Let $L$ be a non negative, selfadjoint operator on $L^{2}(X)$, where $X$ is a metric space endowed with a doubling measure. Consider the Schr\"{o}dinger group for fractional powers of $L$. If the heat flow $e^{-tL}$ satisfies suitable conditions of Davies--Gaffney type, we obtain the following estimate in Hardy spaces associated to $L$: \begin{equation*} \big\|(I+L)^{-\beta /2}e^{i\tau L^{\gamma /2}}f\big\|_{H^p_L(X)} \leq C (1 + |\tau|)^{n\mathfrak s_p}\|f\|_{H^p_L(X)} \end{equation*} where $p\in(0,1]$, $\gamma\in(0,1]$, $\beta /\gamma = n|\frac 12-\frac 1p|= n\mathfrak s_p$ and $\tau\in \mathbb{R}$. If in addition $e^{-itL}$ satisfies a localized $L^{p_{0}}\to L^{2}$ polynomial estimate for some $p_{0}\in[1,2)$, we obtain \begin{equation*} \big\|(I+L)^{-\beta /2}e^{i\tau L^{\gamma /2}}f\big\|_{p_0,\vc} \leq C (1 + |\tau|)^{n\mathfrak s_{p_0}}\|f\|_{p_0}, \quad \forall \tau \in \mathbb{R}. \end{equation*} provided $0<\gamma \ne 1$, $\beta /\gamma = n|\frac 12-\frac 1p|= n\mathfrak s_p$ and $\tau\in \mathbb{R}$. By interpolation, the second estimate implies also, for all $p\in(p_{0},p_{0}')$, the strong $(p,p)$ type estimate \begin{equation*} \big\|(I+L)^{-\beta /2}e^{i\tau L^{\gamma /2}}f\big\|_{p} \leq C (1 + |\tau|)^{n\mathfrak s_{p_0}}\|f\|_{p}. \end{equation*}
On sharp estimates for Schrödinger groups of fractional powers of nonnegative self-adjoint operators / Anh Bui, The; D'Ancona, Piero; Thinh Duong, Xuan. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - (2024). [10.1016/j.jde.2023.11.019]
On sharp estimates for Schrödinger groups of fractional powers of nonnegative self-adjoint operators
Piero D'AnconaCo-primo
Membro del Collaboration Group
;
2024
Abstract
Let $L$ be a non negative, selfadjoint operator on $L^{2}(X)$, where $X$ is a metric space endowed with a doubling measure. Consider the Schr\"{o}dinger group for fractional powers of $L$. If the heat flow $e^{-tL}$ satisfies suitable conditions of Davies--Gaffney type, we obtain the following estimate in Hardy spaces associated to $L$: \begin{equation*} \big\|(I+L)^{-\beta /2}e^{i\tau L^{\gamma /2}}f\big\|_{H^p_L(X)} \leq C (1 + |\tau|)^{n\mathfrak s_p}\|f\|_{H^p_L(X)} \end{equation*} where $p\in(0,1]$, $\gamma\in(0,1]$, $\beta /\gamma = n|\frac 12-\frac 1p|= n\mathfrak s_p$ and $\tau\in \mathbb{R}$. If in addition $e^{-itL}$ satisfies a localized $L^{p_{0}}\to L^{2}$ polynomial estimate for some $p_{0}\in[1,2)$, we obtain \begin{equation*} \big\|(I+L)^{-\beta /2}e^{i\tau L^{\gamma /2}}f\big\|_{p_0,\vc} \leq C (1 + |\tau|)^{n\mathfrak s_{p_0}}\|f\|_{p_0}, \quad \forall \tau \in \mathbb{R}. \end{equation*} provided $0<\gamma \ne 1$, $\beta /\gamma = n|\frac 12-\frac 1p|= n\mathfrak s_p$ and $\tau\in \mathbb{R}$. By interpolation, the second estimate implies also, for all $p\in(p_{0},p_{0}')$, the strong $(p,p)$ type estimate \begin{equation*} \big\|(I+L)^{-\beta /2}e^{i\tau L^{\gamma /2}}f\big\|_{p} \leq C (1 + |\tau|)^{n\mathfrak s_{p_0}}\|f\|_{p}. \end{equation*}File | Dimensione | Formato | |
---|---|---|---|
Bui_On-sharp-estimates_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
431.2 kB
Formato
Adobe PDF
|
431.2 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.