We study a range-constrained variant of the multi-UAV target search problem where commercially available UAVs are used for target search in tandem with ground-based mobile recharging vehicles (MRVs) that can travel, via the road network, to meet up with and recharge a UAV. We propose a pipeline for representing the problem on real-world road networks, starting with a map of the road network and yielding a final routing graph that permits UAVs to recharge via rendezvous with MRVs. The problem is then solved using mixed-integer linear programming (MILP) and constraint programming (CP). We conduct a comprehensive simulation of our methods using real-world road network data from Scotland. The assessment investigates accumulated search reward compared to ideal and worst-case scenarios and briefly explores the impact of UAV speeds. Our empirical results indicate that CP is able to provide better solutions than MILP, overall, and that the use of a fleet of MRVs can improve the accumulated reward of the UAV fleet, supporting their inclusion for surveillance tasks.
Target Search on Road Networks with Range-Constrained UAVs and Ground-Based Mobile Recharging Vehicles / Booth, K. E. C.; Piacentini, C.; Bernardini, S.; Beck, J. C.. - In: IEEE ROBOTICS AND AUTOMATION LETTERS. - ISSN 2377-3766. - 5:4(2020), pp. 6702-6709. [10.1109/LRA.2020.3015464]
Target Search on Road Networks with Range-Constrained UAVs and Ground-Based Mobile Recharging Vehicles
Bernardini S.;
2020
Abstract
We study a range-constrained variant of the multi-UAV target search problem where commercially available UAVs are used for target search in tandem with ground-based mobile recharging vehicles (MRVs) that can travel, via the road network, to meet up with and recharge a UAV. We propose a pipeline for representing the problem on real-world road networks, starting with a map of the road network and yielding a final routing graph that permits UAVs to recharge via rendezvous with MRVs. The problem is then solved using mixed-integer linear programming (MILP) and constraint programming (CP). We conduct a comprehensive simulation of our methods using real-world road network data from Scotland. The assessment investigates accumulated search reward compared to ideal and worst-case scenarios and briefly explores the impact of UAV speeds. Our empirical results indicate that CP is able to provide better solutions than MILP, overall, and that the use of a fleet of MRVs can improve the accumulated reward of the UAV fleet, supporting their inclusion for surveillance tasks.File | Dimensione | Formato | |
---|---|---|---|
Booth_Target-Search_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.