto similarity3 (which is typi-

cally calculated in compound comparison) and the corresponding Tanimoto kernel, while

SVERAD was developed for SVM models using the more generally applicable family of radial basis

function (RBF) kernels (including the popular Gaussian kernel). In SVM modeling, object similarity

relationships are determined by chosen kernel functions. The Tanimoto kernel was specifically intro-

duced in cheminformatics for quantifying Tanimoto similarity of molecular fingerprint representa-

tions. Both SVETA and SVERAD employ binary molecular fingerprints as features. Any binary finger-

print representation can be used. The software tools were developed on a Linux-based system

(Ubuntu 22.04) but are also usable with different operating systems. Detailed below are the steps

required to install the environment and packages for executing SVETA and SVERAD and the work-

flow for applying the protocols on exemplary (freely available) compound data with ready-to-use

Python scripts and custom code. Computational times are reported for a machine with capacity

specified in the materials and equipment section. Using a different system configuration will lead

to different execution times.
Installation

Timing: 10 min
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1. Install Python 3 (versions 3.10.5 and 3.11.0 were tested, but different versions are compatible as

well) and the libraries required to run the code. We suggest creating and using a conda virtual

environment:

a. Install Anaconda from https://www.anaconda.com/download.

b. Download or clone the SVERAD repository from https://github.com/AndMastro/SVERAD

(which also contains the code required to execute SVETA):
>git clone https://github.com/AndMastro/SVERAD.git

>

>

>

>

>

2

Note: Git should be installed to run the command. If it is not installed, follow the instructions

from https://git-scm.com.

c. Create a conda environment using the environment.yml file provided in the cloned repository:

i. Open environment.yml and edit the parameter prefix tomatch your conda environment folder.

ii. Open a terminal window in the repository root folder.

iii. Run the command:
conda env create -f environment.yml

p

c

p

p

Troubleshooting 1

Note: Alternatively, if you do not wish to use a conda environment and prefer a local Python

installation instead, the required Python packages (found in the key resources table) can be

installed using pip:
ip install package_name
If you prefer using a conda environment but not the provided one, manually install alterna-
onda i

ip ins

ip ins

STA
tive packages using conda:
nstall package_name
Troubleshooting 2
2. Install the SVETA module:

a. In the repository, move to the folder src/sveta.

b. Run the command:
tall .
3. Install the SVERAD module:

a. In the repository, move to the folder src/sverad.

b. Run the command:
Note: Installing the SVETA and SVERAD modules will also cover additional dependencies, if

not previously installed.

Note: Alternatively, for enhanced customization, SVETA and SVERAD can also be installed in

development mode such that any modification made to the Python source files is immediately

reflected in the code:

>pip install .
tall -e .
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Compound activity data ChEMBL 30 https://doi.org/10.6019/CHEMBL.database.30

Confirmed aggregators Aggregator advisor https://advisor.docking.org/

Adenosine receptor 3 ligand dataset This paper
Feldmann and Bajorath1

Mastropietro et al.2

https://doi.org/10.17632/hz3pjthz2t.1

Software and algorithms

SVETA v2 This paper
Feldmann and Bajorath1

Zenodo4

Zenodo: https://doi.org/10.5281/zenodo.6792073

SVERAD v1.0.1 This paper
Mastropietro et al.2

Zenodo5

GitHub: https://github.com/AndMastro/SVERAD
Zenodo: https://doi.org/10.5281/zenodo.10803755

RDKit 2023.09.6 Zenodo Zenodo: https://doi.org/10.5281/zenodo.10793672

Lilly Medchem Rules GitHub https://github.com/IanAWatson/Lilly-Medchem-Rules

scikit-learn 1.4.1.post1 GitHub https://github.com/scikit-learn/scikit-learn

Matplotlib 3.8.0 GitHub https://github.com/matplotlib/matplotlib

NumPy 1.26.4 GitHub https://github.com/numpy/numpy

SciPy 1.12.0 GitHub https://github.com/scipy/scipy

tqdm 4.66.2 GitHub https://github.com/tqdm/tqdm

Other

Intel Core i7-12700H @ max 4.70 GHz CPU N/A N/A

16 GB RAM N/A N/A

Windows/Linux/macOS operating system N/A N/A
MATERIALS AND EQUIPMENT
Computational resources

Component Brand Model/Capabilities/Version

CPU Intel Core i7-12700H @ max 4.70 GHz

RAM Any 16 GB

Operating System Linux/Windows/macOS Ubuntu 22.04/11/Catalina
STEP-BY-STEP METHOD DETAILS

The use of SVETA and SVERAD for explaining predictions of SVM models using the Tanimoto and

RBF kernels, respectively, is described. We show how to properly encode the data for use with

the scripts provided in the repository and detail how to apply SVETA and SVERAD on the

provided compound data set (encoded as SMILES6 strings) and how to use the modules with

custom code.
Data preparation

Timing: 10 min

This step generates the data in the required format and should be performed manually by

the user.

1. Format the data as a tab-separated value file (.tsv). The first column (uniprot_id) should contain

the name of the target, the second column (nonstereo_aromatic_smiles) the SMILES string of

each compound, and the third column (label) should state whether the compound is active or

not (using the labels active or random). An example of a suitable file is provided in Figure 1.
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Figure 1. Example of a suitable input file containing the name of the target (uniport_id), SMILES strings, and labels

(active/random)

An exemplary compound data file is provided in the repository.
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a. Create a .tsv containing the desired compounds.

b. Place the generated file in a folder of interest.

2. Open the parameters.yml file provided in the repository. It contains customizable parameters for

the scripts. Edit the DATASET_PATH field with the location of your generated data file and also

edit the remaining fields as needed.

Note: The repository contains data from the original publications1,2 that are used by default

when executing the provided scripts. The data set consists of 287 adenosine receptor 3 li-

gands used as positive training and test instances and the same number of other compounds

randomly selected from ChEMBL7,8 used as negative instances.
SVM model training and explanation

Timing: 1 min

This is the main step performing both the training of the SVMmodels (via grid-search optimization of

hyperparameters) and the subsequent Shapley value analysis. We show how to train and explain

SVM models using the provided ready-to-use scripts and alternatives for adding SVETA and

SVERAD to custom code.

3. Run the script for model training and explanation:

a. Open a terminal in the repository root folder.

b. Activate the conda environment:
>conda activate sverad_env

>

4

Troubleshooting 3

c. Run the script:
python trainer_explainer_script.py
Troubleshooting 4

Note: The script will load arguments from the parameters.yml file. Since the repository is

actively maintained and updated to ensure up-to-date content, this file may vary

(refer to the GitHub repository). At the time of writing, the file contains the following

parameters:

i. DATASET_PATH: location of the dataset .tsv file.
STAR Protocols 5, 103010, June 21, 2024
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ii. DATASET_PICKLE_PATH: location for saving/loading the data set in pickle format used

by the code.

iii. FINGERPRINTS_PICKLE_PATH: location for saving/loading the molecular fingerprint

generated by the script, used as molecular representation/input features for the SVM

models.

iv. MODEL_PATH: location for saving the generated models.

v. EXPLANATION_PATH: location for saving the generated explanations.

vi. PREDICTION_PATH: location for saving the model predictions.

vii. TARGET_UNIPROT_ID: name of the target (first column in the .tsv file).

viii. SAVE_DATASET_PICKLE: binary label specifying whether or not to save the data set and

the fingerprints as pickle files.

ix. LOAD_DATASET_PICKLE: binary label specifying whether or not to load precomputed

data set and fingerprints as pickle files.

x. EMPTY_SET_VALUE: value to assign to the empty coalition for the computation of the

Shapley values (defaults to 0).

xi. SAVE_EXPLANATIONS: binary label specifying whether or not to save the generated ex-

planations and predictions.

xii. SAVE_MODELS: binary label specifying whether or not to save the generated models.

xiii. SEED: seed used by the random number generators (defaults to 42).

Note: Instead of relying on the provided scripts, it is also possible to import SVETA and

SVERAD in custom code, as illustrated below:
m sverad.sverad_svm import ExplainingSVC as SVERADExplainingSVC

m sveta.svm import ExplainingSVC as SVETAExplainingSVC

1.0

MA = 1.0

D = 42

TY_SET_VALUE = 0.0

rad_model = SVERADExplainingSVC(C = C, gamma_val = GAMMA, random_state=SEED, empty_set_

ue=EMPTY_SET_VALUE)

ta_model = SVETAExplainingSVC(C = C, random_state=SEED, no_player_value=EMPTY_SET_VALUE)
Note: First, the required modules should be imported. Then, one can define the models. The

classes SVERADExplainingSVC and SVETAExplainingSVC provide SVM classification models

with training and explanation procedures. The parameter C is used to control the applied

regularization in the SVM, random_state defines the seed for the random number generator

internally used by the functions, and empty_set_value (termed no_player_value in SVETA) in-

dicates the value for the empty coalition. The parameter gamma_val is specific for the RBF

kernel and used to modulate the decision boundary of the model. Larger values determine

a more complex boundary, while smaller values are used to make the boundary smoother.

For more details on additional optional parameters, please, refer to the GitHub repository.

Note: The Morgan fingerprint9 (with bond radius 2) is used here, which has been the proto-

type for the current state-of-the-art class of (extended connectivity) fingerprints calculated

from molecular graphs. These fingerprints capture topological atom (environment) patterns

that can be used as molecule-dependent feature sets (‘‘unfolded’’) or hashed (‘‘folded’’) into
STAR Protocols 5, 103010, June 21, 2024 5
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STAR
Then, one can train and test the models and generate Shapley value-based explanations:
. #your training data samples

. #your training data labels

. #your test data samples

odel.fit(X_train, y_train)

del.fit(X_train, y_train)

reds = model.predict(X_test)

eds = model.predict(X_test)

hapley_values = sverad_model.feature_weights(X_test)

apley_values = sveta_model.feature_weights(X_test)
Note: Once the models are trained using the fit() method, they can be used to predict new

samples with predict(). Finally, the feature_weights() method generates exact Shapley values

for input features and the predictions of the samples passed to the function.

Note: Shapley values can be calculated for any defined molecular features. However, finger-

prints capturing structural patterns or fragments are generally preferred for applications in

chemistry because structural features can be mapped on predicted compounds, providing

intuitive access to molecular regions determining predictions.
Explanation analysis and feature mapping

Timing: 7 min

After having trained and tested the models and computed the Shapley values, the importance of

features present or absent in correctly predicted test compounds can be quantified and the features

can be mapped on compound structures.

4. Run the analysis script:

a. With a terminal open in the repository root folder, run:
xplanation_analyzer_script.py
Troubleshooting 5

The script loads arguments from the parameters.yml file including:

i. TARGET_UNIPROT_ID: name of the target (first column in the .tsv file).

ii. DATASET_PATH: location of the dataset .tsv file.

iii. SAVE_DATA_PATH: location for saving the generated plots and images.

iv. DATASET_PICKLE_PATH: location of the data set in pickle format.

v. FINGERPRINTS_PICKLE_PATH: location of the fingerprints in pickle format.

vi. MODEL_PATH: location of the models in pickle format.

vii. EXPLANATION_PATH: location of the explanations in pickle format.

viii. PREDICTION_PATH: location of the .tsv containing prediction information.

ix. SAVE_PLOTS: binary label indicating whether or not to save the plots with feature

contributions.

x. COLOR_PRESENT_FEATURES: string defining the color of present features in the plot.
Protocols 5, 103010, June 21, 2024



Figure 2. Contribution of present and absent features to the correct prediction of active and randomly selected

compounds quantified using SVETA (left) and SVERAD (right)
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xi. COLOR_ABSENT_FEATURES: string defining the color of absent features in the plot.

xii. SAVE_MAPPINGS: binary label indicating whether or not to save the feature mappings.

xiii. FIGURE_FORMAT: format of the saved plots.

xiv. SEED: seed used by the random number generators (defaults to 42).
EXPECTED OUTCOMES

The final results of the protocol, generated by the script explanation_analyzer_script.py, are repre-

sented boxplots reporting contributions of features present or absent in correctly predicted test

compounds. Present features are then mapped to the corresponding compounds, highlighting their

relevance for the prediction. An exemplary plot reporting feature contribution is given in Figure 2.

The script also outputs additional statistics and information including the parameters of the best

models obtained via grid search, average numbers of intersecting features, symmetric difference,

and union features between the input samples and the SVM support vectors, training and test set

accuracy, the models’ expected values, and contributions of present and absent features for active

and inactive compounds.

Feature mapping is generated for any correctly predicted compound. Figures 3 and 4 show the

mapping for exemplary active and random compounds, respectively, using SVETA and SVERAD.

The mappings delineate molecular substructures supporting correct predictions (red for active

and blue for random compounds) or opposing them (blue for active compounds and red for random

compounds).
QUANTIFICATION AND STATISTICAL ANALYSIS

Both SVETA and SVERAD were thoroughly assessed to ensure the correct and exact computation of

Shapley values. We generated 20 binary feature vectors containing a small number of features (15),

for which exact Shapley value computation via exhaustive enumeration of all feature coalitions was

feasible. We then computed Shapley values for the Tanimoto and RBF kernels and all pairs of vectors

using SVETA and SVERAD, respectively, obtaining the same values as produced by the explicit

enumeration, thus demonstrating the validity of the protocol. Moreover, we compared the Shapley

values with the widely adopted Shapley Additive Explanations (SHAP)10,11 approximation. The

Fisher-transformed Pearson’s r correlation coefficient between SHAP and SVETA was 0.82 G

0.25, and between SHAP and SVERAD was 0.72 G 0.43, reflecting the underlying local approxima-

tion of the SHAP values, as also reported in the original publications.1,2

The same analysis was performed for the Shapley values computed for the logits of the SVM

predictions. In this case, the SHAP approximation also displayed limited or no correlation with exact

Shapley values (with median correlation coefficients of 0.682 for SHAP vs. SVETA and 0.120 for SHAP
STAR Protocols 5, 103010, June 21, 2024 7



Figure 4. Feature mapping on correctly predicted random compounds using SVETA (left) and SVERAD (right)
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vs. SVERAD), assigning preference to the exact Shapley value computation for assessing feature

contributions of SVM models.1,2
LIMITATIONS

SVETA and SVERAD are usable only with SVM models relying on the Tanimoto and the RBF kernels,

respectively, and with binary fingerprint descriptors.
TROUBLESHOOTING

Problem 1

Related to installation. If working in a Windows PowerShell, the user may encounter the error ‘‘conda

is not recognized as an internal or external command.’’ This is then due to the fact that conda was not

initialized in the PowerShell.
Potential solution

Initialize conda with the command:
>conda init
and then restart the terminal.
Problem 2

Related to installation. The environment.yml file was generated under a Linux-based system. Even if

it was generated for cross-platform use, it might fail to install the packages under a different system.
Potential solution

Manually install the packages using pip or conda.
8 STAR Protocols 5, 103010, June 21, 2024



Figure 3. Feature mapping on correctly predicted active compounds using SVETA (left) and SVERAD (right)
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Problem 3

Related to SVM model training and explanation. The environment name sverad_env is the default

found in the provided environment.yml file. If upon activation the error ‘‘EnvironmentNameNot-

Found’’ occurs, it means that the environment was installed under a different name.

Potential solution

If the environment.yml file was edited and the name field changed, be sure to use that name when

activating the environment. If, instead, one uses a custom environment, activate it by providing the

correct name. It is possible to see a list of the installed environments using the command:
>conda env list
Problem 4

Related to SVM model training and explanation. Depending on the environment variables, when

running the python command in the terminal, one might encounter an error message like ‘‘Com-

mand not found’’.
Potential solution

Try typing python3 instead of python when launching Python scripts from terminal. If there still is an

error, ensure that Python is correctly installed (either in the conda environment or standalone if one

has opted for a local Python installation).
Problem 5

Related to explanation analysis and feature mapping. If running the script explanation_analyzer_

script.py fails, returning the message ‘‘No such file or directory: [file_name]’’, it means that input files

needed by the script are not placed in the correct folders.
Potential solution

Check the following:
STAR Protocols 5, 103010, June 21, 2024 9
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� When running trainer_explainer_script.py, depending on the file(s) not found, ensure that the

fields SAVE_DATASET_PICKLE, SAVE_EXPLANATIONS, and SAVE_MODELS in parameters.yml

are set to True.

� When running explanation_analyzer_script.py, check parameters.yml to ensure that the location

of the files to be loaded matches their actual location.

RESOURCE AVAILABILITY

Lead contact

Requests for further information, resources, and software should be directed to (and will be

answered by) the lead contact, Jürgen Bajorath (bajorath@bit.uni-bonn.de).

Technical contact

Questions about the technical specifics of performing the protocol should be directed to (and will be

answered by) the technical contact, Andrea Mastropietro (mastropietro@diag.uniroma1.it).

Materials availability

Not applicable.

Data and code availability

The compound data used in this protocol are available as Mendeley data at https://doi.org/10.

17632/hz3pjthz2t.1. The SVETA source code is available in an open access deposition at Zenodo

(https://doi.org/10.5281/zenodo.6792073). The SVERAD source code is available both on GitHub

(https://github.com/AndMastro/SVERAD) and on Zenodo (https://doi.org/10.5281/zenodo.

10803755).
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