The present study proposes clustering techniques for designing demand response (DR) programs targeting commercial and residential prosumers. The goal is to alter the consumption behavior of the prosumers within a distributed energy community in Italy. This aggregation aims to: (a) minimize the reverse power flow at the primary substation, occurring when generation from solar panels in the local grid exceeds consumption, and (b) shift the system wide peak demand, that typically occurs during late afternoon. Regarding the clustering stage, we consider daily prosumer load profiles and divide them across the extracted clusters. Three popular machine learning algorithms are employed, namely k-means, k-medoids and agglomerative clustering. We evaluate the methods using multiple metrics including a novel metric proposed within this study, namely peak performance score (PPS). The k-means algorithm with dynamic time warping distance considering 14 clusters exhibits the highest performance with a PPS of 0.689. Subsequently, we analyze each extracted cluster with respect to load shape, entropy, and load types. These characteristics are used to distinguish the clusters that have the potential to serve the optimization objectives by matching them to proper DR schemes including time of use, critical peak pricing, and real-time pricing. Our results confirm the effectiveness of the proposed clustering algorithm in generating meaningful flexibility clusters, while the derived DR pricing policy encourages consumption during off-peak hours. The developed methodology is robust to the low availability and quality of training datasets and can be used by aggregator companies for segmenting energy communities and developing personalized DR policies.

Targeted demand response for flexible energy communities using clustering techniques / Pelekis, Sotiris; Pipergias, Angelos; Karakolis, Evangelos; Mouzakitis, Spiros; Santori, Francesca; Ghoreishi, Mohammad; Askounis, Dimitris. - In: SUSTAINABLE ENERGY, GRIDS AND NETWORKS. - ISSN 2352-4677. - 36:(2023), pp. 1-6. [10.1016/j.segan.2023.101134]

Targeted demand response for flexible energy communities using clustering techniques

Mohammad Ghoreishi;
2023

Abstract

The present study proposes clustering techniques for designing demand response (DR) programs targeting commercial and residential prosumers. The goal is to alter the consumption behavior of the prosumers within a distributed energy community in Italy. This aggregation aims to: (a) minimize the reverse power flow at the primary substation, occurring when generation from solar panels in the local grid exceeds consumption, and (b) shift the system wide peak demand, that typically occurs during late afternoon. Regarding the clustering stage, we consider daily prosumer load profiles and divide them across the extracted clusters. Three popular machine learning algorithms are employed, namely k-means, k-medoids and agglomerative clustering. We evaluate the methods using multiple metrics including a novel metric proposed within this study, namely peak performance score (PPS). The k-means algorithm with dynamic time warping distance considering 14 clusters exhibits the highest performance with a PPS of 0.689. Subsequently, we analyze each extracted cluster with respect to load shape, entropy, and load types. These characteristics are used to distinguish the clusters that have the potential to serve the optimization objectives by matching them to proper DR schemes including time of use, critical peak pricing, and real-time pricing. Our results confirm the effectiveness of the proposed clustering algorithm in generating meaningful flexibility clusters, while the derived DR pricing policy encourages consumption during off-peak hours. The developed methodology is robust to the low availability and quality of training datasets and can be used by aggregator companies for segmenting energy communities and developing personalized DR policies.
2023
clustering; demand response; energy community; flexibility; k-means; load profile; machine learning; peak performance score; reverse power flow
01 Pubblicazione su rivista::01a Articolo in rivista
Targeted demand response for flexible energy communities using clustering techniques / Pelekis, Sotiris; Pipergias, Angelos; Karakolis, Evangelos; Mouzakitis, Spiros; Santori, Francesca; Ghoreishi, Mohammad; Askounis, Dimitris. - In: SUSTAINABLE ENERGY, GRIDS AND NETWORKS. - ISSN 2352-4677. - 36:(2023), pp. 1-6. [10.1016/j.segan.2023.101134]
File allegati a questo prodotto
File Dimensione Formato  
Pelekis_Targeted demand response_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.92 MB
Formato Adobe PDF
4.92 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1707697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact