In this paper we study the homogenization limits for the steady state of a diffusion problem in a composite medium made up by two different materials: a host material and the inclusion material which is disposed in a periodic array and has a typical length scale $\eps$. On the interface separating the two phases two different sets of non-standard transmission conditions are assigned (thus originating two different systems of partial differential equations). As $\eps$ tends to zero a hierarchy of homogenization problem related to such interface conditions is studied and the physical properties of the various limits are discussed.

Homogenization of composite media with non-standard transmission conditions / Amar, M.; Ayub, A.; Gianni, R.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 537:2(2024). [10.1016/j.jmaa.2024.128434]

Homogenization of composite media with non-standard transmission conditions

Amar M.;
2024

Abstract

In this paper we study the homogenization limits for the steady state of a diffusion problem in a composite medium made up by two different materials: a host material and the inclusion material which is disposed in a periodic array and has a typical length scale $\eps$. On the interface separating the two phases two different sets of non-standard transmission conditions are assigned (thus originating two different systems of partial differential equations). As $\eps$ tends to zero a hierarchy of homogenization problem related to such interface conditions is studied and the physical properties of the various limits are discussed.
2024
Homogenization, asymptotic expansions, elliptic problems
01 Pubblicazione su rivista::01a Articolo in rivista
Homogenization of composite media with non-standard transmission conditions / Amar, M.; Ayub, A.; Gianni, R.. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 537:2(2024). [10.1016/j.jmaa.2024.128434]
File allegati a questo prodotto
File Dimensione Formato  
Amar_Homogenization_2024.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 757.93 kB
Formato Adobe PDF
757.93 kB Adobe PDF
Amar_Homogenization_2024.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 650.45 kB
Formato Adobe PDF
650.45 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1704375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact