In Part I of this study, it was shown that all the three known types of monohedral hexagonal tessellations of the plane, those composed of equal irregular hexagons, have just a single deformation mode when tiles are considered as rigid bodies hinged to each other along the edges. A gallery of tessellated plates was simulated numerically to demonstrate the range of achievable deformed shapes. In Part II, the displacement field was first derived and a continuous interpolant for each type of tessellated plate. It turns out that all corresponding metasurfaces are described by quadrics. Afterwards, a parametric analysis was carried out to determine the effect of varying angles and edge lengths on the curvature, and the values of the geometric Poisson ratio of the plates. Finally, a method of fabrication is proposed based on the additive manufacturing of stiff tiles of negligible deformability and flexible connectors. Using this modular technique, it is possible to join together different monohedral tessellated plates able to deform into piece-wise quadrics. The nodal positions in the deformed configuration of the realized plates are measured after enforcing one principal curvature to assume a chosen value. The estimate of the other principal curvature confirms the analytical predictions. The presented tessellated plates permit to realize doubly curved shape-morphing metasurfaces with assorted shapes, which also can feature a certain surface roughness, and they can be employed in all applications demanding high surface accuracy and few actuators or just one.

Programming quadric metasurfaces via infinitesimal origami maps of monohedral hexagonal tessellations: Part II / dos Santos, F. A.; Favata, A.; Micheletti, A.; Paroni, R.; Scardaoni, M. P.. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A. - ISSN 1364-5021. - 480:2284(2024). [10.1098/rspa.2023.0449]

Programming quadric metasurfaces via infinitesimal origami maps of monohedral hexagonal tessellations: Part II

Favata A.;
2024

Abstract

In Part I of this study, it was shown that all the three known types of monohedral hexagonal tessellations of the plane, those composed of equal irregular hexagons, have just a single deformation mode when tiles are considered as rigid bodies hinged to each other along the edges. A gallery of tessellated plates was simulated numerically to demonstrate the range of achievable deformed shapes. In Part II, the displacement field was first derived and a continuous interpolant for each type of tessellated plate. It turns out that all corresponding metasurfaces are described by quadrics. Afterwards, a parametric analysis was carried out to determine the effect of varying angles and edge lengths on the curvature, and the values of the geometric Poisson ratio of the plates. Finally, a method of fabrication is proposed based on the additive manufacturing of stiff tiles of negligible deformability and flexible connectors. Using this modular technique, it is possible to join together different monohedral tessellated plates able to deform into piece-wise quadrics. The nodal positions in the deformed configuration of the realized plates are measured after enforcing one principal curvature to assume a chosen value. The estimate of the other principal curvature confirms the analytical predictions. The presented tessellated plates permit to realize doubly curved shape-morphing metasurfaces with assorted shapes, which also can feature a certain surface roughness, and they can be employed in all applications demanding high surface accuracy and few actuators or just one.
2024
metasurface; morphing structure; rigid microstructure; tessellation; three-dimensional printing
01 Pubblicazione su rivista::01a Articolo in rivista
Programming quadric metasurfaces via infinitesimal origami maps of monohedral hexagonal tessellations: Part II / dos Santos, F. A.; Favata, A.; Micheletti, A.; Paroni, R.; Scardaoni, M. P.. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES A. - ISSN 1364-5021. - 480:2284(2024). [10.1098/rspa.2023.0449]
File allegati a questo prodotto
File Dimensione Formato  
Santos_Programming_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1704872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact