
HOMOGENIZATION OF COMPOSITE MEDIA WITH
NON-STANDARD TRANSMISSION CONDITIONS

M. AMAR§ – A. AYUB† – R. GIANNI‡

§DIPARTIMENTO DI SCIENZE DI BASE E APPLICATE PER L’INGEGNERIA
SAPIENZA - UNIVERSITÀ DI ROMA
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1. Introduction

The study of the transmission conditions through an interface separating two differ-
ent media plays a fundamental role in the modelling of a large number of physical
problems. As possible examples, we can refer to elasticity, electric conduction and
heat diffusion, when two media with different material properties are bonded together
and we have to investigate the evolution in time of the corresponding state variables
(i.e. displacement, electric potential, temperature) in such a composite. From a
mathematical point of view, we have to establish the interface conditions satisfied by
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the unknown on the surface separating the two phases. Clearly, these interface condi-
tions will depend on how the junction is realized. For instance, in [28, 29, 31, 32, 33],
several types of interface conditions are obtained, assuming that the two media are
separated by a third one of vanishing thickness. Hence, the various transmission
conditions are recovered in correspondence of the different physical properties of the
vanishing phase. Adopting an alternative perspective, in [7, 8], new sets of interface
conditions, related to the ones in [29, 31, 33], are derived via concentration, assum-
ing that the interface is the limit of a thick membrane, which in turn is a composite:
i.e. it is a wafer made up of two materials with different physical properties. These
two new sets of transmission conditions are investigated, in the present paper, from
the point of view of homogenization, following an approach perused, for instance,
in [3, 4, 5, 11, 15, 16, 22, 23, 24, 25, 26, 27]. Namely, having in mind the study of
heat diffusion (even though, for the sake of simplicity, in the time independent case),
we will produce the rigorous homogenization limit for a composite periodic material
made up of two different media on whose contact layer equations (3.1c)–(3.1d) or
(3.2c)–(3.2d) are satisfied. We will study both the case in which the periodic inclu-
sion of the embedded material, as well as the host material are connected (to which
we refer as the connected/connected case) and the case in which the inclusion is made
of disconnected periodic cells (to which we refer as the connected/disconnected case).
As usual in this kind of problems, the interface conditions must be properly rescaled,
multiplying them by a suitable power of ε (ε being the vanishing length scale of the
inclusions). It is worthwhile noting that homogeneity reasons dictate that different
power of ε multiply the various terms in the interface conditions, in a way such that
the difference between the various powers matches the different orders of derivation
of the unknown. Hence, if the terms accounting for the jump and the average of the
state variable are multiplied by εm, the Beltrami Laplacian of the same quantities
will be multiplied by εm+2 (see (3.1d) and (3.2c)–(3.2d)). As already pointed out
in the literature (see, for instance, [3, 4, 8, 9, 10, 12, 22, 23]), we recognize that
only three different regimes are relevant in the homogenization, corresponding to the
choice of m = 0;±1. For this reason, in this paper, we will study a hierarchy of
problems corresponding to these three choices of m and this will be done for both
the two different sets of interface boundary conditions. It turns out that the case
m = −1 is the only one that preserves in the limit all the physical properties of the
interface. Consequently, in this situation, we also have that homogenizing the two
different sets of transmission conditions leads to two different limit problems. On
the contrary, in the case m = 0, 1, both sets of interface conditions lead to the same
limit problem. More precisely, for m = 0 we obtain an elliptic equation in which no
trace of the physical properties of the active interface is preserved; while, in the case
m = 1, we get a bidomain model where the transversal diffusivity of the interface,
represented by α (see equations (3.1d) and (3.2d) below), is the only physical prop-
erty still appearing in the homogenization limit. We recall that having a bidomain
problem in this homogenization procedure means that the unknown state variable in
the inclusions tends to a limit (as ε tends to zero) which is different from the limit
of the same state variable restricted to the hosting material. Both these limits solve
different coupled partial differential equations. The previous results are in agreement
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with the literature cited above and the scalings used therein. We notice that an
attractive part of this paper is due to the unexpected result that, for m = 0 (see
Remark 6.5), as well as for m = 1 (see Remark 6.8), homogenizing the two different
sets of boundary conditions (3.1c)–(3.1d) and (3.2c)–(3.2d) leads to the same limit
problem. Only for m = −1, the resulting homogenized problems are different and
maintain a strong affinity with the original microscopic models (see (5.8a)–(5.8e) and
(6.2a)–(6.2e)). Moreover, only for such a scaling, the limits keep into account the
transversal as well as the tangential diffusion properties of the interface.

The paper is organized as follows. Section 2 is devoted to introduce our notations
and the geometrical, as well as the functional, settings. In Section 3, we introduce the
two differential problems studied in this paper. Section 4 recalls the main properties
of the unfolding operator. Finally, Sections 5 and 6 contain our main results, i.e. the
homogenization of the two differential problems, in both the geometries and for all
the scalings considered.

2. Notations and preliminaries

2.1. Notations. In the following, we will assume that Ω ⊂ RN (N ≥ 3) is a bounded
open set with smooth boundary ∂Ω and Y = (0, 1)N will denote the reference unit
cell in RN .
The set C∞c (Ω) will denote the subset of the functions belonging to the standard
space C∞(Ω) with compact support in Ω, as well as C∞per(Y ) will denote the set of

the Y-periodic functions in C∞(RN).
Moreover, H1(Ω), H1

0 (Ω) and H1
loc(Ω) will denote the usual Sobolev spaces; Lpper(Y )

will denote the set of the Y-periodic functions in Lploc(RN) and H1
per(Y ) is the set of

the Y-periodic functions in H1
loc(RN).

Finally, C will be a strictly positive constant, which may vary from line to line.

2.2. Beltrami Differential Operators. Given a function φ ∈ C1(Ω) and a smooth
surface S ⊂ Ω ⊆ RN , we denote by ∇Bφ the tangential gradient of φ on S, i.e. the
projection of ∇φ on the tangent hyper-plane to S, defined by

∇Bφ := ∇φ− (n · ∇φ)n, (2.1)

where n is the normal unit vector to S and ∇ is the classical gradient.
Taking into account the smoothness of S, the normal vector n can be naturally
defined in a small neighbourhood of S as ∇d

|∇d| , where d is the signed distance from

S, so that, given a vector valued function Φ ∈ C1(Ω), we can define the tangential
divergence of Φ on S as

divBΦ := div(Φ− (n · Φ)n) = div Φ− (n · ∇Φi)ni − (div n)(n · Φ). (2.2)

Moreover, from (2.1) and (2.2), for a given scalar function φ ∈ C2(Ω), we can define
the Laplace-Beltrami operator ∆Bφ as

∆Bφ := divB
(
∇Bφ

)
= ∆φ− nt∇2φn− (n · ∇φ) div n

= (δij − ninj) ∂2
ijφ− (ni∂iφ) (∂jnj),

(2.3)
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where ∇2φ denotes the Hessian matrix of φ, δij is the Kronecker delta and, as usual,
we sum with respect to repeated indexes.
Finally, we recall that, if S is a regular surface with no boundary, i.e. ∂S = ∅, we
have ∫

S

divBΦ dσ = 0. (2.4)

2.3. Geometrical Settings. In this paper, we will consider two different geomet-
rical settings, according to the pictures displayed in Figure 1 and Figure 2. Let
E ⊂ RN be a periodic open set, i.e. E + z = E for all z ∈ ZN . For the sake of
simplicity, we will assume that the boundaries ∂Ω and ∂E are of class C∞. Following
the same notations as in [8], we set Eint := E ∩ Y , Eout := Y \Ē and Γ := ∂E ∩ Y ,
so that Y = Eint ∪ Eout ∪ Γ; moreover, for the sake of simplicity, we will assume
that Eint is connected. Let ε ∈ (0, 1] be the small parameter accounting for the
ratio between the micro and the macro length-scale, which will be let converge to
zero. We denote the inner and the outer conductive phase by Ωint

ε := Ω ∩ εE and

Ωout
ε := Ω\εE = Ω\Ωint

ε , respectively, and the interface by Γε := ∂Ωint
ε ∩Ω = ∂Ωout

ε ∩Ω,
so that Ω = Ωint

ε ∪ Ωout
ε ∪ Γε.

We assume also that Ωout
ε is connected at each step ε > 0, whereas Ωint

ε will be
connected or disconnected. Indeed, we will consider the following two different situ-
ations:

• connected-disconnected case: in this case, we assume that Γ ∩ ∂Y = ∅,
that is the boundary of E does not touch the boundary of the unit cell Y (see
Figure 1). Here, the domain Ω is the union of the connected domain Ωout

ε , the
disconnected domain Ωint

ε and the common boundary Γε. We also assume that
the cells intersecting the boundary ∂Ω do not contain any inclusion, so that we
have dist(Γε, ∂Ω) ≥ C0ε, for some suitable constant C0 > 0 independent of ε.
• connected-connected case: in this case, we assume that ∂E ∩ Y 6= ∅, but
|∂E ∩ Y |N−1 = 0 (where | · |N−1 denotes the (N − 1)-dimensional Hausdorff
measure). In this situation, we stipulate that Eint, Eout, Ωint

ε , and Ωout
ε are con-

nected and, without any loss of generality, that they have Lipschitz continuous
boundary (at least for a suitable choice of a subsequence εn → 0). In this case,
at each level ε > 0, we have that both ∂Ω∩∂Ωint

ε and ∂Ω∩∂Ωout
ε are non empty.

Finally, let ν be the normal unit vector to Γ pointing into Eout, extended by period-
icity to the whole of RN , so that, νε(x) = ν(x

ε
) denotes the normal unit vector to Γε

pointing into Ωout
ε .

2.4. The spaces Hε
0,m(Ω) and Ĥε

0,m(Ω). In this subsection, we introduce the proper
functional settings needed for the well-posedness of the ε-microscopic problems stud-
ied in this paper. Given a function u : Ω → R, we denote by uint and uout its
restriction to Ωint

ε and Ωout
ε , respectively, and, with abuse of notation, the same sym-

bols will be used for the corresponding traces on Γε. Furthermore, we denote by [u]
the jump of u across the interface Γε, i.e.

[u] = uout − uint , (2.5)
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Figure 1. Macro and microscopic view of the periodic structure in
the connected-disconnected geometrical settings. The region bounded

by the polygonal will be denoted by Ω̂ε.

Figure 2. Macro and microscopic view of the periodic structure in
the connected-connected geometrical settings.

and similarly, {u} denotes the sum of uint and uout at the interface Γε, i.e.

{u} = uout + uint. (2.6)

The same notations will be used for other quantities. Notice that, from (2.5) and
(2.6), uout and uint can be rewritten as

uout =
1

2
({u}+ [u]) , and uint =

1

2
({u} − [u]) .

Definition 2.1. Given ε ∈ (0, 1] and recalling that the space H1(Γε) is defined as
the set of functions v ∈ L2(Γε) such that ∇Bv ∈ L2(Γε), for m = 0;±1, we set

Hε
0,m(Ω) := {u = (uint, uout) : uint ∈ H1(Ωint

ε ), uout ∈ H1(Ωout
ε ),

[u] ∈ H1(Γε), u = 0 on ∂Ω}
(2.7)
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and

Ĥε
0,m(Ω) := {u = (uint, uout) : uint ∈ H1(Ωint

ε ), uout ∈ H1(Ωout
ε ),

[u], {u} ∈ H1(Γε), u = 0 on ∂Ω},
(2.8)

endowed, respectively, with the norms

||u||2Hε
0,m(Ω) := ||∇uint||2L2(Ωint

ε ) + ||∇uout||2L2(Ωout
ε ) + εm || [u] ||2L2(Γε)

+ εm+2 || ∇B [u] ||2L2(Γε)

(2.9)

and

||u||2Ĥε
0,m(Ω)

:= ||∇u||2L2(Ωint
ε ) + ||∇u||2L2(Ωout

ε ) +
εm

2
|| [u] ||2L2(Γε)

+
εm+2

2
|| ∇B[u] ||2L2(Γε) +

εm+2

2
|| ∇B{u} ||2L2(Γε).

(2.10)

�

Notice that the space Ĥε
0,m(Ω) coincides with the space of the piecewise H1-functions

in Ωint
ε and Ωout

ε , with zero boundary value, whose traces on Γε from Ωint
ε and Ωout

ε

belong to the space H1(Γε). Moreover, Ĥε
0,m(Ω) $ Hε

0,m(Ω). We recall also that, for
u ∈ Hε

0,m(Ω) the following Poincaré inequality holds (see [30, Lemma 6 complemented
with Lemma 4], for the connected/disconnected case, and [2, Lemma A.4], for the
connected/connected case):

‖u‖2
L2(Ω) ≤ C

(
‖∇u‖2

L2(Ωout
ε ) + ‖∇u‖2

L2(Ωint
ε ) + ε‖[u]‖2

L2(Γε)

)
, (2.11)

where the constant C is independent of ε. Therefore, we have

‖u‖2
L2(Ω) ≤ C||u||2Hε

0,m(Ω) if u ∈ Hε
0,m(Ω); (2.12)

‖u‖2
L2(Ω) ≤ C||u||2Ĥε

0,m(Ω)
if u ∈ Ĥε

0,m(Ω). (2.13)

Clearly, the spaces Hε
0,m(Ω) and Ĥε

0,m(Ω) are Banach spaces (see [13, Lemmas 3.2
and 4.1] and [8, Lemma 2.2.]).
For later use, we also define the periodic version of the previous spaces in the nor-
malized unit cell by

Hper(Y ) := {u = (uint, uout) : uint ∈ H1
per(E

int),

uout ∈ H1
per(E

out), [u] ∈ H1
per(Γ)}, (2.14)

and

Ĥper(Y ) := {u = (uint, uout) : uint ∈ H1
per(E

int),

uout ∈ H1
per(E

out), [u], {u} ∈ H1
per(Γ)}. (2.15)

Here and in the following H1
per(E

int) (H1
per(E

out) and H1
per(Γ), respectively) denotes

the space of the Y -periodic functions belonging toH1
loc(E) (H1

loc(RN\E) andH1
loc(∂E),

respectively).
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3. Position of the problems Amε and Bmε
The ε-microscopic models, which we are interested in, are given by

Amε :



−div(Aε∇uintε ) = f in Ωint
ε , (3.1a)

−div(Aε∇uoutε ) = f in Ωout
ε , (3.1b)

[Aε∇uε · νε] = 0 on Γε, (3.1c)

α εm [uε]− β εm+24B[uε] = Aε∇uoutε · νε on Γε, (3.1d)

uε = 0 on ∂Ω, (3.1e)

and

Bmε :



−div(Aε∇uintε ) = f in Ωint
ε , (3.2a)

−div(Aε∇uoutε ) = f in Ωout
ε , (3.2b)

−γ εm+24B{uε} = [Aε∇uε · νε] on Γε, (3.2c)

α εm [uε]− β εm+24B[uε] = {A∇uε · νε} on Γε, (3.2d)

uε = 0 on ∂Ω, (3.2e)

where m = 0;±1 and α, β, γ are strictly positive constants, whose physical meaning is
referable to the tangential and the transversal diffusivities in the concentrated layer,
when we consider heat diffusion in multilayered media on which a concentration limit
has been performed (see [8, Section 4]).
The source term f ∈ L2(Ω) and the diffusivity matrix Aε is given by Aε(x) = A

(
x
ε

)
where A is a measurable, Y -periodic symmetric matrix satisfying

λ |ζ|2 ≤ (A(y)ζ, ζ) ≤ Λ |ζ|2 for a.e. y ∈ Y and any ζ ∈ RN , (3.3)

for two suitable constants 0 < λ < Λ < +∞.
More precisely, the mathematical description of our problems is given by an ellip-
tic equation in each phase Ωint

ε and Ωout
ε complemented with homogenous Dirichlet

boundary conditions on ∂Ω. The thermal potentials uintε and uoutε of the two phases
are coupled by means of two interface conditions. In the first model the flux of the
solution uε is continuous across the interface and the jump [uε] is governed by an equa-
tion involving the Laplace-Beltrami operator with the flux of the solution as a source
term. In the second model the flux has a jump proportional to the Laplace-Beltrami
of {uε} and the jump [uε] is governed by an equation involving the Laplace-Beltrami
operator with a source term given by {A∇uε · νε}.
In the following, we will consider the problems Amε and Bmε for different scalings of
the parameter ε, by taking into account the exponent m = 0;±1. This is consistent
with what has been done in the literature (see, for instance, [3, 4, 9, 10, 12, 22, 23]).
As a consequence, the problems Amε and Bmε will be split in three independent sub-
problems.
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Definition 3.1. Given ε ∈ (0, 1] and m = 0,±1, we say that uε ∈ Hε
0,m(Ω) is a weak

solution of the problem Amε given in (3.1), if∫
Ωint

ε

Aε∇uintε · ∇ϕdx+

∫
Ωout

ε

Aε∇uoutε · ∇ϕdx

+α εm
∫
Γε

[uε] [ϕ] dσ + β εm+2

∫
Γε

∇B [uε]∇B[ϕ] dσ =

∫
Ω

fϕ dx,

(3.4)

for every test function ϕ ∈ Hε
0,m(Ω).

We say that uε ∈ Ĥε
0,m(Ω) is a weak solution of the problem Bmε given in (3.2), if∫

Ωint
ε

Aε∇uintε · ∇ϕdx +

∫
Ωout

ε

Aε∇uoutε · ∇ϕdx + α
εm

2

∫
Γε

[uε] [ϕ] dσ

+ β
εm+2

2

∫
Γε

∇B[uε] · ∇B[ϕ] dσ + γ
εm+2

2

∫
Γε

∇B{uε} · ∇B {ϕ} dσ

=

∫
Ω

fϕdx,

(3.5)

for every test function ϕ ∈ Ĥε
0,m(Ω). �

The well-posedness of the ε-problems is an easy consequence of the Lax-Milgram
Lemma (see [13, Theorems 3.2 and 4.2] and [8, Theorem 3.4]).
By choosing ϕ = uε in the weak formulation (3.4) and (3.5) and using (2.12) and
(2.13), respectively, we get the two energy inequalities

||uε ||2Hε
0,m(Ω) = ||∇uε||2L2(Ωint

ε ∪Ωout
ε ) + εm || [uε] ||2L2(Γε)

+ εm+2 || ∇B[uε] ||2L2(Γε) ≤ C ||f ||2L2(Ω),
(3.6)

and

||uε ||2Ĥε
0,m(Ω)

= ||∇uε||2L2(Ωint
ε ∪Ωout

ε ) +
εm

2
|| [uε] ||2L2(Γε)

+
εm+2

2
|| ∇B[uε] ||2L2(Γε) +

εm+2

2
|| ∇B{uε} ||2L2(Γε) ≤ C || f ||2L2(Ω),

(3.7)

where C is independent of ε.

Remark 3.2. If uε ∈ Hε
0,m(Ω) is the solution of (3.4), by taking into account (3.6) and

the Poincaré inequalities (2.12), it follows that there exists a function u0 ∈ L2(Ω),
such that, up to a subsequence, uε ⇀ u0 weakly in L2(Ω).
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Moreover, there exists a constant C ≥ 0, independent of ε, such that

||uintε ||H1(Ωint
ε ) ≤ C,

||uoutε ||H1(Ωout
ε ) ≤ C,

|| [uε] ||L2(Γε) ≤ C ε−
m
2 ,

|| ∇B[uε] ||L2(Γε) ≤ C ε−
m+2

2 .

(3.8)

On the other hand, if u ∈ Ĥε
0,m(Ω) is the solution of (3.5), due to (3.7) and (2.13),

we have that also in this case there exists a function u0 ∈ L2(Ω), such that, up to a
subsequence, uε ⇀ u0 weakly in L2(Ω) and, in addition to (3.8), we also have that

|| ∇B{uε} ||L2(Γε) ≤ C ε−
m+2

2 . (3.9)

The main purpose of this paper is to characterize such a limit u0 as the solution of a
suitable differential problem. �

4. The unfolding operator

In this section we recall the definitions and the main properties of the unfolding
operator Tε (see, for instance, [11, 17, 18, 19, 20, 21, 22, 23]).

For each x ∈ RN and any ε ∈ (0, 1], we set x = ε
([x
ε

]
Y

+
{x
ε

}
Y

)
, where [·]Y denotes

the unique integer combination of the periods such that
{x
ε

}
Y

=
x

ε
−
[x
ε

]
Y

belongs

to the unit cell Y . For later use, we set

Ξε :=
{
ξ ∈ ZN , ε(ξ + Y ) ⊂ Ω

}
and Ω̂ε = interior

{⋃
ξ∈Ξε

ε(ξ + Y )

}
.

Definition 4.1 (Unfolding Operator Tε).
For a Lebesgue measurable function w defined in Ω, the unfolding operator Tε is

defined as

Tε(w)(x, y) :=

{
w
(
ε
[x
ε

]
Y

+ εy
)

if (x, y) ∈ Ω̂ε × Y,
0 otherwise.

�

We recall that Tε is a linear and continuous operator and that, for any two Lebesgue
measurable functions w1, w2, we have Tε(w1w2) = Tε(w1)Tε(w2).

In the following, for a general set O, MO(·) will denote the integral average on O.

Proposition 4.2. Let w ∈ L2(Ω), then Tε(w)→ w strongly in L2(Ω×Y ). Moreover,
if wε → w strongly in L2(Ω), then Tε(wε) → w strongly in L2(Ω × Y ). Finally, if
wε ⇀ w weakly in L2(Ω), then there exists ŵ ∈ L2(Ω × Y ) such that Tε(wε) ⇀ ŵ
weakly in L2(Ω× Y ) and w =MY (ŵ).

We recall that, for every w ∈ H1(Ω), it follows

∇y(Tε(w))(x, y) = ε Tε(∇w)(x, y) for a.e (x, y) ∈ Ω× Y, (4.1)
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and Tε maps H1(Ω) into L2(Ω; H1(Y )). Moreover, the only classes for which the
strong convergence of the unfolding Tε(wε) is known to hold in L2(Ω × Y ), with-
out assuming the strong convergence of the sequence wε, are sums of the following
cases: wε(x) = w(x, ε−1x) Y -periodic in the second variable, such that w(x, ε−1x) =
f1(x)f2(ε−1x) with f1, f2 suitable Lebesgue-measurable functions or w ∈ L2(Y ;C0(Ω))
or w ∈ L2(Ω;C0(Y )) (see [1, 18, 19]).

Definition 4.3 (Boundary Unfolding Operator).
For a Lebesgue-measurable function w defined on Γε, the boundary unfolding operator
is defined as

T bε (w)(x, y) :=

{
w(ε[x

ε
]Y + εy) if (x, y) ∈ Ω̂ε × Γ,

0 otherwise.

�

Clearly, also T bε is linear and continuous and T bε (w1w2) = T bε (w1)T bε (w2). Notice that

T bε (w) is the trace of the unfolding operator Tε(w) on Ω̂ε×Γ, when both the operators
are defined.

Proposition 4.4. For w ∈ L2(Γε), we have

||T bε (w)||L2(Ω×Γ) ≤
√
ε ||w||L2(Γε), (4.2)

and ∣∣∣ ∫
Γε

w dσ − 1

ε

∫
Ω

∫
Γ

T bε (w)dσ dx
∣∣∣ ≤ ∫

Γε\Ω̂ε

|w| dσ. (4.3)

We remark that in the connected-disconnected case, Γε \ Ω̂ε = ∅.

Proposition 4.5. (1) If w ∈ C0(Ω), then

T bε (w) → w strongly in L2(Ω× Γ).

(2) If w ∈ H1(Ω), then

T bε (w) → w strongly in L2(Ω× Γ).

(3) If wε ⇀ w weakly in H1
0 (Ω), then

T bε (wε) ⇀ w weakly in L2(Ω× Γ).

Proposition 4.6. Let φ : Y → R be a function extended by Y-periodicity to the
whole RN and define the sequence

φε(x) = φ(
x

ε
), x ∈ RN . (4.4)

Clearly,

Tε(φε)(x, y) =

{
φ(y) for a.e. (x, y) ∈ Ω̂ε × Y,
0 otherwise,

(4.5)

and

T bε (φε)(x, y) =

{
φ(y) for a.e. (x, y) ∈ Ω̂ε × Γ,

0 otherwise.
(4.6)
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Then, as ε → 0, if φ ∈ L2(Y ), we have

Tε(φε) → φ strongly in L2(Ω× Y ), (4.7)

if φ ∈ H1(Y ), we have

∇yTε(φε) → ∇yφ strongly in L2(Ω× Y ), (4.8)

and, if φ ∈ L2(Γ), we have

T bε (φε) → φ strongly in L2(Ω× Γ). (4.9)

Notice that, if w ∈ Hε
0,m(Ω) (or w ∈ Ĥε

0,m(Ω)), then

∇B
y T bε ([w]) = ε T bε (∇B[w]) (and ∇B

y T bε ({w}) = ε T bε (∇B{w})). (4.10)

4.1. Compactness results for the connected-connected geometry. In this
subsection we focus on some well-known results that we will use in the following
for the connected-connected geometrical structure of a periodic media.

Theorem 4.7. Let m = 0,±1 and wε = (wintε , woutε ) be a sequence in Hε
0,m(Ω).

Assume that there exists C>0 (independent of ε) such that∫
Ω

|wε|2 dx+

∫
Ω

|∇wε|2 dx ≤ C , ∀ε > 0. (4.11)

Then, there exist wint, wout ∈ H1
0 (Ω), ŵint∈L2(Ω;H1

per(E
int)) and ŵout∈L2(Ω;H1

per(E
out))

such that, up to subsequence, as ε→0, we have

Tε(χΩint
ε
wε)→ χEintwint = wint , strongly in L2(Ω;H1

per(E
int)) ; (4.12)

Tε(χΩout
ε
wε) ⇀ χEoutwout = wout , strongly in L2(Ω;H1

per(E
out)) ; (4.13)

Tε(χΩint
ε
∇wε) ⇀ χEint

(
∇wint +∇yŵ

int
)
, weakly in L2(Ω× Y ) ; (4.14)

Tε(χΩout
ε
∇wε) ⇀ χEout

(
∇wout +∇yŵ

out
)
, weakly in L2(Ω× Y ) . (4.15)

Moreover, we also have

ε

∫
Γε

[wε]
2 dσ ≤ 2ε

∫
Γε

(
|wintε |2 + |woutε |2

)
dσ ≤ C , ∀ε > 0 , (4.16)

with C independent of ε, and

T bε ([wε]) ⇀ [w] , weakly in L2(Ω× Γ) , (4.17)

where, with abuse of notation, we set [w] = wout−wint and we have identified wintε , woutε

with their traces on Γε. Finally, assume that

‖[wε]‖L2(Γε) ≤ Cε−m/2, (4.18)

with C independent of ε. Then, if m = −1, 0, we have wint = wout and, if m = −1,
we have

T bε
( [wε]

ε

)
⇀ [ŵ] weakly in L2(Ω× Γ). (4.19)
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Theorem 4.8. Let m = 0,±1 and wε = (wintε , woutε ) be a bounded sequence in
Hε

0,m(Ω). Then, there exist ξint, ξout ∈ L2(Ω), such that, up to a subsequence (still
denoted by ε), we have

Tε(χΩint
ε
wintε )−MΓ(Tε(χΩint

ε
wintε ))

ε
⇀ yΓ · ∇wint + ŵint + ξint weakly in L2(Ω× Eint),

Tε(χΩout
ε
woutε )−MΓ(Tε(χΩint

ε
woutε ))

ε
⇀ yΓ · ∇wout + ŵout + ξout weakly in L2(Ω× Eout),

where yΓ = y −MΓ(y) and wint, wout, ŵint, ŵout are the same functions appearing in
Theorem 4.7.

4.2. Compactness results for the connected-disconnected geometry. In this
subsection, we recall and focus on some convergence results for the connected-disconnected
geometrical settings.

Theorem 4.9. Let m = 0,±1 and wε = (wintε , woutε ) be a sequence in Hε
0,m(Ω).

Assume that (4.11) holds. Then, there exist wint ∈ L2(Ω), wout ∈ H1
0 (Ω), ŵint ∈

L2(Ω;H1
per(E

int)) and ŵout∈L2(Ω;H1
per(E

out)) such that, up to subsequence, as ε→0,
we have that (4.13),(4.15) and (4.17) hold, while in (4.12) the strong convergence
must be replaced with the weak convergence and, instead of (4.14), we have

Tε(χΩint
ε
∇wε) ⇀ χEint

(
∇wout +∇yŵ

int
)
, weakly in L2(Ω× Y ) ; (4.20)

Moreover, assuming again (4.18), we obtain that, if m = −1, 0, wint = wout and, if
m = −1, (4.19) holds.

Theorem 4.10. Let m = 0,±1 and wε = (wintε , woutε ) be a bounded sequence in
Hε

0,m(Ω). Then, there exist ξint, ξout ∈ L2(Ω), such that, up to a subsequence (still
denoted by ε), we have

Tε(χΩint
ε
wintε )−MΓ(Tε(χΩint

ε
wintε ))

ε
⇀ yΓ · ∇wout + ŵint + ξint weakly in L2(Ω× Eint),

Tε(χΩout
ε
woutε )−MΓ(Tε(χΩint

ε
woutε ))

ε
⇀ yΓ · ∇wout + ŵout + ξout weakly in L2(Ω× Eout),

where yΓ = y −MΓ(y) and wint, wout, ŵint, ŵout are the same functions appearing in
Theorem 4.9.

It is worthwhile to remark that, in the connected-disconnected geometry, the space
H1(Eint) coincides with H1

per(E
int).

5. Homogenization of the problem Amε
In this section, we apply the unfolding technique to rigorously describe the asymptotic
behavior as ε→ 0 of the function uε, solution of the elliptic problemAmε (3.1). We will
consider both the connected/connected and the connected/disconnected geometrical
settings.
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5.1. The case m = −1. In this section, we consider problem (3.1) for the scaling
m = −1.

Theorem 5.1. For any ε > 0, let uε = (uintε , uoutε ) ∈ Hε
0,m(Ω) be the unique solution

of problem (3.1), for m = −1. Then, there exist u0 ∈ H1
0 (Ω) and u1 = (uint1 , uout1 ) ∈

L2(Ω,Hper(Y )) with MY (u1) = 0, such that, as ε→ 0, we have

Tε(uε) ⇀ u0 , weakly in L2(Ω× Y ); (5.1)

Tε(χΩintuε) ⇀ u0 , weakly in L2(Ω;H1
per(E

int)); (5.2)

Tε(χΩoutuε) → u0 , strongly in L2(Ω;H1
per(E

out)); (5.3)

Tε(χΩint
ε
∇uε) ⇀ ∇u0 +∇yu

int
1 , weakly in L2(Ω× Eint); (5.4)

Tε(χΩout
ε
∇uε) ⇀ ∇u0 +∇yu

out
1 , weakly in L2(Ω× Eout); (5.5)

T bε
( [uε]

ε

)
⇀ [u1] , weakly in L2(Ω× Γ); (5.6)

T bε
(
∇B[uε]

)
⇀ ∇B

y [u1] weakly in L2(Ω× Γ). (5.7)

Moreover, the pair (u0, u1) is the unique weak solution of the following homogenized
two-scale problem

−div
( ∫
Eint∪Eout

A (∇u0 +∇yu1) dy
)

= f in Ω, (5.8a)

− divy

(
A (∇u0 +∇yu

int
1 )
)

= 0 in Ω× Eint, (5.8b)

− divy

(
A (∇u0 +∇yu

out
1 )

)
= 0 in Ω× Eout, (5.8c)[

A (∇u0 +∇yu1) · ν
]

= 0 on Ω× Γ, (5.8d)

α [u1] − β4B
y [u1] = A (∇u0 +∇yu

out
1 ) · ν on Ω× Γ. (5.8e)

Proof.
Taking into account (3.8) with m = −1, up to a subsequence, the convergences
in (5.1)–(5.6) are consequence of Theorem 4.7 and of Theorem 4.9 with uint1 ∈
L2(Ω;H1

per(E
int)) and uout1 ∈ L2(Ω;H1

per(E
out)). To prove that u1 = (uint1 , uout1 ) ∈

L2(Ω,Hper(Y )) and that the convergence (5.7) holds, let us take into account again
(3.8) in order to obtain∫

Ω

∫
Γ

∣∣T bε (∇B[uε])
∣∣2 dσ dx ≤ ε

∫
Γε

| ∇B[uε] |2 dσ ≤ C, (5.9)

where C is a positive constant, independent of ε. This implies that, up to a subse-
quence (still denoted by ε), there exists a vector function ζb ∈ L2(Ω× Γ), such that
as ε→ 0, we have

T bε (∇B[uε]) ⇀ ζb weakly in L2(Ω× Γ).
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Let us choose a test vector function ϕ(x, y) = φ1(x) Ψ2(y) where the scalar function
φ1 ∈ C∞c (Ω) and the vector function Ψ2 ∈ C∞per(Γ), and consider

∫
Ω×Γ

ζb ·Ψ2(y)φ1(x) dσ dx ↼

∫
Ω×Γ

T bε (∇B[uε]) ·Ψ2(y)φ1(x) dσ dx

=

∫
Ω×Γ

∇B
y T bε

( [uε]

ε

)
·Ψ2(y)φ1(x) dσ dx = −

∫
Ω×Γ

T bε
( [uε]

ε

)
divBy Ψ2(y)φ1(x) dσ dx

⇀ −
∫

Ω×Γ

[u1]divBy Ψ2(y)φ1(x) dσ dx

where we have taken into account (4.10) and (5.6). This implies that ζb = ∇B
y [u1]

and, hence, [u1] ∈ L2(Ω;H1(Γ)), i.e. u1 = (uint1 , uout1 ) ∈ L2(Ω,Hper(Y )).
In order to prove that the pair (u0, u1) is the solution of the two-scale problem (5.8)
we proceed as follow. First, we recall that, by Proposition 4.6, we get Tε(Aε) → A
strongly in L2(Ω × Y ). Moreover, let us choose in the weak formulation (3.4) the
test function ϕε(x) = φ1(x) + ε φ2(x, x

ε
), where φ1 ∈ C∞c (Ω), φ2 = (φint2 , φout2 ) with

φ2 ∈ C∞c (Ω;Hper(Y )), so that, by unfolding, we get

∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇φ1) dxdy+ε

∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇xφ

int
2 ) dydx

+

∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇yφ

int
2 ) dydx+

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇φ1) dydx

+ε

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇xφ

out
2 ) dydx+

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇y φ

out
2 ) dydx

+
α

ε

∫
Ω×Γ

T bε ([uε]) · T bε ([φ2]) dσdx+ β ε

∫
Ω×Γ

T bε (∇B[uε]) · T bε (∇B
x [φ2]) dσdx

+ β

∫
Ω×Γ

T bε (∇B[uε] ) · T bε (∇B
y [φ2]) dσdx

=

∫
Ω×Y

Tε(f)Tε(φ1) dydx+ ε

∫
Ω×Y

Tε(f)Tε(φ2) dydx+ Rε
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where Rε = o (1) for ε→ 0.
Then, by passing to the limit ε→ 0, up to a subsequence, we arrive at∫

Ω×Eint

A (∇u0 +∇yu
int
1 ) · (∇φ1 +∇yφ

int
2 ) dydx

+

∫
Ω×Eout

A (∇u0 +∇yu
out
1 ) · (∇φ1 +∇yφ

out
2 ) dydx+ α

∫
Ω×Γ

[u1] [φ2 ] dσdx

+ β

∫
Ω×Γ

∇B
y [u1] · ∇B

y [φ2 ] dσ dx =

∫
Ω×Y

f φ1 dydx.

(5.10)

By a standard localization procedure, taking first φout2 = φint2 = 0, then φ1 = φint2 = 0
and, finally, φ1 = φout2 = 0, respectively, we obtain∫

Ω×(Eint∪Eout)

A (∇u0 +∇yu1) · ∇φ1 dydx =

∫
Ω×Y

f φ1 dydx, (5.11)

∫
Ω×Eout

A (∇u0 +∇yu
out
1 ) · ∇yφ

out
2 dydx + α

∫
Ω×Γ

[u1]φout2 dσdx

+ β

∫
Ω×Γ

∇B
y [u1] · ∇B

y φ
out
2 dσdx = 0

(5.12)

and ∫
Ω×Eint

A (∇u0 +∇yu
int
1 ) · ∇yφ

int
2 dydx − α

∫
Ω×Γ

[u1]φint2 dσdx

− β
∫

Ω×Γ

∇B
y [u1] · ∇B

y φ
int
2 dσdx = 0,

(5.13)

which lead to (5.8a) and (5.8b)–(5.8e).
In order to prove the uniqueness of (u0, u1), assume by contradiction that the problem
(5.8) has two distinct pairs of solutions (u0, u1) and (ũ0, ũ1). Let us set U0 = u0− ũ0

and U1 := (U int
1 , U out

1 ) =
(
uint1 − ũint1 , uout1 − ũout1

)
. By following the idea presented in

[6, Remark 4.2], we choose U0 as a test function in (5.8a) written for u0, and U1 as
a test function in (5.8b) and (5.8c) written for u1. Next, we add the equations and
integrate them by parts keeping in view the interface conditions (5.8e) and (5.8d).
Then, we will repeat the same procedure for the pair (ũ0, ũ1). Precisely, take U0 as a
test function in (5.8a) written for ũ0, and U1 as a test function in (5.8b) and (5.8c);
written for ũ1, add the obtained equations and integrate them by parts by using
the interface conditions (5.8e) and (5.8d). By subtracting the resulting equality and
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taking into account the coercivity of the matrix A (see (3.3)), we arrive at∫
Ω×(Eint∪Eout)

∣∣∇U0 +∇yU1

∣∣2 dxdy + α

∫
Ω×Γ

∣∣ [U1]
∣∣2 dσdx+ β

∫
Ω×Γ

∣∣∇B
y [U1]

∣∣2 dσdx
≤

∫
Ω×(Eint∪Eout)

A(∇U0 +∇yU1) · (∇U0 +∇yU1) dxdy + α

∫
Ω×Γ

∣∣ [U1]
∣∣2 dσdx

+β

∫
Ω×Γ

∣∣∇B
y [U1]

∣∣2 dσdx = 0,

(5.14)

which implies [U1] = 0. Moreover,

0 ≥
∫

Ω×(Eint∪Eout)

∣∣∇U0 +∇yU1

∣∣2 dydx
=

∫
Ω

∫
Y

∣∣∇U0

∣∣2 dydx+

∫
Ω

∫
Y

∣∣∇yU1

∣∣2 dydx + 2

∫
Ω

∇U0 ·
(∫
Y

∇yU1 dy
)
dx

=

∫
Ω

∣∣∇U0

∣∣2 dx +

∫
Ω

∫
Y

∣∣∇yU1

∣∣2 dydx,
where, in the last term of the second line, we have taken into account the periodicity
of U1 and the fact that [U1] = 0. Clearly, from the obtained inequality, ∇U0 = 0 =
∇yU1, which implies that U0 is a constant in Ω. Thus, U0 = 0, as U0 satisfy the
homogeneous boundary condition on ∂Ω. Also, U1 = 0, since it is constant and has
null mean average over Y . Hence, the pair (u0, u1) is unique. Therefore, the whole
sequence, and not only a subsequence, converges. This concludes the proof. �

Remark 5.2. We notice that the linear dependence of u1 with respect to ∇u0 in
(5.8b)–(5.8e) leads to the usual factorization of u1 in terms of ∇u0. �

Proposition 5.3. Let (u0, u1) be the unique weak solution of the two-scale problem
(5.8). Then the function u1 can be uniquely factorized as

u1(x, y) = −XL(y) · ∇u0(x), (5.15)

where XL = (X 1
L, . . . ,XN

L ) ∈ Hper(Y ) is the vector function with null mean average
over Y , whose Y-periodic components, for j = 1, . . . , N , satisfy the cell problem

−divy

(
A∇y

(
χj,intL − yj

))
= 0 in Eint, (5.16a)

−divy

(
A∇y

(
χj,outL − yj

))
= 0 in Eout, (5.16b)[

A∇y(χ
j
L − yj) · ν

]
= 0 on Γ, (5.16c)

α [χjL]− β4B
y [χjL] = A∇y

(
χj,outL − yj

)
· ν on Γ. (5.16d)
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Moreover, u0 ∈ H1
0 (Ω) is the unique solution of the homogenized problem

−div(AL∇u0 ) = f, (5.17)

where AL is the constant homogenized matrix defined by

AL :=

∫
Eint∪Eout

A (I −∇yXL(y)) dy . (5.18)

We remark that the well-posedness of problem (5.16) is a consequence of the Lax-
Milgram Lemma applied in this periodic framework, in analogy to what has been
done, for example, in [14, Lemma 2.1].

Proof.
It is not difficult to prove that the function u1 given in (5.15) satisfies (5.8b) - (5.8e);
moreover, since problems (5.8) and (5.16) are well-posed, it is the unique solution.
Now, let insert the factorization of u1 given in (5.15) in (5.8a) so that

− div
( ∫
Eint∪Eout

A (∇u0 −∇yXL∇u0) dy
)

= − div

( ∫
Eint∪Eout

A (I −∇yXL) dy
)
∇u0

 = f in Ω.

Then, (5.17) follows, by taking into account (5.18).
The uniqueness of the solution of equation (5.17) in H1

0 (Ω) is a standard consequence
of the symmetry and positive-definiteness of the matrix AL, stated in the next propo-
sition. �

Proposition 5.4. The matrix AL is symmetric and positive definite.

Proof.
The components of the matrix AL given in (5.18) can be written as

(AL)ij = −
∫

Eint∪Eout

A∇y(χ
j
L − yj) · ∇yyi dy . (5.19)

Using X i,int
L and X i,out

L as test function in (5.16a) and (5.16b), respectively, integrating
by parts, summing the resulting equations and using (5.16c) and (5.16d), we get

0 =

∫
Eint∪Eout

A∇y(χ
j
L− yj) · ∇y(χ

i
L) dy+α

∫
Γ

[χjL][χiL] dσ+ β

∫
Γ

∇B
y [χjL] · ∇B

y [χiL] dσ. (5.20)

By adding the equations (5.19) and (5.20), we obtain

(AL)ij =

∫
Eint∪Eout

A∇y(χ
j
L−yj) ·∇y(χ

i
L−yi) dy+α

∫
Γ

[χjL][χiL] dσ+β

∫
Γ

∇B
y [χjL] ·∇B

y [χiL] dσ.
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Therefore, the symmetry of the matrix AL is achieved. In order to prove that AL is
also positive definite, for every ξ = (ξ1, . . . , ξN) ∈ RN , consider

N∑
i,j=1

(AL)ijξiξj =

∫
Eint∪Eout

N∑
i,j=1

A∇y

(
ξiχ

i
L−ξiyi

)
·∇y

(
ξjχ

j
L−ξjyj

)
dy+α

∫
Γ

N∑
i,j=1

[
ξiχ

i
L
][
ξjχ

j
L
]
dσ

+ β

∫
Γ

N∑
i,j=1

∇B
y

[
ξiχ

i
L
]
· ∇B

y

[
ξjχ

j
L
]
dσ ≥ λ

∫
Eint∪Eout

∣∣ N∑
j=1

(
ξjχ

j
L−ξjyj

)∣∣∣2dy ≥ 0.

To prove that the last inequality is actually strict for ξ 6= 0, let us assume that, by
contradiction, ∫

Eint∪Eout

∣∣∣∣∇y

( N∑
j=1

(ξj X j
L − ξj yj)

)∣∣∣∣2 dy = 0

for some ξ 6= 0. This implies, in particular, that ξ · X out
L − ξ · y is independent of y in

Eout, which is not possible, due to the Y -periodicity of the cell function. Hence, the
thesis. �

5.2. The case m = 0. In this section, we consider problem (3.1) for the scaling
m = 0.

Theorem 5.5. For any ε > 0, let uε = (uintε , uoutε ) ∈ Hε
0,m(Ω) be the unique solution

of problem (3.1), for m = 0. Then, there exist u0 ∈ H1
0 (Ω) and u1 = (uint1 , uout1 ),

with uint1 ∈ L2(Ω;H1
per(E

int)), uout1 ∈ L2(Ω;H1
per(E

out)) and MEint(uint1 ) = 0 =
MEout(uout1 ), such that as ε→ 0 we have that (5.1)–(5.5) hold and

T bε
(

[uε]
)
⇀ 0 , weakly in L2(Ω× Γ); (5.21)

ε T bε
(
∇B[uε]

)
→ 0 , strongly in L2(Ω× Γ). (5.22)

Moreover, the pair (u0, u1) is the unique weak solution of the following homogenized
two-scale problem

−div
( ∫
Eint∪Eout

A (∇u0 +∇yu1) dy
)

= f in Ω, (5.23a)

−divy
(
A (∇u0 +∇yu1)

)
= 0 in Ω× Eint, (5.23b)

−divy
(
A (∇u0 +∇yu1)

)
= 0 in Ω× Eout, (5.23c)

A (∇u0 +∇yu
int
1 ) · ν = 0 on Ω× Γ, (5.23d)

A∇u0 +∇yu
out
1 ) · ν = 0 on Ω× Γ. (5.23e)

Proof.
Taking into account (3.8) with m = 0, up to a subsequence, the convergences (5.1)–
(5.5) and (5.21) follow from Theorem 4.7, for the connected-connected geometrical
settings, and from Theorem 4.9, for the connected-disconnected geometrical settings.
In order to prove (5.22), still using (3.8) with m = 0, we have

‖
√
εT bε (∇B[uε])‖2

L2(Ω×Γ) = ε‖T bε (∇B[uε])‖2
L2(Ω×Γ) ≤ ε2‖∇B[uε]‖2

L2(Γε) ≤ C ,
18



where C is a constant independent of ε. Thus,
√
εT bε (∇B[uε]) is bounded in L2(Ω×

Γ) uniformly with respect to ε and, therefore,
√
ε
(√

εT bε (∇B[uε])
)
→ 0 strongly in

L2(Ω× Γ), as stated in (5.22).
In order to prove that the pair (u0, u1) solves problem (5.23), we proceed as in the
proof of Theorem 5.1 (with the same test function), arriving to∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇φ1) dxdy+ε

∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇xφ

int
2 ) dydx

+

∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇yφ

int
2 ) dydx+

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇φ1) dydx

+ε

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇xφ

out
2 ) dydx+

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇y φ

out
2 ) dydx

+ α

∫
Ω×Γ

T bε ([uε]) · T bε ([φ2]) dσdx+ βε2

∫
Ω×Γ

T bε (∇B[uε]) · T bε (∇B
x [φ2]) dσdx

+ βε

∫
Ω×Γ

T bε (∇B[uε]) · T bε (∇B
y [φ2]) dσdx

=

∫
Ω×Y

Tε(f)Tε(φ1) dydx+ ε

∫
Ω×Y

Tε(f)Tε(φ2) dy dx + Rε

where Rε = o (1) for ε → 0. Then, passing to the limit, up to a subsequence, we
obtain ∫

Ω×Eint

A (∇u0 +∇yu
int
1 ) · (∇φ1 +∇yφ

int
2 ) dydx

+

∫
Ω×Eout

A (∇u0 +∇yu
out
1 ) · (∇φ1 +∇yφ

out
2 ) dydx

=

∫
Ω×Y

f φ1 dydx.

(5.24)

which is the weak formulation of the homogenized limit problem (5.23). For the
uniqueness, following the same idea as in the proof of Theorem 5.1, we get∫

Ω×Eint

∣∣∇U0 +∇yU
int
1

∣∣2 dydx +

∫
Ω×Eout

∣∣∇U0 +∇yU
out
1

∣∣2 dydx ≤ 0. (5.25)

This implies,

∇U0 +∇yU
out
1 = 0 ⇐⇒ ∇y ( y · ∇U0 + U out

1 ) = 0.

Hence, the function y · ∇U0 + U out
1 is a constant with respect to y and, exploiting

the Y -periodicity of U1, this leads to ∇U0 = 0 and U out
1 independent of y. By

recalling the homogeneous boundary condition, we arrive to U0 = 0 and, by taking
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into account that U out
1 has null mean average over Eout, it follows that also U out

1 = 0.
Now, using the fact that U0 = 0, from (5.25) and taking into account that U int

1 has
null mean average over Eint, we have that also U int

1 = 0. Hence, the pair (u0, u1) is
unique. Therefore, the whole sequence, and not only a subsequence, converges. This
concludes the thesis. �

Proposition 5.6. Let (u0, u1) be the unique weak solution of the two-scale problem
(5.23), then the function u1 can be uniquely factorize as

u1(x, y) = −χM(y) · ∇u0(x), (5.26)

where χM = (χintM , χ
out
M ) : Y → RN , with χintM ∈ H1

per(E
int) and χoutM ∈ H1

per(E
out),

is the vector function with null mean average over Eint and Eout, separately, whose
Y-periodic components satisfy the cell problem

−divy

(
A∇y

(
χj,intM − yj

))
= 0 in Eint, (5.27a)

−divy

(
A∇y

(
χj,outM − yj

))
= 0 in Eout, (5.27b)

A∇y

(
χj,intM − yj

)
· ν = 0 on Γ, (5.27c)

A∇y

(
χj,outM − yj

)
· ν = 0 on Γ. (5.27d)

Moreover, u0 is the unique solution of the homogenized problem

−div
(
AM∇xu0

)
= f, (5.28)

where AM is the constant homogenized matrix, defined by

AM = AintM + AoutM :=

∫
Eint

A
(
I −∇yχ

int
M (y)

)
dy +

∫
Eout

A
(
I −∇yχ

out
M (y)

)
dy . (5.29)

Notice that (5.27) is a system of two decoupled Neumann problems in Eint and Eout,
respectively; therefore, the well-posedness is a classical matter. Moreover, it is well-
known that the homogenized matrix AM can be rewritten in the more meaningful
form

AM =

∫
Eint∪Eout

A∇y

(
χM(y)− y

)
∇y

(
χM(y)− y

)
dy .

Proof.
It is not difficult to prove that the function u1 given in (5.26) satisfies (5.23b)–(5.23e);
moreover, since problems (5.23) and (5.27) are well-posed, it is the unique solution.
Now, let insert the factorization of u1 given in (5.26) in (5.23a), so that

−div

( ∫
Eint∪Eout

A (I −∇yχM ) dy
)
∇u0

 = f,

which corresponds to (5.28), once we take into account (5.29). The uniqueness of the
solution of equation (5.28) is a consequence of the symmetry and positive definiteness
of the matrix AM, which is a standard matter (see, for instance, [9, Remark 4.8]). �
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Remark 5.7.
We notice that, in the connected-disconnected geometrical setting, from (5.27a) and

(5.27c), it is not difficult to prove that χj,intM = yj (up to an additive constant), so
that we obtain AintM = 0 and the homogenized matrix reduces to

AM =

∫
Eout

A (I −∇yχ
out
M ) dy =

∫
Eout

A∇y

(
χoutM (y)− y

)
∇y

(
χoutM (y)− y

)
dy = AoutM .

�

5.3. The case m = 1. In this section, we consider problem (3.1) for m = 1.

Theorem 5.8. Assume to be in the connected-connected geometrical setting. For
every ε > 0, let uε = (uintε , uoutε ) ∈ Hε

0,m(Ω) be the unique solution of problem (3.1), for

m = 1. Then, there exist u0 = (uint0 , uout0 ) ∈ H1
0 (Ω)×H1

0 (Ω) and u1 = (uint1 , uout1 ), with
uint1 ∈ L2(Ω;H1

per(E
int)), uout1 ∈ L2(Ω;H1

per(E
out)) and MEint(u1) = 0 = MEout(u1),

such that as ε→ 0 we have that

Tε
(
χΩint

ε
uintε

)
→ uint0 strongly in L2(Ω;H1

per(E
int)), (5.30)

Tε
(
χΩout

ε
uoutε

)
→ uout0 strongly in L2(Ω;H1

per(E
out)), (5.31)

Tε
(
χΩint

ε
∇uintε

)
⇀ ∇uint0 +∇yu

int
1 weakly in L2(Ω× Eint), (5.32)

Tε
(
χΩout

ε
∇uoutε

)
⇀ ∇uout0 +∇yu

out
1 weakly in L2(Ω× Eout), (5.33)

T bε
(

[uε]
)
⇀ [u0 ] weakly in L2(Ω× Γ), (5.34)

ε2 T bε
(
∇B[uε]

)
→ 0 strongly in L2(Ω× Γ). (5.35)

Moreover, the pair (u0, u1) is the unique weak solution of the following homogenized
two-scale problem

−div
( ∫
Eint

A(∇uint0 +∇yu
int
1 )dy

)
− α|Γ|[u0] = f |Eint| in Ω, (5.36a)

−div
( ∫
Eout

A(∇uout0 +∇yu
out
1 )dy

)
+ α|Γ|[u0] = f |Eout| in Ω, (5.36b)

−divy

(
A(∇uint0 +∇yu

int
1 )
)

= 0 in Ω× Eint, (5.36c)

−divy

(
A(∇uout0 +∇yu

out
1 )
)

= 0 in Ω× Eout, (5.36d)

A(∇uint0 +∇yu
int
1 ) · ν = 0 on Ω× Γ, (5.36e)

A(∇uout0 +∇yu
out
1 ) · ν = 0 on Ω× Γ. (5.36f)

Proof.
Taking into account (3.8) with m = 1, up to a subsequence, the convergences (5.30)–
(5.34) follow from Theorem 4.7. For the convergence (5.35), we still take into account
(3.8), obtaining

‖εT bε (∇B[uε])‖2
L2(Ω×Γ) = ε2‖T bε (∇B[uε])‖2

L2(Ω×Γ) ≤ ε3‖∇B[uε]‖2
L2(Γε) ≤ C,
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where C is independent of ε. Thus, εT bε (∇B[uε]) is bounded in L2(Ω× Γ) uniformly
with respect to ε and, therefore, ε

(
εT bε (∇B[uε])

)
→ 0 strongly in L2(Ω×Γ), as stated

in (5.35).
In order to prove that the pair (u0, u1) solves problem (5.36), we choose in the weak
formulation (3.4) the test function ϕε(x) = φ1(x)+ε φ2(x, x

ε
), where φ1 = (φint1 , φout1 ),

with φint1 , φout1 ∈ C∞c (Ω) and φ2 = (φint2 , φout2 ), with φ2 ∈ C∞c (Ω;Hper(Y )). By un-
folding, we get

∫
Ω×Eint

Tε(Aε)Tε(χΩint
ε
∇uintε )·Tε(∇φint1 ) dydx+ε

∫
Ω×Eint

Tε(Aε)Tε(χΩint
ε
∇uintε )·Tε(∇xφ

int
2 ) dydx

+

∫
Ω×Eint

Tε(Aε)Tε(χΩint
ε
∇uintε )·Tε(∇yφ

int
2 ) dydx+

∫
Ω×Eout

Tε(Aε)Tε(χΩout
ε
∇uoutε )·Tε(∇φout1 ) dydx

+ε

∫
Ω×Eout

Tε(Aε)Tε(χΩout
ε
∇uoutε )·Tε(∇xφ

out
2 ) dydx+

∫
Ω×Eout

Tε(Aε)T outε (χΩout
ε
∇uoutε )·Tε(∇yφ

out
2 ) dydx

+ α

∫
Ω×Γ

T bε ([uε])T bε ([φ1]) dσdx+ αε

∫
Ω×Γ

T bε ([uε])T bε ([φ2])dσdx

+ βε2

∫
Ω×Γ

T bε (∇B[uε]) · T bε (∇B
x [φ1]) dσdx+ βε3

∫
Ω×Γ

T bε (∇B[uε]) · T bε (∇B
x [φ2]) dσdx

+ βε2

∫
Ω×Γ

T bε (∇B[uε]) · T bε (∇B
y [φ2]) dσdx =

∫
Ω×Eint

Tε(f)Tε(φint1 ) dydx

+ ε

∫
Ω×Eint

Tε(f)Tε(φint2 ) dydx+

∫
Ω×Eout

Tε(f)Tε(φout1 ) dydx

+ ε

∫
Ω×Eout

Tε(f)Tε(φout2 ) dydx+ Rε

where Rε = o (1) for ε→ 0.
By passing to the limit, up to a subsequence, we arrive at

∫
Ω×Eint

A(∇uint0 +∇yu
int
1 ) · (∇φint1 +∇yφ

int
2 ) dydx

+

∫
Ω×Eout

A(∇uout0 +∇yu
out
1 ) · (∇φout1 +∇yφ

out
2 ) dydx

+α

∫
Ω×Γ

[u0] [φ1] dσ dx =

∫
Ω×Eint

fφint1 dydx +

∫
Ω×Eint

fφout1 dydx,

(5.37)
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which is the weak formulation of the homogenized limit problem (5.36). For the
uniqueness, following the same idea as in the proof of Theorems 5.1 and 5.5, we get∫

Ω×Eint

|∇U int
0 +∇yU

int
1 |2 dydx+

∫
Ω×Eout

|∇U out
0 +∇yU

out
1 |2 dydx+

∫
Ω×Γ

|[U0]|2 dσ dx ≤ 0.

This leads to [U0] = 0, i.e. U int
0 = U out

0 , and then, as in the proof of Theorem 5.5,
we obtain U0 = 0 = U1. Therefore, the whole sequence, and not only a subsequence,
converges and, hence, the proof is accomplished. �

Proposition 5.9.
Let (u0, u1) be the unique weak solution of the two-scale problem (5.36), then the

function u1 can be uniquely factorize as

u1(x, y) =

{
−χintM (y) · ∇uint0 (x) in Eint,

−χoutM (y) · ∇uout0 (x) in Eout,
(5.38)

where χM = (χintM , χ
out
M ) : Y → RN is the same vector function appearing in Proposi-

tion 5.6. Moreover, u0 satisfy the homogenized problem{
−div

(
AintM∇uint0

)
− α |Γ| [u0] = f |Eint| in Ω,

−div
(
AoutM∇uout0

)
+ α |Γ| [u0] = f |Eout| in Ω,

(5.39)

where the homogenized matrices AintM and AoutM , are defined in (5.29).

Proof.
It is not difficult to prove that the function u1 defined in (5.38) is the unique solution
of problem (5.36c)–(5.36f). Moreover, inserting the factorization of u1 given in (5.38)
in (5.36a) and (5.36b), we easily obtain (5.39). �

Remark 5.10. In the connected/disconnected geometrical setting, following Theorem
4.9, we have that the convergences stated in Theorem 5.8 remain true, except for
(5.32), which is replaced by

Tε
(
χΩint

ε
∇uintε

)
⇀ ∇uout0 +∇yu

int
1 weakly in L2(Ω× Eint). (5.40)

and the fact that now uint0 ∈ L2(Ω) (instead of uint0 ∈ H1
0 (Ω)). Thus, we obtain the

homogenized two-scale limit problem (5.36), with uint0 replaced by uout0 . Moreover, as
above, we have that uint1 = − y · ∇uout0 , up to a normalization function independent
of y, which implies that (5.36a) becomes

−α[u0]|Γ| = f |Eint| or, equivalently, uint0 =
|Eint|
α|Γ|

f + uout0 . (5.41)

Hence, the bidomain limit problem (5.39) reduces to{
−div

(
AoutM · ∇uout0

)
= f in Ω,

uint0 = |Eint|
α|Γ| f + uout0 in Ω,

(5.42)

with AoutM given in (5.29).
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6. Homogenization of the problem Bmε
This section is devoted to analyze problem Bmε (3.2), introduced in Section 3. We will
consider both the connected/connected and the connected/disconnected geometrical
settings, and we prove in a rigorous way what we formally obtained in the previous
paper [8].

6.1. The case m = −1. In this section, we consider the problem (3.2) for the scaling
m = −1.

Theorem 6.1. For every ε > 0, let uε = (uintε , uoutε ) ∈ Ĥε
0,m(Ω) be the unique solution

of problem (3.2), for m = −1. Then, there exist u0 ∈ H1
0 (Ω) and u1 = (uint1 , uout1 ) ∈

L2(Ω; Ĥper(Y )) with MY (u1) = 0, such that, as ε→ 0, we have that (5.1)–(5.7) hold.
Moreover,

T bε
(
∇B{uε}

)
⇀ ∇B{u0}+∇B

y {u1} weakly in L2(Ω× Γ). (6.1)

Finally, the pair (u0, u1) is the unique weak solution of the following homogenized
two-scale problem

−div
( ∫
Eint∪Eout

A(∇u0 +∇yu1) dy + γ

∫
Γ

(∇B{u0}+∇B
y {u1}) dσ

)
= f in Ω, (6.2a)

− divy

(
A (∇u0 +∇yu

int
1 )
)

= 0 in Ω× Eint, (6.2b)

− divy

(
A (∇u0 +∇yu

out
1 )

)
= 0 in Ω× Eout, (6.2c)

− γ divBy (∇B{u0}+∇B
y {u1}) = [

(
∇u0 +∇yu1

)
· ν] on Ω× Γ, (6.2d)

α [u1] − β4B
y [u1] = {A (∇u0 +∇yu1) · ν} on Ω× Γ. (6.2e)

Remark 6.2. We recall that

∇B{u0} = 2(I − ν ⊗ ν)∇u0 = ∇B
y {y}∇u0 .

�

Proof.
Taking into account (3.8) with m = −1, the convergences in (5.1)–(5.6) are conse-
quence of Theorem 4.7 in the connected/connected case and of Theorem 4.9 in the
connected/disconnected case, while (5.7) is proven in Theorem 5.1. In order to prove
(6.1), again by (3.8) jointly with (3.9), we get∫

Ω

∫
Γ

∣∣T bε (∇B[uε])
∣∣2 dσdx ≤ ε

∫
Γε

| ∇B[uε] |2 dσ ≤ C,

and ∫
Ω

∫
Γ

∣∣T bε (∇B{uε})
∣∣2 dσdx ≤ ε

∫
Γε

| ∇B{uε} |2 dσ ≤ C,
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which implies

∫
Ω

∫
Γ

∣∣T bε (∇Buintε )
∣∣2 dy dx ≤ C and

∫
Ω

∫
Γ

∣∣T bε (∇Buoutε )
∣∣2 dy dx ≤ C,

where C is a constant independent of ε. Hence, up to a subsequence (still denoted
by ε), there exist two vector functions ζ intb , ζoutb ∈ L2(Ω× Γ), such that, as ε → 0,
we have

T bε (∇Buintε ) ⇀ ζ intb , T bε (∇Buoutε ) ⇀ ζoutb weakly in L2(Ω× Γ).

In order to identify ζoutb , we consider a test function ϕ(x, y) = φ1(x)Ψ2(y), where
φ1 ∈ C∞c (Ω) and the vector functon Ψ2 ∈ C∞per(Y ). Hence, by Theorem 4.8 in the
connected/connected case and Theorem 4.10 in the connected/disconnected case, we
get

∫
Ω×Γ

ζoutb ·Ψ2(y)φ1(x)dσdx ↼

∫
Ω×Γ

T bε (∇Buoutε ) ·Ψ2(y)φ1(x) dσdx

=

∫
Ω×Γ

∇B
y

(
Tε(χΩout

ε
uoutε )−MΓ(Tε(χΩout

ε
uoutε ))

ε

)
·Ψ2(y)φ1(x) dσdx

= −
∫

Ω×Γ

Tε(χΩout
ε
uoutε )−MΓ(Tε(χΩout

ε
uoutε ))

ε
divBy Ψ2(y)φ1(x) dσdx

⇀ −
∫

Ω×Γ

(yΓ · ∇u0 + uout1 + ξout) divBy Ψ2(y)φ1(x) dσdx

=

∫
Ω×Γ

∇B
y (yΓ · ∇u0 + uout1 + ξout) ·Ψ2(y)φ1(x) dσdx

=

∫
Ω×Γ

(∇Bu0 +∇B
y u

out
1 ) ·Ψ2(y)φ1(x) dσdx.

This implies ζoutb = ∇Bu0 +∇B
y u

out
1 . Similarly, we get ζ intb = ∇Bu0 +∇B

y u
int
1 ; hence,

from the linearity of T bε , (6.1) follows and u1 = (uint1 , uout1 ) ∈ L2(Ω; Ĥper(Y )).
In order to prove that the pair (u0, u1) is the solution of the two-scale problem (6.2),

let us choose, in the weak formulation (3.5), the test function ϕε(x) = φ1(x) + ε φ2(x,
x

ε
),

where φ1 ∈ C∞c (Ω) and φ2 = (φint2 , φout2 ) with φ2 ∈ C∞c (Ω; Ĥper(Y )). By unfolding,
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we get

∫
Ω

∫
Eint

T intε (Aε) T intε (∇uintε ) · T intε (∇φ1)dy dx

+ ε

∫
Ω

∫
Eint

T intε (Aε)T intε (∇uintε ) · T intε (∇xφ
int
2 )dy dx

+

∫
Ω

∫
Eint

T intε (Aε)T intε (∇uintε ) · T intε (∇yφ
int
2 ) dy dx

+

∫
Ω

∫
Eout

T outε (Aε)T outε (∇uoutε ) · T outε (∇φ1) dy dx

+ ε

∫
Ω

∫
Eout

T outε (Aε)T outε (∇uoutε ) · T outε (∇xφ
out
2 ) dy dx

+

∫
Ω

∫
Eout

T outε (Aε)T outε (∇uoutε ) · T outε (∇yφ
out
2 ) dy dx

+
α

2 ε

∫
Ω

∫
Γ

T bε ([uε]) · T bε ([φ2 ]) dx dσ +
β

2
ε

∫
Ω

∫
Γ

T bε (∇B[uε]) · T bε (∇B
x [φ2]) dσ dx

+
β

2

∫
Ω

∫
Γ

T bε (∇B[uε]) ·T bε (∇B
y [φ2 ]) dσ dx+

γ

2

∫
Ω

∫
Γ

T bε (∇B{uε}) ·T bε (∇B {φ1}) dσ dx

+
γ

2
ε

∫
Ω

∫
Γ

T bε (∇B{uε})·T bε (∇B
x {φ2}) dσ dx+

γ

2

∫
Ω

∫
Γ

T bε (∇B{uε})·T bε (∇B
y {φ2 }) dσ dx

=

∫
Ω

∫
Γ

Tε(f) (Tε(φ1) + ε Tε(φ2) ) dσ dx + Rε,

where Rε = o (1) for ε→ 0.
Then, by passing to the limit ε → 0 and taking into account (5.1)–(5.7) and (6.1),
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we arrive at ∫
Ω×Eint

A (∇u0 +∇yu
int
1 ) · (∇φ1 +∇yφ

int
2 )dy dx

+

∫
Ω×Eout

A(∇u0 +∇yu
out
1 ) · (∇φ1 +∇yφ

out
2 ) dy dx

+
α

2

∫
Ω×Γ

[u1] [φ2] dx dσ +
β

2

∫
Ω×Γ

∇B
y [u1] · ∇B

y [φ2] dσ dx

+
γ

2

∫
Ω×Γ

(∇B{u0}+∇B
y {u1}) · (∇B{φ1}+∇B

y {φ2}) dσ dx

=

∫
Ω×Y

fφ1 dσ dx.

(6.3)

Clearly, (6.3) is the weak formulation of the homogenized limit problem (6.2). Indeed,
by taking φ2 := (φint2 , φout2 ) ≡ 0, it easily follows (6.2a). On the other hand, by taking
first, φ1 ≡ 0 with φout2 ≡ 0, and then φ1 ≡ 0 with φint2 ≡ 0 in (6.3), we obtain∫

Ω×Eint

A (∇u0 +∇yu
int
1 ) · ∇yφ

int
2 dy dx

− α
2

∫
Ω×Γ

[u1]φint2 dx dσ − β

2

∫
Ω×Γ

∇B
y [u1] · ∇B

y φ
int
2 dσ dx

+
γ

2

∫
Ω×Γ

(∇B{u0}+∇B
y {u1}) · ∇B

y φ
int
2 dσ dx = 0,

(6.4)

∫
Ω×Eout

A (∇u0 +∇yu
out
1 ) · ∇yφ

out
2 dy dx

+
α

2

∫
Ω×Γ

[u1]φout2 dx dσ +
β

2

∫
Ω×Γ

∇B
y [u1] · ∇B

y φ
out
2 dσ dx

+
γ

2

∫
Ω×Γ

(∇B{u0}+∇B
y {u1}) · ∇B

y φ
out
2 dσ dx = 0.

(6.5)

Clearly, (6.4) and (6.5) are the weak formulation of (6.2b)–(6.2e). Finally, the unique-
ness of the pair u0, u1 can be obtained as in the proof of Theorem 5.1, so that the
whole sequence, and not only a subsequence, converges. �

Proposition 6.3.
Let (u0, u1) be the unique weak solution of the two-scale problem (6.2). Then the
function u1 can be uniquely factorize as

u1(x, y) = −χQ(y) · ∇u0(x) (6.6)
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where χQ = (χ1
Q, . . . , χ

N
Q) ∈ Ĥper(Y ) is the vector function with null mean average

over Y , whose Y-periodic components satisfy the cell problem

−divy

(
A∇y

(
χj,intQ − yj

))
= 0 in Eint, (6.7a)

−divy

(
A∇y

(
χj,outQ − yj

))
= 0 in Eout, (6.7b)

−γ4B
y {χ

j
Q − yj} =

[
A∇y

(
χjQ − yj

)
· ν
]

on Γ, (6.7c)

α[χjQ]− β4B
y [χjQ] = {A∇y

(
χjQ − yj

)
· ν} on Γ. (6.7d)

Moreover, u0 ∈ H1
0 (Ω) is the unique solution of the homogenized problem

−div
(
AQ∇u0

)
= f in Ω, (6.8)

where AQ is the symmetric and positive definite constant homogenized matrix, defined
by

AQ :=

∫
Eint∪Eout

A(I −∇yχQ(y)) dy + γ

∫
Γ

∇B
y {y − χQ} dσ . (6.9)

We remark that the well-posedness of problem (6.7) is a consequence of the Lax-
Milgram Lemma, applied in the periodic framework as in Section 5.1.

Proof.
It is not difficult to see that the function u1 given in (6.6) satisfies (6.2b)–(6.2e);
moreover, since problems (6.2) and (6.7) are well-posed, it is the unique solution.
Now, let us insert the factorization of u1 given in (6.6) in (6.2a), so that

−div
( ∫
Eint∪Eout

A(∇u0−∇yχQ∇u0) dy+ γ

∫
Γ

(∇B{u0}−∇B
y {χQ}∇u0)dσ

)
= f in Ω,

Then, (6.8) follows, by taking into account (6.9). The uniqueness of the solution of
equation (6.8) is a consequence of the symmetry and the positive-definiteness of the
matrix AQ (see [8, Theorem 5.1]). �

For the reader convenience, we recall that, as proven in [8, Theorem 5.1], the matrix
AQ can be written in the more meaningful form

(AQ)ij =

∫
Eint∪Eout

A∇y(χ
j
Q − yj) · ∇y(χ

i
Q − yi) dy +

α

2

∫
Γ

[
χjQ
] [
χiQ
]
dσ

+
β

2

∫
Γ

∇B
y

[
χjQ
]
· ∇B

y [χiQ] dσ +
γ

2

∫
Γ

∇B
y {χ

j
Q − yj} · ∇

B
y {χiQ − yi} dσ .

(6.10)

6.2. The case m = 0. In this section, we consider problem (3.2) for the scaling
m = 0.

Theorem 6.4. For any ε > 0, let uε = (uintε , uoutε ) ∈ Ĥε
0,m(Ω) be the unique solution

of problem (3.2), for m = 0. Then, there exist u0 ∈ H1
0 (Ω) and u1 = (uint1 , uout1 ),

with uint1 ∈ L2(Ω;H1
per(E

int)), uout1 ∈ L2(Ω;H1
per(E

out)) and MEint(uint1 ) = 0 =
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MEout(uout1 ), such that as ε → 0 (5.1)–(5.5) and (5.21), (5.22) hold. Moreover, we
have

ε T bε
(
∇B{uε}

)
→ 0 strongly in L2(Ω× Γ). (6.11)

Finally, the pair (u0, u1) is the unique solution of the homogenized two-scale problem
(5.23).

Proof.
Taking into account (3.8) with m = 0, up to a subsequence, the convergences (5.1)–
(5.5) and (5.21) follow from Theorem 4.7, for the connected-connected geometrical
settings, and from Theorem 4.9, for the connected-disconnected geometrical settings,
while (5.22) has been proven in Theorem 5.5. Moreover, by (3.9), we obtain

||εT bε (∇B{uε})||2L2(Ω×Γ) = ε2||T bε (∇B{uε})||2L2(Ω×Γ) ≤ ε3||∇B{uε}||2L2(Γε) ≤ Cε,

which immediately implies (6.11).
In order to prove that the pair (u0, u1) is the solution of the two-scale problem (5.23),

let us choose, in the weak formulation (3.5) the test function ϕε(x) = φ1(x) + ε φ2(x,
x

ε
),

where φ1 ∈ C∞c (Ω) and φ2 = (φint2 , φout2 ) with φ2 ∈ C∞c (Ω; Ĥper(Y )), so that, by un-
folding, we get∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇φ1) dxdy+ε

∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇xφ

int
2 ) dydx

+

∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇yφ

int
2 ) dydx+

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇φ1) dydx

+ε

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇xφ

out
2 ) dydx+

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇y φ

out
2 ) dydx

+
α

2

∫
Ω×Γ

T bε ([uε]) T bε ([φ2]) dσdx+
β

2
ε2

∫
Ω×Γ

T bε (∇B[uε]) · T bε (∇B
x [φ2]) dσdx

+
β

2
ε

∫
Ω×Γ

T bε (∇B[uε])·T bε (∇B
y [φ2]) dσdx+

γ

2
ε

∫
Ω×Γ

T bε (∇B{uε})·T bε (∇B
x {φ1+εφ2}) dσdx

+
γ

2
ε

∫
Ω×Γ

T bε (∇B{uε}) ·T bε (∇B
y {φ2}) dσdx =

∫
Ω×Y

Tε(f)
(
Tε(φ1)+εTε(φ2)

)
dydx+Rε,

where Rε = o (1) for ε→ 0.
Then, by passing to the limit ε→ 0, up to a subsequence, we arrive at (5.24), which
is the weak formulation of two-scale homogenized problem (5.23), whose uniqueness
(proven in Theorem 5.5) guarantees the convergence of the whole sequence. �

Remark 6.5. It is worthwhile noting that, when m = 0, the physical quantities keep-
ing into account the interface diffusivities disappear. In particular, the tangential
diffusivity represented by γ does not affect the limit problem, so that, at the end, the
two different microscopic problems (3.1) and (3.2), for m = 0, give rise to the same
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homogenized model. Therefore, the factorization (5.26) is still in force and, then,
the limit problem can be written as in (5.28), with the matrix AM defined in (5.29).
Moreover, Remark 5.7 still holds. �

6.3. The case m = 1. In this section, we consider the problem (3.2) for the scaling
m = 1.

Theorem 6.6. Assume to be in the connected-connected geometrical setting. For

every ε > 0, let uε = (uintε , uoutε ) ∈ Ĥε
0,m(Ω) be the unique solution of problem (3.2), for

m = 1. Then, there exist u0 = (uint0 , uout0 ) ∈ H1
0 (Ω)×H1

0 (Ω) and u1 = (uint1 , uout1 ), with
uint1 ∈ L2(Ω;H1

per(E
int)), uout1 ∈ L2(Ω;H1

per(E
out)) and MEint(u1) = 0 = MEout(u1),

such that, as ε→ 0, we have that (5.30)–(5.35) are in force. Moreover, we have

ε2 T bε
(
∇B{uε}

)
→ 0 strongly in L2(Ω× Γ). (6.12)

Finally, the pair (u0, u1) is the unique weak solution of the homogenized two-scale
problem (5.36) with α replaced by α/2.

Proof.
Taking into account (3.8) with m = 1, the convergences (5.30)–(5.34) follow from
Theorem 4.8, while (5.35) is proven in Theorem 5.8. Moreover, by (3.9), we obtain

‖ε2T bε (∇B{uε})‖2
L2(Ω×Γ) = ε4‖T bε (∇B{uε})‖2

L2(Ω×Γ)

≤ ε5‖∇B{uε}‖2
L2(Γε) ≤ Cε2,

which immediately implies (6.12).
Now, in order to prove that the pair (u0, u1) solves problem (5.36), we choose, in the

weak formulation (3.5) the test function ϕε(x, y) = φ1(x) + ε φ2(x,
x

ε
), where φ1 =

(φint1 , φout1 ) ∈ C∞c (Ω) × C∞c (Ω) and φ2 = (φint2 , φout2 ) with φ2 ∈ C∞c (Ω; Ĥper(Y )). By
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unfolding, we get∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇φint1 ) dxdy+ε

∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇xφ

int
2 ) dydx

+

∫
Ω×Eint

Tε(Aε) Tε(χΩint
ε
∇uintε )·Tε(∇yφ

int
2 ) dydx+

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇φout1 ) dydx

+ε

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇xφ

out
2 ) dydx+

∫
Ω×Eout

Tε(Aε) Tε(χΩout
ε
∇uoutε )·Tε(∇y φ

out
2 ) dydx

+
α

2

∫
Ω×Γ

T bε [uε] T bε [φ1] dσdx+
α

2
ε

∫
Ω×Γ

T bε ([uε]) T bε ([φ2]) dσdx+
β

2
ε2

∫
Ω×Γ

T bε (∇B[uε])·T bε (∇B[φ1]) dσdx

+
β

2
ε3

∫
Ω×Γ

T bε (∇B[uε]) · T bε (∇B
x [φ2]) dσdx+

β

2
ε2

∫
Ω×Γ

T bε (∇B[uε]) · T bε (∇B
y [φ2]) dσdx

+
γ

2
ε2

∫
Ω×Γ

T bε (∇B{uε}) ·T bε (∇B{φ1}) dσdx+
γ

2
ε3

∫
Ω×Γ

T bε (∇B{uε}) ·T bε (∇B
x {φ2}) dσdx

+
γ

2
ε2

∫
Ω×Γ

T bε (∇B{uε}) · T bε (∇B
y {φ2}) dσdx

=

∫
Ω×Eint

Tε(f)Tε(φint1 + εφint2 ) dydx+

∫
Ω×Eout

Tε(f)Tε(φout1 + εφout2 ) dydx+ Rε

where Rε = o (1) for ε→ 0.
By passing to the limit ε→ 0, up to a subsequence, we arrive at∫

Ω×Eint

A (∇uint0 +∇yu
int
1 ) · (∇φint1 +∇yφ

int
2 ) dydx

+

∫
Ω×Eout

A (∇uout0 +∇yu
out
1 ) · (∇φout1 +∇yφ

out
2 ) dydx

+
α

2

∫
Ω×Γ

[u0] [φ1 ] dσ dx =

∫
Ω×Eint

fφint1 dydx +

∫
Ω×Eout

fφout1 dydx,

(6.13)

which gives the weak formulation of two-scale problem (5.36). Again, the uniqueness
for such a problem, proved in Theorem 5.8, guarantees the convergence of the whole
sequence. �

Remark 6.7. Notice that, due to the previous result, the factorization given in (5.38)
is still in force, so that we can obtain the same bidomain problem (5.39), with α
replaced by α/2. �

Remark 6.8. As in Section 5.3, in the connected-disconnected geometrical setting,
following Theorem 4.9, we have that the convergences stated in Theorem 6.6 remain
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true, except for (5.32), which should be replaced by (5.40) and the fact that uint0 ∈
L2(Ω) (instead of uint0 ∈ H1

0 (Ω)). Therefore, we still arrive to the bidomain limit
problem (5.42), with α replaced by α/2. �
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