During remediation of contaminated aquifers, diagnostic tools can help evaluate whether an intended mass removal process was success- fully initiated and acted on specific contaminants of concern. In this study, several diagnostic tools were tested in a controlled-release in situ air sparging experiment that focused on the treatment of target hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xylenes). The tools included compound-specific isotope analysis (CSIA), expression of functional genes (mRNA), and metabolites characteristic of aerobic and anaerobic biodegradation. Total and compound-specific mass balances were established and used, along with traditional monitoring parameters, to validate the results from the various tools. CSIA results indicated biodegradation as the main process contributing to benzene and toluene removal. Removal process-specific isotope shifts were detected in groundwater as well as in the system effluent gas. CSIA, metabolite, and mRNA biomarkers consistently indicated that both aerobic and anaerobic biodegradation of benzene and toluene occurred, but that their rela- tive importance evolved over time and were related to the treatment system operation. While the indicators do not allow quantification of the mass removed, they are particularly useful to identify if a removal process has been initiated, and to track relative changes in the predominance of in situ contaminant attenuation processes resulting from remediation efforts.

Diagnostic tools to assess mass removal processes during pulsed air sparging of a petroleum hydrocarbon source zone / Bouchard, Daniel; Marchesi, Massimo; Madsen, Eugene L.; Derito, Christopher M.; Thomson, Neil R.; Aravena, Ramon; Barker, Jim F.; Buscheck, Tim; Kolhatkar, Ravi; Daniels, Eric J.; Hunkeler, Daniel. - In: GROUND WATER MONITORING AND REMEDIATION. - ISSN 1069-3629. - 38:4 (Special Issue)(2018), pp. 29-44. [10.1111/gwmr.12297]

Diagnostic tools to assess mass removal processes during pulsed air sparging of a petroleum hydrocarbon source zone

Marchesi, Massimo;
2018

Abstract

During remediation of contaminated aquifers, diagnostic tools can help evaluate whether an intended mass removal process was success- fully initiated and acted on specific contaminants of concern. In this study, several diagnostic tools were tested in a controlled-release in situ air sparging experiment that focused on the treatment of target hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xylenes). The tools included compound-specific isotope analysis (CSIA), expression of functional genes (mRNA), and metabolites characteristic of aerobic and anaerobic biodegradation. Total and compound-specific mass balances were established and used, along with traditional monitoring parameters, to validate the results from the various tools. CSIA results indicated biodegradation as the main process contributing to benzene and toluene removal. Removal process-specific isotope shifts were detected in groundwater as well as in the system effluent gas. CSIA, metabolite, and mRNA biomarkers consistently indicated that both aerobic and anaerobic biodegradation of benzene and toluene occurred, but that their rela- tive importance evolved over time and were related to the treatment system operation. While the indicators do not allow quantification of the mass removed, they are particularly useful to identify if a removal process has been initiated, and to track relative changes in the predominance of in situ contaminant attenuation processes resulting from remediation efforts.
2018
Gasoline-contaminated site; stable-isotope fractionation; natural gradient experiment
01 Pubblicazione su rivista::01a Articolo in rivista
Diagnostic tools to assess mass removal processes during pulsed air sparging of a petroleum hydrocarbon source zone / Bouchard, Daniel; Marchesi, Massimo; Madsen, Eugene L.; Derito, Christopher M.; Thomson, Neil R.; Aravena, Ramon; Barker, Jim F.; Buscheck, Tim; Kolhatkar, Ravi; Daniels, Eric J.; Hunkeler, Daniel. - In: GROUND WATER MONITORING AND REMEDIATION. - ISSN 1069-3629. - 38:4 (Special Issue)(2018), pp. 29-44. [10.1111/gwmr.12297]
File allegati a questo prodotto
File Dimensione Formato  
Bouchard_Diagnostic_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 10.78 MB
Formato Adobe PDF
10.78 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1708149
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact