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a b s t r a c t

The present study proposes clustering techniques for designing demand response (DR) programs
targeting commercial and residential prosumers. The goal is to alter the consumption behavior of the
prosumers within a distributed energy community in Italy. This aggregation aims to: (a) minimize the
reverse power flow at the primary substation, occurring when generation from solar panels in the local
grid exceeds consumption, and (b) shift the system wide peak demand, that typically occurs during
late afternoon. Regarding the clustering stage, we consider daily prosumer load profiles and divide
them across the extracted clusters. Three popular machine learning algorithms are employed, namely
k-means, k-medoids and agglomerative clustering. We evaluate the methods using multiple metrics
including a novel metric proposed within this study, namely peak performance score (PPS). The
k-means algorithm with dynamic time warping distance considering 14 clusters exhibits the highest
performance with a PPS of 0.689. Subsequently, we analyze each extracted cluster with respect to
load shape, entropy, and load types. These characteristics are used to distinguish the clusters that
have the potential to serve the optimization objectives by matching them to proper DR schemes
including time of use, critical peak pricing, and real-time pricing. Our results confirm the effectiveness
of the proposed clustering algorithm in generating meaningful flexibility clusters, while the derived DR
pricing policy encourages consumption during off-peak hours. The developed methodology is robust
to the low availability and quality of training datasets and can be used by aggregator companies for
segmenting energy communities and developing personalized DR policies.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Climate change alongside the growing population, the increase
n electrical energy consumption and the depletion of resources
ave led to a large-scale deployment of renewable energy sources
RES), increasing their energy share worldwide [1]. Numerous RES
echnologies have significantly progressed in technical and eco-
omic maturity over the past few decades. Yet, their fluctuating
nd intermittent nature raised concerns related to the balancing
nd capacity adequacy of an energy supply configuration relying
ostly on RES [2] as it usually leads to a gap between the energy
roduced and the energy demanded during specific hours of the
ay (peak hours). To this end, battery energy storage systems
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(BESS) can be utilized in order to store the surplus of produced
energy to make it available during the peak hours [3]. However, it
is worth noting that this approach may actually increase energy
usage [4]. Furthermore, serving the demand during peak hours
may lead to blackouts.

The necessity of increasing the flexibility of the existing bulk
system has led researchers to investigate new methodologies for
demand side management (DSM) to fully exploit the production
of RES. In this direction, demand response (DR), a tool for the
management of peak demand, and the balance of generation and
consumption in the electrical grid, has emerged recently. How-
ever, the implementation of DR programs is still quite limited,
especially when it comes to residential consumers. As the cost
of equipment that can help homes and businesses participate in
DR (i.e. smart meters, controllers and devices) decreases, there is
a growing need for the design and implementation of programs
to effectively motivate the consumers that are involved in DR. To
this end, the I-NERGY project [5] aims at developing innovative
artificial intelligence (AI) services [6,7] for the energy sector by

providing better energy forecasts [8,9], flexibility and anomaly
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Nomenclature

BESS Battery energy storage system
CPP Critical peak pricing
DBI Davies–Bouldin validity index
DLC Direct load control
DR Demand response
DSM Demand side management
DTW Dynamic time warping
EMC Energy management controllers
EPES Electrical power and energy systems
PMS Peak match score
PPS Peak performance score
PV Photovoltaic
RES Renewable energy sources
RTP Real-time pricing
SOM Self-organizing maps
TOU Time of use
TSO Transmission system operator

detection services [10], amongst others. These services cover the
entire energy value chain.

In this study, we aim to segment a flexible energy community
f heterogeneous prosumers pertaining to a power distribution
rid fraction in central Italy [11,12]. The municipal enterprise,
hat owns and manages the electricity distribution network, as-
ires to act as an aggregator and identify prosumers suitable
or DR, therefore aiming to mitigate two shortcomings related
o the active power load profiles within the energy community:
i) the problem of reverse power flow, where the total energy
roduction in the community is greater than the total consump-
ion; this occurs in the early afternoon when production from
hotovoltaic (PV) installations peaks and leads to an injection
f load from the network managed by the aggregator to the
etwork that supplies it, which is undesirable for the aggregator;
ii) the reduction in electricity demand during peak hours in
he late afternoon, through peak shaving and/or peak shifting
echniques. To this end, we perform a cluster analysis, following
roper data pre-processing, on the daily load/generation profiles
s recorded by smart meters measuring the active power of
articipant prosumers. In this direction, different clustering algo-
ithms (k-means, k-medoids, agglomerative clustering) are com-
ared. Subsequently, we analyze the extracted clusters aiming
o distinguish those that can contribute to the above mentioned
ptimization goals through targeted, general-purpose DR pricing
olicies proposed to their pertaining prosumers. Note here that
he datasets have been collected following a centralized approach
y the utility. In this context, to address any data privacy issues,
he informed consent of the participants has been acquired and,
ubsequently, the datasets have been anonymized by removing
ny personally identifiable information (PII), as suggested by the
eneral Data Protection Regulation [13]. Therefore, only smart
eter IDs have been kept as the main identifier of each prosumer.
dditionally, to ensure the confidentiality and integrity of our
mart meter measurements, the database for storing the relevant
atasets has been secured by an identity and access management
echanism based on Keycloak [14]. The present study has also
een conducted under the context of I-NERGY project and is tar-
eted to the electrical power and energy systems (EPES) domain
nd specifically transmission system operators (TSO), suppliers
r aggregators that aim to organize, and segment flexible energy

ommunities within DR settings.

2

The rest of the paper is organized as follows. The rest of
Section 1 presents the current status quo in energy flexibility, the
electricity market, and existing demand response schemes, along-
side several machine learning-driven clustering techniques ap-
plied for flexibility assessment and demand response. Finally, the
main contributions of our study are summarized. Section 2 de-
scribes our methodological approach, including the data-
preprocessing, the daily load profile clustering methods, and
the formalization of the peak performance score metric (PPS).
Section 3 presents the results of the clustering process while
also discussing the personalized DR schemes based on the de-
rived prosumer clusters. Lastly, Sections 4 and 5 wrap up the
paper, presenting concluding remarks and future perspectives
respectively.

1.1. Energy flexibility

Energy flexibility describes the amount of energy consumption
that can be shifted or changed in time. Most often, assessing
and forecasting grid flexibility aims to reduce fluctuations in
demand (and generation) of electricity, i.e. the smoothing of the
demand curve and shaving load peaks. Flexibility is also the key to
achieve maximum RES penetration in the power grid. However,
in terms of formalization, the landscape of energy flexibility is
quite fuzzy as different studies come up with varying defini-
tions. In practice, energy flexibility is often defined in conjunction
with other quantities that denote the motive for providing it,
such as energy prices [15]. In this context, for the needs of our
study, energy flexibility can be intuitively perceived as −

%∆E
%∆p ,

here E the energy demand, p the energy price and ∆ the
delta operator. This formalization implies that the larger the
motive (price increase/decrease) required for a certain variation
(decrease/increase) of the energy consumption, the lower the
flexibility of the specific consumer and vice-versa. Note here
that the minus sign denotes that an increase in price leads to a
decrease in consumption and vice-versa.

From a demand side perspective, the use of flexibility within a
power grid is achieved through DR. As the term refers specifically
to adjustments in the electricity demand by end-users (industrial,
commercial or domestic), DR can be considered as one of the
main DSM mechanisms. In this context, prosumers commit to
change their conventional consumption patterns by using tem-
porary on-site power generation or reducing/shifting electricity
consumption away from periods of low RES generation and/or
high demand. This can be achieved by responding to signals from
the network operator or electricity provider [16].

1.2. Market and stakeholders overview

The electricity market is divided into the energy market, the
capacity market, and the ancillary services market, which are de-
signed to provide financial incentives to the various stakeholders
to contribute to energy supply and normal grid operation. DR is
mainly related to energy and ancillary services trading [17–19].
Depending on the country, contracts between interested parties
in the market can take place through bilateral (off market) trans-
actions or through an established market (exchanges, auction
with clearing prices). An overview of the market and its stake-
holders will contribute to the familiarization of the reader with
the underlying concepts of flexibility market and DR services:

• TSOs are market facilitators who ensure that every transac-
tion meets the network constraints. TSOs can usually buy or

sell products in all electricity markets.
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• Suppliers participate in the market and ensure that the
amount of energy committed to the market will balance the
consumption of their end users in their portfolio. They can
offer their customers specific contracts as flat rates or DR
schemes. When proposing DR schemes, the challenge for
suppliers is to evaluate how these programs will affect the
consumption of their portfolio.

• End-users buy electricity from suppliers. When signing up
for a DR program, they can either respond to a request or
price manually, or through an in-house power management
system. In this context, AI methods are significantly useful
for facing the challenges of automatic consumer response.

• Producers generate electricity and offer their production
at a certain price in the markets. Their products can be
either energy services and/or frequency response (ancillary)
services.

• Aggregators bring together end customers or small produc-
ers in order to achieve the minimum capacity that allows
to provide energy flexibility products and ancillary services.
Therefore, they have direct contracts with end-users offering
their flexibility to suppliers or grid operators. With regard
to suppliers, it must be ensured that end customers are
committed to the flexibility they negotiate in the wholesale
market.

Once a supplier commits to deliver a certain amount of power
to the grid, compliance is expected, otherwise, there is a penalty.
Thus, it is very important for aggregators to ensure that end-
users can provide the flexibility they have been engaged to [20].
In this context, the criteria, and therefore the implementation of
DR schemes, may be aimed at smoothing the electricity demand
curve, maximizing RES penetration, minimizing greenhouse gas
emissions, maximizing electricity exports, minimizing electricity
imports etc. All the above should always be in compliance with
the requirements of network stability and the respective regula-
tions for reserves, taking into account the multitude of network
stability levels (frequency, voltage, spinning and not spinning
reserve, post-black out reserve etc.). In general, DR schemes can
range from hour to seconds scale in terms of time resolution.

In markets and stock exchanges, where the equilibrium price
results from tenders and auctions (biding), the place of a DR
provider is highly sensitive as an overestimation of power can
lead to inability to cover and possible fine while an underesti-
mation can lead to profit losses [21]. Indicatively, it has been
estimated that the proper implementation of DR schemes can
reduce the load peak in Europe by 10% [22].

1.3. Demand response programs

There are two main types of demand response programs:
price or time-based programs and incentive-based programs [23]
as illustrated in Fig. 1. In price-based DR, the price of elec-
tricity changes throughout the day and consumers benefit from
consuming more electricity during low-price periods and less
during high-price periods. In incentive-based programs, the price
of electricity is constant, but the program administrators re-
ward consumers who manage to consume less than their fore-
casted consumption during periods when the system is congested
(e.g., when demand is very high and production is expensive). As
our study predominantly focuses on price-based DR, from now
on we limit our analysis to such programs. However, the core of
the insights and conclusions drawn from this study can partially
apply to incentive-based DR as well. Popular incentive-based DR
schemes have also been listed in Fig. 1, however, the reader is
referred to Vardakas et al. [23] for more details.
3

1.3.1. Time of use
Time of use (TOU) programs divide time into discrete periods

and offer a predefined current price for each period [24]. A period
can last from a few hours to a few days. When designing the
scheme, aggregators set high prices during the time intervals that
they intend to reduce consumption (usually peak demand hours)
and lower prices otherwise (off peak hours).

TOU programs have the advantage that they allow consumers
to plan the consumption patterns of different appliances during
the day at the beginning of the program and then follow this
planning [24]. They do not need to be flexible to the extent of re-
sponding to real-time signals nor do they need to have intelligent
controllers for this purpose. They can also a priori calculate the
savings they will achieve on their electricity bill if they participate
in the program, which is more difficult in programs that have a
more complex structure and the value for each period of the day
is not predetermined.

From the aggregator’s perspective, TOU programs are simpler
to design and manage (since they do not require to monitor and
change the price or communicate with consumers on a daily
basis) and seem to be more popular for consumers than dynamic
price adjustment programs, such as real time pricing (RTP) [25].
However, they may create new sharp spikes in demand when the
price drops from a high to a lower level [26,27]. This phenomenon
limits the number of consumers that can join the same TOU plan
(or plans with similar prices and periods), since a large number
of consumers in the same plan would create a new peak for the
distribution system.

With respect to literature relating to TOU schemes, Yan et al.
[24] report the current results from the implementation of TOU
programs in different parts of the world. These programs have
achieved on average a peak demand reduction of about 10%.
Other sources estimate it to 5% [28] for simple TOU programs.
This percentage may seem small but it is not negligible. For
example, Rosenzweig et al. [29] estimate that a reduction in
consumption of only 2%–5% during peak hours would reduce the
spot price of electricity by 50% or more. However, there are also
TOU programs that do not reach their target. Yan et al. [24] report
programs that did not achieve significant results.

1.3.2. Critical peak pricing
Unlike TOU schemes, in which the energy price for each hour

of the day or week is fixed, the price in critical peak pricing
(CPP) schemes can change for certain hours when it is predicted
that there will be heavy congestion on the grid [24]. The periods
when this price change occurs are called events. Consumers are
usually informed about events the day before (from newspapers,
social media, mobile messages, etc.) and are motivated to reduce
their consumption during an event by very high prices, which are
usually higher compared to off-peak prices than they are in a TOU
program [30].

The start and end of an event are determined by the aggregator
and are usually constrained by the program terms and conditions
together with the total number of events that can occur within a
predefined period of time [23]. Therefore, we can observe that a
CPP program is not a solution for DR on a daily basis [24], but
rather at exceptional cases where consumption is too high, or
conditions are such that system reliability is at risk. To address
this weakness, aggregators often combine CPP events with dif-
ferent price levels during normal conditions. Practically, such an
approach essentially means that we have a CPP program running
‘‘on top’’ of a TOU one.

From the prosumer’s perspective, CPP programs are generally
easy to implement, since they do not require effort on a daily
basis, except when there is a DR event. In fact, it has been
observed that households are more willing to significantly reduce
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Fig. 1. The categories of demand response programs.
their consumption during a DR event that occurs occasionally
than during the peak hours of a TOU program, which requires
daily engagement [24]. However, due to the occasional nature of
CPP programs, consumers typically do not gain significant cost
reductions from participating in them, and if for some reason they
are not notified of an event, they are charged at very high rates.

With respect to related literature, several studies discuss the
application and effectiveness of CPP schemes. Faruqui and Ser-
gici [31] provide a summary of 15 experimental DR programs.
Among the CPP programs, a 13%–20% reduction in consump-
tion was observed during DR events in homes without direct
load control (DLC) technologies (systems that allow automatic
reduction of consumption during an event, affecting loads such
as air conditioners), and the reduction was even greater when
DLC technologies were present, from 27 to 44%. Newsham and
Bowker [28] confirm the above. They argue that when DLC sys-
tems are in place, a CPP program can lead to at least a 30%
reduction in consumption during an event, however they believe
that similar reductions can be achieved without such systems,
provided that consumers participating in the program are care-
fully selected and offered significant support. These reductions
in consumption are considerably larger than those expected in
TOU programs. Newsham and Bowker [28] detect two possible
reasons for this difference. The first one has to do with price.
In general, the energy price during a CPP event is much higher
compared to off-peak values than it is in a TOU program [30]. This
means that consumers also have a greater incentive to reduce
their consumption. The second reason relates to the frequency
of CPP events, during participants in a program are requested to
reduce their consumption. In this direction, it may be easier for
a consumer to abruptly reduce their consumption 25–30 times
a year, knowing that this will bring high profit than completely
changing their habits, as required by a TOU program.

1.3.3. Real time pricing
In real time pricing (RTP) programs, the price of electricity

changes during the day depending on the wholesale price of
electricity and the conditions prevailing in the grid. The prices
within an RTP program are usually announced to consumers one
hour in advance, but there are also programs in which they
are announced the day before [24]. Especially in the first case,
where a consumer does not have the time to plan their daily
usage of their appliances, the existence of a mechanism for the
4

prices to be announced immediately, alongside energy manage-
ment controllers (EMC) at the prosumer’s side are required. RTP
programs allow suppliers to vary the selling price of electricity
to better reflect the conditions in the network and the electricity
production-demand relationship [24]. This is particularly advan-
tageous for both the provider and society as a whole when it leads
to a reduction in overall consumption during peak hours, when
electricity is generally more expensive and polluting.

Nevertheless, the implementation of RTP schemes for residen-
tial consumers is still very limited. There are two main reasons
for this. On the one hand, many households do not have the
equipment to be able to join an RTP program. The use of smart
appliances and controllers is still limited, and in many areas smart
meters are not even present in households. At the same time,
most residential consumers prefer to avoid risky investments, and
perceive the obligation to respond to real-time price signals as
a burden [32]. This seems rational given that without automatic
controllers and smart appliances, manually adjusting consump-
tion to prices that change so frequently is difficult, complex and
time-consuming. The barriers for commercial consumers are sim-
ilar, apart from the fact that they generally have more resources
to invest in relevant technologies and to analyze the economic
viability of a related investment. However, as also described in
the following section, the low variability of commercial loads
suggests that it may be more advantageous to join a program with
day-ahead pricing (TOU) than a program with dynamic pricing
(RTP).

As dynamic pricing still has little application, there are not
many results from actual programs to assess its effect on peak
hour consumption, unlike TOU and CPP programs. Two pilot pro-
grams applied to residential consumers in Washington [33] and
Chicago [34] in 2007 and 2009, respectively, gave promising re-
sults. At first, controllers were installed in consumers’ houses al-
lowing them to determine automatic heating adjustments based
on their electricity price and temperature. These systems, to-
gether with some sources of flexibility in the local network (water
pumps, generators) managed to yield a 5%-20% reduction in con-
sumption during peak hours (among the project participants). In
the second project, consumers were not given automatic con-
trollers but some lamps that changed color depending on the
level of the electricity price. It was their responsibility to control
the various appliances in the home. The result was again impres-
sive: a reduction in consumption during peak hours ranging from
5 to 14%.
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.3.4. The importance of entropy in DR schemes
The term ‘‘load variability’’ refers to whether the consumption

ehavior of the load is stable over time (low variability) and thus
asily predictable or highly variable and therefore hard to predict.
nother term often used instead of variability is entropy. There
re several ways of measuring entropy in the literature. Smith
t al. [35] do it by employing k-means on the daily profiles for
ach load. A load whose daily profiles belong to several different
lusters is considered more unpredictable and thus has high
ntropy. Kwac et al. [36] and Zhou et al. [37] express this concept
athematically by the sum of Eq. (1).

n =

K∑
i=1

(
p (Ci)

∗ log (p (Ci))
)

(1)

where K is the number of clusters, Ci is the center of cluster i and
(Ci) is the probability that a load curve from the nth load belongs
o the cluster with center Ci.

In general, research has demonstrated [38] that consumers
ith low entropy are suitable for incentive-based schemes (e.g.,
ith direct control) because it is easier to predict and schedule
heir consumption. On the other hand, consumers with high
ntropy are suitable for price-based programs because they have
ore flexibility in their consumption and can make real-time
ecisions more easily. Based on these results, it seems rational
hat also among price-based programs, those that follow the same
ricing policy every day (TOU programs) will favor prosumers
ith low variability as such groups are expected to be more
apable of scheduling their daily operations according to the
rice and then follow this schedule every day (more easily than
onsumers with high variability). On the other hand, programs
hat are occasional (CPP programs) or where the prices change
ourly (RTP programs) are expected to favor consumers with
igh variability as they are more flexible in their consumption
ehavior than those with low variability and will be eventually
apable of adopting an occasional and well-paid behavior shift
equest issued by the aggregator.

.4. Machine learning driven clustering for flexibility assessment and
emand response

Si et al. [38] review the clustering methods applied to elec-
ricity consumption data. The authors conclude that the most
ommon clustering algorithm in smart meter data is k-means,
ith the euclidean distance to be the most common dissimilarity
easure. Although k-means is a simple algorithm and handles

arge, high-dimensional datasets well, it is very sensitive to out-
iers and noisy data. Variants of k-means, such as k-medians
nd k-medoids, can address these problems, in exchange for
igher computational costs. There are also other alternatives,
uch as self-organizing maps (SOM) and various hierarchical al-
orithms. In addition to these methods, and given that load
urves have time series characteristics, various algorithms and
roximity measures have been discussed in the literature of time
eries analysis. An indicative example is dynamic time warping
DTW), an algorithm that aligns time series based on their shape.
y applying DTW-based clustering algorithm, the load curves
ith similar shapes can be grouped more effectively than using
he euclidean distance [39]. However, effectively grouping load
urves that have similar shapes but peak at different times of
he day (e.g. one in the morning and the other in the afternoon)
s a problem for traditional DTW methods. In this context, con-
trained DTW [40,41] –that can prevent time series alignment
hen the time shift is large – and weighted DTW [39] –that can

mpose a size-dependent penalty on the similarity measure – can
e used as alternatives in this case. Deep learning-based time
5

series clustering techniques have also been proposed in literature
and often lead to more flexible alternatives [42].

A concern that arises here is the evaluation and selection of
the appropriate clustering algorithms. Clustering validity indices
can solve this problem. Such metrics quantify either how ‘‘close’’
the center of a cluster is to its samples (e.g. mean squared error)
or how ‘‘far’’ different clusters are from each other. McLough-
lin et al. [43] use the Davies–Bouldin validity index (DBI) to
select an appropriate clustering algorithm alongside an optimal
proper number of clusters. Cao et al. [44] use two metrics, one
to evaluate how well the peaks of the load curve samples match
the peaks of the profiles of the clusters to which they belong
– namely peak match score (PMS) – and one to quantify how
the different profiles of different clusters match with each other
(cluster distinctiveness).

With respect to load profiling and relevant pre-processing,
before feeding data to the clustering pipeline, the selection of
the data features along with the timely resolution to be used
are very important as they practically define what a load profile
is. In this direction, within a large part of the literature the
consumptions are normalized, that is they are divided by the total
daily consumption. The purpose of this procedure is to cluster
the daily consumption profile (load shape) and not to affect the
measure of dissimilarity by the size of the load. The studies of Cao
et al. [44], Lin et al. [45] and Kwac et al. [36] are some indicative
examples. Subsequently, given that daily consumption profiles
are highly influenced by the season, both in terms of total daily
consumption and shape of the consumption curve, Cao et al. [44],
Biswas and Abraham [46] and Smith et al. [35] divide the data
into summer data and winter data. Due to the fact that the load
curves of a house on weekdays typically differ from weekends
or holidays, some researchers decide to only deal with everyday
data [35,44]. McLoughlin et al. [43] and Kwac et al. [36] avoid such
distinction. Lin et al. [45] create an average consumption profile
for each load (with the consumption per hour being equal to their
average consumption at that time within the study period) and
cluster these profiles. This approach greatly reduces the amount
of data (since in total there are as many profiles as the loads),
but ignores day-to-day and seasonal patterns within a specific
load. Another approach is clustering using all daily consumption
profiles for all loads. This approach has the great advantage that
it does not ignore the seasonality and periodicity that may occur
in the consumption of a user, but it is more complex, since
consumption profiles of the same load can be stored in different
clusters, and requires a much larger volume of data (since for
1 year of data, there are 365 different profiles for each load).
In [36,43], following the above tactic the authors consider that a
load ‘‘belongs’’ to the cluster that contains the largest percentage
of its daily curves.

1.5. Contribution

In this study, we propose an easy-to-use, clustering-based
methodology, aimed at aggregator companies, for the extrac-
tion of general-purpose DR policies within flexible energy com-
munities. Specifically, our contributions can be summarized as
follows:

• We perform a targeted analysis within a relatively small,
local distribution network based on real-life data collected
by smart meters of an Italian utility company. Contrary to
past studies which usually apply and validate a clustering
methodology on a large dataset and a wider area [36,37,
43,46], we focus on developing a realistic DR framework
that will be applied by an actual aggregation utility in the
province of Terni in Italy.
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• We apply clustering on daily load profiles as this approach
incorporates the seasonality and periodicity that may occur
in the consumption patterns of a specific prosumer. Dur-
ing the optimization of clustering algorithms, we employ
the euclidean distance and the constrained DTW distance
which allows for more effective edge matching at faster
computation times. To the best of our knowledge, only Gao
et al. [41] have employed constrained DTW in the electri-
cal load clustering domain until the present. Additionally,
we complement the constrained approach by a relaxation
method which is inspired from the voice recognition do-
main, namely the Sakoe-Chiba radius [47]. Such relaxation
technique is novel in the field of electrical load clustering.

• We introduce a novel evaluation metric for clustering al-
gorithms, namely peak performance score (PPS). The PPS
solves the shortcoming of the peak match score (PMS) [44],
that is to penalize the false detection of an edge only when
a sample has no edges at all.

• We employ and compare 3 different clustering algorithms
– namely k-means, k-medoids, and hierarchical clustering
– using various dissimilarity measures. We evaluate them
using PPS and silhouette DTW score. However, to come up
with an optimal clustering algorithm, we perform an addi-
tional empirical and visual evaluation that accounts for the
specific needs of a realistic DR policy regarding the cluster
number and separability.

• We describe the high-level behavioral characteristics of 14
different daily profile clusters within the energy community
also investigating their capability for flexibility schemes. To
this end we take into consideration three key factors: (i)
daily load profile shapes, (i) load types, and (i) daily load
profile entropy. To the best of our knowledge, no prior
research study has attempted such a holistic investigation
in the context of heterogeneous datasets that combine resi-
dential/commercial prosumers and demand/generation. For
instance, Kwac et al. [36,48] and Biswas and Abraham [46]
only treat residential loads while Biswas and Abraham [46]
do not account for entropy at all within their analysis.

• We propose a formalization for discretizing the real values
of cluster entropy by mapping them to a simplified quali-
tative scale. Such a scale can be useful and simple to use
for EPES stakeholders that are interested in tailoring DR
schemes that also account for load profile entropy within
prosumer clusters.

• We provide targeted, general-purpose DR schemes for pro-
sumers based on the flexibility characteristics of the cluster
to which they belong as indicated by the majority of their
electrical load/generation profiles. Adding up to the current
approaches in DR, we account for all types of price-based
DR programs documented in the literature – namely TOU,
CPP, and RTP – offering a wide range of realistic options
for the aggregator rather than entirely sticking to a spe-
cific one [37] or entirely neglecting the actual limitations
of DR programs [46]. Finally, the allocation of prosumers
to clusters, alongside the respective DR policies are static
through time, therefore enabling their easy adoption by
stakeholders.

• The overall proposed methodology in this study is easy-to-
use and has low computational complexity as the feature
space of the clustering models corresponds to the exact
load/generation profiles of energy community participants.
Additionally, it can cope with low volumes of training data
and exhibits robustness to the presence of outliers and
missing data, which is usually caused by the discontinuity of
smart meter measurements, especially within small power
systems.
6

2. Methodology

2.1. Data description

Initially, we discuss the exploratory data analysis and visual
inspection that was conducted before applying clustering algo-
rithms in order to gain a general overview of the dataset’s char-
acteristics and detect any data pre-processing issues, such as
outliers and missing values. Data have been collected from 54
smart meters that have been decided by the aggregator to form
the flexible energy community. The dataset ranges from October
2018 to June 2022 and the time series resolution is hourly. Ta-
ble A.1 (Appendix A) lists the smart meters of the community to
which the use case refer and on which flexibility analysis took
place. It should be noted here that 51 smart meters are included
in the analysis as 3 of them were discarded to ensure high data
quality. Fig. 2 illustrates the sum of production and consumption
in the virtual network for each day in the dataset. We notice that
reverse power flow (the parts of the graph that are negative) can
be obtained at any time between 08:00 and 16:00. However, the
phenomenon peaks in the period 11:00 to 14:00.

Regarding missing values, Fig. 3 illustrates a heatmap that
shows the number of samples for each month of the year, provid-
ing insight into the months with more missing data. Fig. 4 depicts
the number of samples per day of week and hour of the day for a
random smart meter, as such graphs help to identify specific days
or hours with fewer data points. Additionally, Fig. 5 depicts a line
chart of the active power of a randomly selected smart meter in
time revealing the presence of several outliers. Before proceeding
to data wrangling, such plots were created for each one of the 54
smart meters during the visual inspection of the dataset.

2.2. Data pre-processing

After identifying the periods where data were missing and
outliers were present, we select the appropriate methods to ad-
dress them as follows:

Outlier detection Among the metadata of the dataset, there was
information on the nominal power of the smart meter indicated
in each consumer’s contract (Table A.1). Therefore all measured
power values that exceeded the nominal power threshold were
characterized as outliers and removed from the dataset resulting
in missing values at the corresponding time period. Note here that
a significant number of outliers were observed in our dataset due
to inaccurate measurements that were often caused by misconfig-
uration of the smart meter devices (e.g. scaling inconsistencies).

Missing data imputation A significant number of missing values
were present in our data set due to smart meter connectivity
issues, alongside relevant maintenance activities (see Fig. 3).
Therefore, advanced missing data imputation methodologies were
required during our data pre-processing stage. For periods with
missing values lasting less than 2 h during the day or more during
the night (from 00:00 to 06:00), observations were filled in by
evenly distributing the next available observation for cumula-
tive energy consumption across the missing time intervals. For
periods with missing values lasting more than 2 h and outside
the 00:00 to 06:00 time range, the corresponding days were
completely removed, since long interpolations in such cases are
expected to distort the load curves and deteriorate the clustering
performance. The method of interpolation was preferred against
other methods (such as replacement with the historical mean)
due to the scarcity of historical data and the presence of cumu-
lative energy measurements from the smart meters which could
easily provide inference on the in-between missing values. The
limit of 2 h was chosen, as the larger the time window the less
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Fig. 2. Sum of production and demand within the energy community.
Fig. 3. Heatmap of number of samples per smart meter.
Fig. 4. Bar chart of number of samples per weekday and hour of the day for the smart meter BBB6133.
ccurate the method is in restoring the precise shape of the curve.
onetheless, night hours are an exception to this limit, as they are
f low significance for DR programs while also load curves tend
o be predictable or near to 0 during these hours. Applying this
ethodology prevented the complete removal from the dataset
f days with significant information about daytime hours due
o data gaps during the night. Note here that, given the daily
uration of the created load profiles, time series continuity across
7

days was not a requirement for the clustering algorithm, hence
leading to a setup that is robust to the presence of missing values
and therefore outliers.

Normalizing daily demand profiles As the dataset included both
small consumers (e.g. households) and large ones (e.g. university
campus) and we intended the clustering process to be based only
on the shape of daily profiles, we opt for normalizing them by
dividing with the total daily consumption. This approach allowed
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Fig. 5. Line chart of energy consumption for the smart meter BBB6133 for an
extended period of time.

us to remove the distortion caused by the variability in consump-
tion magnitudes among users and cluster exclusively the daily
patterns and their shapes.

2.3. Clustering

Clustering was performed on the daily load curves of hourly
esolution for the entire sample, instead of an average curve for
ach consumer as such aggregation does not permit the obser-
ation and analysis of the load patterns across different months,
easons, and years. Additionally, since the dataset contains only
1 smart meters, clustering on 51 samples would not be of
nterest. From now on we will refer to this type of clusters as load
rofile clusters. Similar methodologies have also been followed by
ther research studies in the past [36,37].

.3.1. Clustering algorithms
Regarding the selection of clustering algorithms, k-means was

hosen as the golden industry standard and due to its low com-
utational requirements. Additionally, we consider k-medoids,
hich generally handles noise well and has the additional ad-
antage that its cluster centers are actual samples of the dataset
ather than average values. Ultimately, we employ cumulative
ierarchical algorithm with ward linkage because of its simplicity
nd compatibility with the selected distance/dissimilarity mea-
ures [38]. Note here that all clustering algorithms were executed
or all cluster numbers ranging from 3 to 20 for both euclidean
nd constrained DTW distances. In the following paragraphs a
rief description of each clustering method follows.

-means The k-means algorithm [49] is a widely used unsuper-
ised learning technique in machine learning and data mining. It
s commonly used for clustering analysis in which a given dataset
s divided into k clusters. The objective of the k-means algorithm
s to minimize the sum of the squared distances between each
ata point and its assigned cluster centroid. Mathematically, this
an be represented as in Eq. (2)

=

k∑
i=1

∑
x∈Ci

∥x − µi∥
2 (2)

where J is the objective function, k is the number of clusters, Ci
is the ith cluster, x is a data point, and µi is the centroid of the ith
cluster.

The k-means algorithm works by iteratively assigning each

data point to the nearest centroid and updating the centroid of

8

each cluster based on the mean of all the data points in the
cluster. This process continues until convergence is achieved. The
algorithm is simple to implement and computationally efficient,
making it suitable for large datasets. Several modifications and
improvements to the k-means algorithm have been proposed
over the years, including the use of different distance metrics,
initialization methods, and convergence criteria.

k-medoids The k-medoids algorithm [50] is a popular clustering
technique that is similar to the k-means algorithm but uses
medoids instead of centroids as cluster representatives. The
medoid of a cluster is defined as the data point that has the
smallest average dissimilarity to all other points in the same
cluster. Mathematically, the objective of the k-medoids algorithm
is to minimize the sum of dissimilarities between each data point
and its assigned medoid. This can be represented as in Eq. (3)

J =

k∑
i=1

∑
x∈Ci

d(x,mi) (3)

where J is the objective function, k is the number of clusters, Ci
s the ith cluster, x is a data point, and µi is the medoid of the
th cluster. d(x, µi) represents the dissimilarity between the data
oint x and the medoid µi.
The k-medoids algorithm works by iteratively assigning each

ata point to the nearest medoid and updating the medoid of
ach cluster based on the data point that has the smallest average
issimilarity to all other points in the same cluster. This process
ontinues until convergence is achieved. The main advantage
f k-medoids over the k-means algorithm is its robustness to
utliers. However, it is more computationally expensive than the
-means algorithm, particularly for large datasets.

gglomerative hierarchical clustering Agglomerative clustering is
a hierarchical clustering technique that starts with each data
point in its own cluster and iteratively merges the closest pairs
of clusters until a single cluster containing all the data points is
formed. The algorithm produces a dendrogram, which is a tree-
like diagram that shows the hierarchical relationships between
the clusters. The agglomerative clustering algorithm can be per-
formed using different linkage criteria to measure the distance
between clusters. Some common linkage criteria include:

• Single linkage: The distance between the closest pair of
points in different clusters.

• Complete linkage: The distance between the farthest pair of
points in different clusters.

• Average linkage: The average distance between all pairs of
points in different clusters.

Mathematically, the agglomerative clustering algorithm can be
represented as in Eq. (4)

dij = linkage(Ci, Cj) (4)

where dij is the distance between clusters Ci and Cj, and linkage
is the chosen linkage criterion.

The agglomerative clustering algorithm has several advan-
tages, including its ability to handle non-linearly separable data
and its interpretability through the dendrogram. However, it is
computationally expensive for large datasets and can be sensitive
to noise.

2.3.2. Dissimilarity measures
The dissimilarity measures optimized within the training pro-

cess for each one of the algorithms are as follows: (i) euclidean (ii)
constrained DTW with Sakoe-Chiba radius equal to 1. The rational
behind the choice of those metrics – which is inspired from the
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poken word recognition domain – is the creation of clusters that
re distinguished based on two characteristics: (i) the timing of
he edges (peaks and valleys) of their profiles (e.g., two profiles
hat have a peak at 14.00 should be ideally in the same cluster),
nd (ii) the shape of their profiles (e.g., profiles with two peaks
uring the day should be ideally assigned in a different cluster
han profiles with a single peak). The euclidean distance is good
t capturing information about the former characteristic, but
gnores the latter. Nonetheless, we decided to include it within
ur experiments given its low complexity and wide acceptance
s a research and industry standard that is used by the majority
f related research studies. On the other hand, simple DTW, when
ot explicitly constrained, tends to capture information about
he shape of the profile rather than the timing of the peaks. We
herefore employ a constrained distance measure that permits a
ertain relaxation in time. Therefore, it allows to capture infor-
ation about the shape of the profile, but not to an extent that
ompletely ignores time like the simple DTW. We implemented
his idea using a constrained DTW version that computes the
istance amongst time series points that are far apart from each
ther no more than a hourly time step. In practice this means that
e set the Sakoe-Chiba radius equal to 1. We made this decision
n the basis that a relaxation of one hour in time would be
esirable, given that it allows to distinguish the load curve peaks
ccording to the period of the day (morning, noon, afternoon, etc.)
ather than the very specific hour of the day.

.3.3. Evaluation of clustering algorithms and peak performance
core

To compare the different options and select the outcome that
est served the use case, we combine the mathematical eval-
ation of models through evaluation metrics with the visual
nspection of the results. Visual inspection (which is useful to
alidate the clustering algorithm) indeed provides intuitive re-
ults i.e. that the extracted clusters significantly differ regarding
he two aforementioned characteristics: the timing of the edges
nd the shape of the consumption curve. In general, the metrics
onsidered to evaluate the clustering process are the following:

• Silhouette score [51]
• Silhouette score DTW (similar to silhouette score but calcu-

lated on DTW rather than euclidean distance)
• Davies–Bouldin validity index
• Peak match score
• Peak performance score (novel metric proposed within this

study)

ote here that for the calculation of the metrics that identify
eaks–such as peak match score (PMS) and peak performance
core (PPS)– the peaks have been defined as local maxima with
eak prominence larger than 0.2. The peak prominence is defined
s the vertical distance from the lowest previous or next local
inimum of the normalized consumption profile.

eak performance score PMS is a good approach to quantify the
erformance of an edge-based electrical load clustering, i.e. to
ssign data samples to clusters that exhibit edges at the same
ime moments. However, the PMS has the disadvantage that it
enalizes a false detection of an edge only when the sample has
o edges at all [44]. To mitigate this issue, we define the PPS,
hich is inspired by PMS, but adapted to account for both the
rue detection and false detection of edges in all cases. The PPS is
efined as the average of the individual mi scores for the samples
n the dataset as shown in Eq. (5).

PS =
1
N

N∑
mi (5)
i=1

9

where N is the number of data samples within the data set and
mi the individual score for each sample i that is in turn defined
as shown in Eq. (6)

mi =

⎧⎪⎨⎪⎩
1, if

∑24
k=1 li(k) = 0 and

∑24
k=1 ci(k) = 0

⟨li,ci⟩

max
{∑24

k=1 li(k),
∑24

k=1 ci(k)
} , otherwise

(6)

where li a binary vector of 24-dimensions, one for each hour of
the day, where 1 denotes the presence of a peak, ci: the vector
denoting the centroid of the respective cluster, and ⟨li, ci⟩: the dot
roduct of the two aforementioned quantities.
In contrast to the PMS, the PPS penalizes the false detection

f an edge in all cases. If sample i has no edge but the cluster
n which it is registered has one, then the individual score mi
ecomes 0 and the overall score is reduced, as in the PMS. If the
ample has edges but the cluster in which it is registered by the
lgorithm has more, then

∑24
k=1 ci(k) >

∑24
k=1 li(k), the denomina-

or of mi becomes max
∑24

k=1 li(k),
∑24

k=1 ci(k) →
∑24

k=1 ci(k), the
ndividual score mi decreases, and so does the total score. This is
ot the case for the PMS. An example with 5 dimensions instead
f 24 for simplicity: let li = [0, 0, 0, 1, 0] be the binary vector

of the sample and ci = [0, 1, 0, 1, 0] the center of the cluster
in which it is assigned. In this case, for PMS mi = 1, i.e. the
algorithm rewards the method for correctly detecting the edge
at position 3 but does not penalize it for incorrectly detecting an
edge at position 1. In contrast, for PPS mi = 0.5, i.e. the algorithm
receives half of the reward for the true detection of one edge in
the sample but also a false detection of a second edge.

PPS gets real values within [0, 1]. A value of 1, this means that
the algorithm correctly detected all edges in the samples (i.e. all
samples were placed in clusters that had edges at the same times
as them) and that it did not make any false edge detections at all
(no sample was placed in a cluster that had an edge at a time
that the sample did not). In this case, the algorithm would be
perfect in terms of clustering based on the alignment of edges
through time. On the other hand, a value of 0 means that no
true edge detections were made, and that all detections made
were false. In this case, the algorithm does not cluster at all based
on the edge timing. Note here that we employed the PPS with
a time relaxation of one time step (i.e. one hour) regarding the
‘‘matching’’ of the edges as mentioned in Section 2.3.2.

2.3.4. Cluster extraction and characterization
After executing the experiments and selecting the optimal

combination of algorithms and hyperparameters, we perform an
analysis of the clusters aiming to distinguish those with the best
potential to help achieve the optimization goals (minimization of
reverse power flow and peak shifting/shaving) through tailored
and realistic DR recommendations proposed to their pertaining
prosumers. This analysis was done by considering three key fac-
tors that help decide whether a group of consumers is worth
being included in a DR scheme:

1. Daily profile shape: We are concerned with consumers
who can help (a) reduce reverse power flow, which can
be done by increasing consumption during generation peak
hours, that is mostly from 11.00 to 14.00 (Fig. 2), and (b)
reduce consumption during load peak hours i.e. usually
17.00–19.00. We therefore search for groups of consumers
(clusters) that have profile characteristics with a peak (a)
just before 11.00 or just after 14.00, to encourage them
to shift this peak to the 11.00–14.00 interval (e.g. if they
usually cook at 15.00 to start cooking earlier, in the 11.00–
14.00 interval) or (b) within 17.00–19.00, to encourage
them to reduce consumption at these times, either by
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canceling some tasks (peak shaving) or by scheduling them
earlier or later in the day (peak shifting–e.g. shift the con-
sumption of energy for domestic hot water earlier in the
day, i.e at noon, instead of when they get back from work)

2. Load types: The dataset contains both domestic and com-
mercial loads. After identifying the clusters which are more
suitable for DR, we proceed to the selection of the DR
schemes that would best suit them. In this context, com-
mercial loads are best suited for programs that follow
constant billing policies (i.e. TOU) as they require strict
scheduling of various electricity consuming tasks. Regard-
ing residential loads, as their tasks are generally less critical
and time-constrained, they can perform well in programs
with occasional DR events (e.g. CPP schemes) or programs
with dynamic pricing (RTP), provided that the proper phys-
ical infrastructure is in place so that load management can
be done automatically (smart devices, controllers, etc.).

3. Entropy: Another characteristic that influences what is
the most ideal type of plan for a consumer or group of
consumers is entropy. As aforementioned, consumers with
low entropy are best suited to incentive-based or pre-
dictable pricing (TOU) programs, while consumers with
high entropy perform best in CPP or RTP programs. For
the scope of this study, we measure the entropy for each
load in the dataset, based on the Eq. (1), as well as the
average entropy for each cluster. This information is useful
in deriving specific DR recommendations.

3. Results and discussion

3.1. Evaluation and selection of clustering models

As already mentioned in Section 2.3.3, various evaluation met-
rics were considered while conducting the clustering experi-
ments, therefore contributing to the rational selection of the
model hyperparparameters. However, the final evaluation pro-
cess for the selection of the best-performing clustering setup
focuses on two time-relaxed metrics (1 hour relaxation), namely
the PPS (custom metric that is tailored to the needs of our task)
and the silhouette score DTW (well-established metric within the
literature) to ensure theinterpretability of our results.

Using MLflow [52] as the logging platform for the machine
learning experiments, we took advantage of its visualization ca-
pabilities to create the diagram of Fig. 6, which depicts the eval-
uation of our experiments based on the relaxed PPS (y-axis)
and silhouette score DTW (x-axis) for various combinations of
hyperparameters. We are mostly interested in the combinations
with good performance on both metrics, namely those in the
top right region of said figure. Table 1 lists the hyperparameters
and evaluation metrics of those best performing models that
went through the final visual and empirical evaluation which
eventually led to the selection of the optimal model.

As a relatively large number of clusters is desired to have high
detail for the DR recommendations we were left with models
4, 7, 8. After further visual inspection, some clusters in the k-
medoids models looked quite similar to each other, leading to
the exlusion of this setup. Regarding model 4, the clusters were
all well-separated from each other concerning the timing of the
main edges and the load curve shapes. Model 4 also obtained by
far the highest PPS value. Therefore, we opted for this algorithmic
setup as the optimal and promoted it to the following stages of
our analysis. Fig. 7 depicts the load curves of the clusters obtained
by the optimal algorithm, while Fig. 8 depicts the percentage of
total samples covered by each cluster. Finally, Fig. 9 illustrates , in
much more detail, the memberships of profiles originating from
each smart meter across the extracted clusters. This information
can be valuable for the aggregator by allowing them to directly
assign prosumers to clusters based on their membership as we
also attempt in the following stages of the present study.
10
Table 1
Properties of the experiments that fall within the circle of optimal evaluation
metric values (PPS and Silhouette DTW). The best performing model is 4 (marked
in bold) as it serves the empirical evaluation requirements, namely big cluster
number and intuitive cluster separability.
Model id Algorithm Distance

measure
Number of
clusters

PPS Silhouette
DTW

1 k-means DTW 6 0.652 0.219
2 k-means DTW 8 0.634 0.277
3 k-means DTW 9 0.616 0.270
4 k-means DTW 14 0.689 0.256
5 k-means Euclidean 8 0.613 0.284
6 k-means Euclidean 9 0.622 0.287
7 k-medoids DTW 13 0.677 0.248
8 k-medoids DTW 14 0.670 0.249

3.2. Cluster extraction and characterization

In this section we discuss the extraction and assessment of
the DR potential of the load profile clusters on the shape of their
average profile, and the use of the loads assigned to them. To
further validate the optimal clustering algorithm, the entropy
calculations and visualizations are also included confirming the
valuable and intuitive contribution of the clustering process based
on the current literature for DR. Regarding training times, the
whole set of the clustering experiments (3 algorithms, 18 trials
for each algorithm to account for cluster numbers ranging from
3 to 20) lasted approximately 300 min on a MacBook air laptop
with Apple M1 CPU and 8 GB RAM.

3.2.1. Cluster analysis based on load profile shapes and types
In this part, we dive into the characteristics of the extracted

load profile clusters, with respect to flexibility and potential for
DR. Note here that mainly the average load profiles and load types
are taken into consideration. Apart from Fig. 7 which illustrates
the cluster shapes, some individual visualizations with more de-
tailed information on load shapes and load type distributions for
each cluster are included in Appendix B.

Load profile Cluster 0 – Generation Cluster 0 contains the daily
profiles of installations used only for power generation, since if
there is any consumption it is very small and most probably orig-
inates from small auxiliary loads. The active hours of generation
coincide with the hours of sunshine, and therefore it becomes
obvious that the loads are PV installations (see Fig. B.1). Given
that PV generation is stochastic and cannot be controlled, such
loads cannot be useful in providing flexibility to the grid.

Load profile Cluster 1 – Residential loads with a late-night peak
Cluster 1 mainly involves consumption from residential users
(88%) which peaks around midnight. Since there is usually no
congestion in the network at midnight (Fig. 7), there is no in-
terest for loads belonging to this cluster in being included in DR
schemes.

Load profile Cluster 2 – Residential loads with a late afternoon
peak Load profiles belonging to cluster 2 mainly correspond to
residential users (73%) and are characterized by a peak in the
early afternoon, between 15:00 and 17:00. It would be advanta-
geous for the network to shift this peak earlier, towards midday
hours, in order to help both to reduce reverse power flow and to
decongest the distribution network at times when demand peaks
occur (from 17:00 and onwards).

Load profile Cluster 3 & 8 – Mixed loads with morning peak We
group clusters 3 and cluster 8 together, because they have a
similar shape with a peak in the morning hours (3 from 8.00
to 10.00 and 8 from 9.00 to 11.00). There is a difference in the



S. Pelekis, A. Pipergias, E. Karakolis et al. Sustainable Energy, Grids and Networks 36 (2023) 101134

Fig. 6. Combined diagram of PPS and Silhouette DTW metrics for several clustering experiments. The circle denotes the experiments that combine maximum values
for both metrics.

Fig. 7. The cluster shapes obtained for k-means algorithm, DTW distance measure and k = 14. The dashed lines denote the center of each cluster, and the orange
lines denote samples that form the cluster. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

11
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Fig. 8. Pie chart of percentages of total samples covered by the samples of each
cluster.

type of loads belonging to them, with cluster 8 containing more
residential loads (61% vs. 29%) as well as the load from the public
pool. As mentioned previously, the hours 11:00–14:00 are when
the reverse power flow peaks. For this reason, loads belonging
to clusters 3 and 8 can contribute to reducing the phenomenon
if they shift the peak in their consumption later, between 11:00
and 14:00.

Load profile Cluster 4 & 6 – Residential loads with evening peak
Clusters 4 and 6 contain consumption profiles with a peak in the
late afternoon/early evening (from 18:00 to 22:00) and mainly
consist of residential loads (93% and 96% respectively). This is
expected since evening consumption increases mainly in house-
holds that are empty during working hours and fill up when
residents return from work. Since the demand within said distri-
bution network often peaks in the evening, the loads belonging to
these clusters are of significant interest for DR schemes aimed at
reducing consumption during these hours through load shifting
(earlier or later, depending on the needs of the network and the
constraints of each user).

Load profile Cluster 5 – Residential loads with mild, uniformly dis-
tributed load peaks Cluster 5 corresponds to loads that do not
ave one large peak during the day, but several smaller peaks
f similar size. It contains profiles of residential users and a large
art of the profiles of an EV charging station (28% of the charger’s
onsumption belongs to the cluster). Given that the cluster is
ot characterized by a specific peak, it is more difficult to draw
onclusions about how the loads belonging to it could be used
n a DR scheme. To be able to draw certain conclusion, a further
nalysis of each individual load is required.

oad profile Cluster 7 – Commercial and public loads with peaks
t working hours Cluster 7 consists of daily profiles that have
igh consumption during working hours (approximately from
:00 to 19:00), with no sharp peak like other clusters, but many
maller peaks (the center of the cluster has 3 peaks). The cluster
embers could help reduce the reverse power flow effect by

ncreasing consumption during the hours when generation is
igh, but also reduce network congestion in the late afternoon
y shifting consumption from these hours a little earlier.

oad profile Cluster 9 – Consumption and generation Cluster 9
nvolves mixed loads in terms of consumption/generation, i.e. in-
tallations that have both energy consumption and energy gener-

tion. This can be observed from the way the total consumption

12
decreases during sunny hours (6:00 to 20:00). Because of that,
it is difficult to draw conclusions about how the consumption of
loads can change for the goals of a DR scheme. A good potential
approach for this cluster would be the further division of each
daily profile into separate consumption and generation profiles.

Load profile Cluster 10 – Inactive loads and university campus This
cluster does not exhibit peaks and probably corresponds to days
when the load is not used, e.g. when a house is empty or a
business is closed. Something worth noting is that most of the
local university’s consumption also belongs to this cluster, not
because the university is empty, but because its consumption
does not peak at any time during the day. On the contrary it is
relatively stable, with a slight increase at times when there is
more teaching activity. As there are no peaks during the day, it
is not clear how the loads belonging to this cluster could help
in a DR scheme. However, given that the university has very
high consumption, even small relative changes in its consumption
during the critical hours of the day would be very helpful in
meeting the goals of such a program.

Load profile Cluster 11 – Residential loads with multiple peaks in
late afternoon Cluster 11 is similar to cluster 7 in that it does
not have one sharp peak but many smaller peaks during the
day. One difference is that the profiles of 7 seem to have higher
consumption in the morning hours, while the profiles of 11 have
higher consumption in the evening. Therefore, it seems rational
that the majority of load profiles in cluster 7 are owned by
corporations (50%), while those in cluster 11 are owned by resi-
dential consumers (81%). Similar to cluster 7, cluster 11 could be
used to address both reverse power flow and congestion during
peak hours with its residential nature denoting more flexibility
opportunities.

Load profile Cluster 12 – Mixed loads with early morning peak
Cluster 12 contains loads from companies or residential users that
peak in the early morning (5:00 to 8:00 am). Since this early in
the morning there is usually no congestion in the network and
the times when the load shedding problem occurs are relatively
far away, there is no reason for loads belonging to these clusters
to be included in a DR scheme.

Load profile Cluster 13 – Mostly residential with midday peak The
aily profiles belonging to this cluster originate mainly from
esidential users (73%) and are characterized by a midday peak
from 12:00 to 14:00). Since these are the times when reverse
ower flow peaks, consumers belonging to this cluster are already
ontributing to solve the problem and should not be encourage to
hange their behavior through a DR scheme.

.2.2. Entropy analysis
In the diagram of Fig. 10 the smart meters of the dataset are

rranged in ascending order according to their entropy. Addition-
lly, the chart of Fig. 11 shows the average entropy for each one of
he 14 clusters. The average entropy of each cluster is defined as
he weighted average of the entropies of the prosumers belonging
o that cluster, with the weight of each consumer being equal
o the percentage of daily profiles of this consumer within the
luster.
The following can be observed:

• The clusters with the lowest entropy are those containing
mixed loads in terms of consumption/generation or pure
generation (clusters 0 and 9). This is expected as energy

generation profiles exhibited limited variability (the main
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Fig. 9. Distribution of smart meter load profiles across clusters.
Fig. 10. Entropy of each smart meter in the dataset. Smart meters are sorted by increasing entropy.
Fig. 11. Average entropy within each load profile cluster.
shape of the generation curve is almost the same every day:
a valley during sunny hours).

• The statement that clusters composed mostly of corporate
consumption have a lower average entropy than clusters
composed mostly of residential consumption is confirmed.
Indicatively, regarding the 5 clusters with the highest av-
erage entropy (1, 4, 5, 6, 13), all of them contain a larger
number of residential users compared to commercial ones.
The opposite can be observed for the 5 clusters with the
lowest average entropy (0,3,7,9,10).
13
3.3. Discussion on personalized demand response schemes

In this section we discuss on the personalized recommen-
dations for the extracted prosumer clusters that can help solve
the problems of reverse power flow and congestion during peak
hours. As from the previous steps of our analysis the clusters
that have the potential to provide flexibility to the grid are 2, 3,
4, 6, 7, 8 and 11. Note here that load profile clusters until this
point refer to the clustering of the daily load curves and not on
the average consumption of each individual prosumer. Therefore,
the load curves pertaining to an individual prosumer may switch
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Fig. 12. The new distributions of load type across prosumer clusters that are eligible for DR.
Fig. 13. Average entropy within each prosumer cluster.
lusters among different days. In this context, to be able to pro-
ide personalized DR recommendations, we assign each prosumer
identified by their smart meter ID) to the cluster that contains
he majority of their daily load curves similar to McLoughlin et al.
43] and Kwac et al. [36]. This assumption leads to an additional
lassification that has already been referred to as ‘‘prosumer
luster’’ that differs from the previously mentioned profile cluster
n that each prosumer is assumed exclusively to a unique cluster
ather than partially pertaining to more than one. Therefore, the
istribution of load types alongside the average entropy within
ach cluster differ from what we saw in the previous section. For
urther details on the results of the new classification of smart
eters the reader is referred to Table C.1 (Appendix C).

.3.1. Properties of prosumer clusters
The properties of the newly formed clusters are as follows:

• Load types: In the diagram of Fig. 12 the distribution of load
types within each cluster are depicted. Note here that this
time clusters 3 and 8 are composed purely of commercial
load profiles and clusters 4 and 6 of residential profiles. Clus-
ter 7 contains load profiles from both residential users and
companies, while cluster 11 has profiles from residential
loads and from the public pool.

• Average cluster entropy: the graph of Fig. 13 shows the
average entropy for each of the newly formed prosumer
clusters. Clusters 2, 12 and 13 have no more entropy values
as after the reassignment of consumers among the clusters

no consumer belonged to them.

14
3.3.2. Discretization of entropy
There are several suggestions in the literature for types of

programs that are appropriate for low-entropy and high-entropy
consumers [38]. However, there is no objective standard for de-
ciding which entropy values are considered high and low. This
could only be done by comparing the relative entropy amongst
prosumer clusters. To this end, we divide the range of values
by 0.5 and come up with 5 equally distributed discrete intervals
assigning them labels as follows: very low (between 0 and 0.5),
low (between 0.5 and 1), average (between 1 and 1.5), high
(between 1.5 and 2) and very high (greater than 2) entropy. This
labeling procedure is demonstrated graphically in Fig. 14.

3.3.3. Proposed DR policy
Table 2 lists the recommended DR schemes per prosumer clus-

ter based on the results of the previous analysis. More precisely,
the proposed DR schemes are as follows:

• DR scheme 1 – TOU: As we wish to motivate consumers to
increase consumption from 11.00 to 14.00 we need to set
the price at low levels during those hours and comparatively
higher earlier (8.00 to 11.00) and later (14.00 to 17.00). The
inverse policy should be followed for peak hours (17.00 to
19.00), i.e., the price should be high during those hours and
comparatively lower earlier (14.00 to 17.00) and later (20.00
to 00.00). To achieve these goals, we can propose a program
with the high-level pricing scheme of Table 3. As already

mentioned, TOU programs are best suited to low entropy
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Fig. 14. Demonstration of the methodology for mapping the real entropy values to the categorical/qualitative space.
Table 2
DR scheme recommendations based on the characteristics (load shape, load type, entropy) of each prosumer cluster.
Cluster Contributes to High demand Entropy Load type Proposed DR

reverse power flow during peak hours scheme

3 ✓ Average Commercial 1
4 ✓ Very high Residential 1,2,3
6 ✓ Very high Residential 1,2,3
7 ✓ ✓ Average Mixed 1
8 ✓ High Commercial 1,3
11 ✓ ✓ High Residential + public pool 1,2,3
Table 3
Proposed pricing scheme for TOU program.
Time of day Price

00.00–7.00 Low
7.00–11.00 Moderate
11.00–14.00 Low
14.00–17.00 Moderate
17.00–19.30 High
19.30–24.00 Moderate

consumers and commercial loads. Therefore, the program is
recommended for clusters 1 and 7. However, as it is simple
to implement and it requires less investment in equipment
and person-hours to operate, it could also be applied to
clusters with residential consumers and higher entropy.

• DR scheme 2 – CPP: DR events in CPP programs are oc-
casional but during the events, they yield more significant
results (greater change in consumer behavior) than TOU
programs. A CPP program for the present use case could
be activated 20–30 times a year when network problems
are expected to be severe (very high reverse power flow or
very high peak in the evening hours). The aggregator could
alert consumers of DR events a day in advance, announcing
the energy price for the event period and suggesting what
they can do to alleviate the problem and increase their profit
(e.g., proactively heating domestic water or houses earlier
than the event if a reduction in overall consumption is
required). Of course, as discussed previously, CPP programs
are better suited to high entropy and residential consumers.
This is why they are proposed for clusters 4, 6, and 11.

• DR scheme 3 – RTP: Generally, an RTP program could adjust
the price of energy according to the needs of the grid more
efficiently than TOU and CPP programs. However, as already
discussed, in order for consumers to react to prices by vary-
ing their consumption, they will need special equipment
(EMC) that allows them to schedule or automatically handle
different loads, such as smart appliances and controllers. In
the absence of such devices, it would probably be preferable
to implement one of the programs 1 and 2. However, if
there is willingness to invest in such equipment, an RTP pro-
gram could perform well, particularly for clusters with high
15
entropy (4, 6, 8, and 11) without causing severe user dissat-
isfaction through load shifting. Obviously, the aggregator’s
mechanism that manages the energy should be designed to
generate low values when reverse power flow is expected
and high values when congestion is forecasted in the local
distribution network. Table 3 could also serve as the starting
point for an RTP program and later be enriched with higher
resolution intervals alongside ad hoc modifications triggered
by real-time signals.

4. Conclusions

In this study we conducted a clustering analysis on prosumer
clusters within a distribution network in the province of Terni
in Italy. Three clustering techniques were compared – k-means,
k-medoids, agglomerative – to the end of segmenting a small
flexible energy community of 54 prosumers that is managed by
a municipal aggregator company. The clustering methods were
applied on daily consumption/generation profiles of prosumers
allowing to better investigate their behavioral patterns across
time. To evaluate the model performance we followed both math-
ematical and empirical methods. In this context, we proposed the
peak performance score (PPS) as a novel evaluation metric that
can be utilized for effective clustering including but not limited to
electrical load clustering and the EPES domain. The k-means with
constrained DTW distance matrix and 14 clusters was the best
performing setup resulting to high values of both the PPS (0.689)
and silhouette DTW (0.256) evaluation metrics. At the same time,
the relatively big number of clusters is useful to produce more
targeted and detailed DR schemes for prosumers. Subsequently,
14 load profile clusters were derived and characterized regarding
their capacity for flexibility and DR taking into account their
daily load profile shapes, load distribution (residential vs com-
mercial), and intra-cluster entropy. Note here that this cluster
analysis further confirmed the effectiveness of the clustering al-
gorithm in generating meaningful flexibility clusters as they were
separated adequately and intuitively regarding their load dis-
tribution (residential/commercial, generation/consumption) and
also in agreement with the current literature regarding their
entropy levels.

Furthermore, a DR policy was proposed for the municipal
company/aggregator that manages the smart energy community
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aking into account all types of DR programs that can be found
n the current literature, namely TOU, CPP, and RTP. Such an
pproach results a wide range of realistic, price-based DR ap-
roaches for the grid stakeholders, tailored on the needs and
equirements of their prosumer groups. To propose a personal-
zed DR scheme to a specific prosumer cluster, 4 key decision
riteria were considered: (i) the capability for peak shaving and
eak shifting during late afternoon, (ii) the ability to maximize
onsumption during generation peak hours (to prevent reverse
ower flow at the primary substation), (iii) the entropy of the
luster demonstrating its prosumers’ tolerance to change, and (iv)
he load type. Briefly, TOU programs are appropriate for all load
ypes as they are the simplest form of DR but are strongly recom-
ended for low entropy clusters/prosumers such as commercial

oads. CPP schemes are mainly recommended for residential users
hat are usually linked with high entropy and tolerance for be-
avioral changes, while RTP programs are also recommended for
igh entropy users provided the availability of special equipment
or automated energy management. Specifically, to achieve the
bjectives of the aggregator – namely the minimization of reverse
ower flow during generation peaks and peak shaving/shifting
uring demand peaks – a pricing scheme is proposed that:

i. encourages consumption through low prices during the
hours of generation peaks as well as during the night;

ii. discourages consumption through high prices during late
afternoon when load peaks are observed. This pricing schem
can form the starting point both for TOU and RTP programs
in the future.

The key findings of this study will be leveraged by the ag-
regator company in Italy for the development of a DR policy
or the said energy community. Nonetheless, the methodological
pproach can be easily adapted to the needs of other energy
ommunities as well as their respective datasets, therefore ef-
ectively serving EPES stakeholders such as TSOs, suppliers, and
ggregators that intend to enter the emerging field of DSM.

. Future work

With respect to future work, the deployment in production
f the presented machine learning pipeline as an application
ailored for aggregators is investigated. Said application will dy-
amically assess the flexibility and DR potential of each prosumer
e.g. day-by-day). Specifically, the composition of the application
s envisaged as follows:

1. A forecasting service, that will generate daily day-ahead
forecasts for the consumption and/or generation of each
participant in the DR program. The service will incorporate
both past load and generation values, alongside historical
and live forecasts of climatic factors, such as solar radiation
and temperature, as said factors are known to improve
the performance forecasting models. This service will also
provide an aggregated forecast that will decide on the
presence or not of reverse power flow in the primary
substation. A similar forecasting service has already been
proposed by Pelekis et al. [7]. Note here that larger and
continuous datasets are required here to ensure the high
accuracy of forecasting algorithms.

2. The proposed initial clustering service within this paper,
omitting the subsequent static assignment of prosumers
to clusters. At this stage, the served clustering model will
classify each forecast into one of the flexibility clusters.

3. A pricing engine that will generate recommendations on
how the aggregator can motivate consumers (based on the
cluster to which each forecast belongs and the objectives
of the DR program) to alter their consumption pattern
compared to their forecasted load profile.
16
4. A projection engine that will modify the conventional fore-
casted load profiles for end-users based on their likelihood
to adopt the proposed DR recommendations. This engine
will also assess the impact of the adopted DR policies on
the optimization objectives (minimization of reverse power
flow, peak shifting/shaving).

In the same context, an additional step of the current analysis
would be a post-hoc investigation of the impact of key external
factors, such as the season of the year, and the day of week
(mostly focusing on weekdays, weekends, and holidays), and
external temperature on the initial allocation of prosumers to
clusters, as such features are known to significantly affect con-
sumption patterns [9]. Solar radiation could be also considered
given its strong linkage with PV generation profiles. Note here
that such an approach has been beyond the scope of the present
study as we eventually opted for a static assignment of pro-
sumers to clusters aiming at a general-purpose and easy-to-use
DR framework for aggregators rather than a dynamic day-by-day
policy that would rely on load and generation forecasts.

Moreover, we encourage future research on the development
of detailed DR schemes for flexible energy communities propos-
ing specific energy prices. In this purpose, it is necessary to obtain
the current pricing schemes within the region of interest as a
baseline and thereafter decide on specific modifications that will
provide the prosumers with sufficient monetary motivation to
change their electrical energy consumption habits. These modi-
fications will be promoted to the customers via the DR scheme
(TOU, CPP, RTP) that best fits the cluster to which they belong.
To the end of forming complete pricing policies reinforcement
learning techniques are of high interest as they can result to
programmatical agents that will decide on TOU or RTP pricing
policies based on simulations with historical data [53–56].

Additionally to selecting the appropriate method for the cre-
ation of DR schemes, it is of utmost importance that prior to their
application in production, there is the possibility to evaluate their
expected impact and effectiveness. This step is necessary in all
cases where observational data from real-life demand response
(e.g. [37]) are unavailable. To this end, it is necessary to be
capable of generating a projection of how DR recommendations
will actually affect cluster/consumer behavior, namely load con-
sumption curves. This step is currently under investigation and is
left as future work. In this direction, the concepts of demand and
elasticity functions are being investigated in an effort to address
this issue [53,57,58].

Regarding the privacy concerns of DR programs, several de-
centralized/distributed approaches have been recently proposed
in the literature [59,60], including federated learning setups [56].
Such methodologies effectively ensure and protect the partici-
pants’ privacy by minimizing the required data exchanges and
avoiding centralized storage. Note here, however, that due to
the measuring nature of the existing smart meters in our case
study, and the absence of edge/fog computing technologies [61]
at the demand side, such practices have been beyond the scope
of the present work. In this direction, considering the potential
installation of such devices in the near future, the adoption of
similar setups is left as future work.

CRediT authorship contribution statement

Sotiris Pelekis: Conceptualization, Methodology, Visualiza-
tion, Software, Writing – original draft. Angelos Pipergias:Method
ology, Software, Data curation. Evangelos Karakolis: Writing –
original draft, Writing – review & editing. Spiros Mouzakitis:
Project administration. Francesca Santori: Validation. Moham-
mad Ghoreishi: Writing – review & editing. Dimitris Askounis:
Funding acquisition, Supervision.



S. Pelekis, A. Pipergias, E. Karakolis et al. Sustainable Energy, Grids and Networks 36 (2023) 101134

D

c
t

D

A

z
p

A

A
b

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work has been funded by the European Union’s Hori-
on 2020 research and innovation program under the I-NERGY
roject, grant agreement No. 101016508.

ppendix A. Specifications of the flexible energy community

See Table A.1.

ppendix B. Load profile clustering: cluster shapes and distri-
utions

See Figs. B.1–B.14.

Table A.1
Description of smart meters of the energy community. The smart meters are
accompanied by contractual consumption and production powers alongside
the type of the load. The smart meters with missing descriptions have been
annotated with ‘‘–’’.
id Contractual

power (kW)
Production
(kW)

Type

BBB6004 40 10.8 –
BBB6007 – – Pump
BBB6017 1.5 31 Company
BBB6018 137 155 Company
BBB6020 100 0 University
BBB6021 35 50 Company
BBB6022 95 0 Pump
BBB6025 7.7 19.3 Company
BBB6028 125 0 Pool
BBB6029 60 0 Company

(continued)
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Table A.1 (continued).
BBB6030 150 0 Company
BBB6032 165 0 Pump
BBB6036 19.3 19.3 Company
BBB6040 51 34.6 Company
BBB6048 30 49.9 Company
BBB6050 100 0 Company
BBB6051 35 34.7 Company
BBB6052 1.5 89.9 Company
BBB6055 1.5 175.5 Company
BBB6061 80 0 Company
BBB6062 46 49.3 Company
BBB6063 100 0 Company
BBB6064 200 0 Company
BBB6065 125 0 Company
BBB6067 70 0 –
BBB6071 – – –
BBB6074 33 49 –
BBB6078 76 50 Company
BBB6086 – – –
BBB6087 100 0 –
BBB6097 70 108.2 –
BBB6100 – 1 Substation
BBB6103 22 0 Electric vehicle charging station
BBB6105 22 0 Electric vehicle charging station
BBB6133 – – Company
BBB6140 – – –
BBB6168 3 0 Household
BBB6169 3 0 Household
BBB6170 3 0 Household
BBB6171 3 0 Household
BBB6173 3 0 Household
BBB6177 3 0 Household
BBB6178 3 0 Household
BBB6179 3 0 Household
BBB6180 3 0 Household
BBB6181 3 0 Household
BBB6182 3 0 Household
BBB6183 3 0 Household
BBB6186 3 0 Household
BBB6190 3 0 Household
BBB6191 3 0 Household
BBB6192 3 0 Household
BBB6197 3 0 Household
BBB6198 3 0 Household
Fig. B.1. Load curves and distribution of load types for cluster 0.
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Fig. B.2. Load curves and distribution of load types for cluster 1.

Fig. B.3. Load curves and distribution of load types for cluster 2.

Fig. B.4. Load curves and distribution of load types for cluster 3.

Fig. B.5. Load curves and distribution of load types for cluster 8.
18
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Fig. B.6. Load curves and distribution of load types for cluster 4.

Fig. B.7. Load curves and distribution of load types for cluster 6.

Fig. B.8. Load curves and distribution of load types for cluster 5.

Fig. B.9. Load curves and distribution of load types for cluster 7.
19
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Fig. B.10. Load curves and distribution of load types for cluster 9.

Fig. B.11. Load curves and distribution of load types for cluster 10.

Fig. B.12. Load curves and distribution of load types for cluster 11.

Fig. B.13. Load curves and distribution of load types for cluster 12.
20
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R

Fig. B.14. Load curves and distribution of load types for cluster 13.
Table C.1
The assignment of the community’s smart meters to the new ‘‘prosumer
clusters’’.
id Cluster

BBB6004 9
BBB6007 10
BBB6017 0
BBB6018 7
BBB6020 10
BBB6021 0
BBB6025 10
BBB6028 11
BBB6029 8
BBB6030 3
BBB6036 0
BBB6040 10
BBB6050 7
BBB6052 0
BBB6055 0
BBB6061 7
BBB6062 0
BBB6063 9
BBB6064 9
BBB6065 10
BBB6097 0
BBB6100 9
BBB6103 10
BBB6105 5
BBB6133 10
BBB6140 10
BBB6168 6
BBB6169 6
BBB6170 10
BBB6171 11
BBB6173 11
BBB6177 6
BBB6178 4
BBB6179 5
BBB6180 1
BBB6181 7
BBB6182 10
BBB6183 11
BBB6186 6
BBB6190 1
BBB6191 11
BBB6192 11
BBB6197 11
BBB6198 6

Appendix C. Prosumer clustering labels

See Table C.1.
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