Hyperspectral imaging captures in an image all the information of the electromagnetic spectrum generating valuable data for a wide variety of applications, my research focuses on infrastructural monitoring. Hyperspectral sensors acquire high dimensional data which deep learning (DL) architectures can manage but require high computational sources. The aim is to exploit the advantages of using DL for hyperspectral image classification, while reducing the computing time by applying dimensionality reduction to input data. An approach using PCA and CNN is described in the following.

Deep learning for hyperspectral imaging / Monteverde, Giuseppina. - (2022). (Intervento presentato al convegno International Computer Vision Summer School (ICVSS) tenutosi a Sicily).

Deep learning for hyperspectral imaging

Giuseppina Monteverde
2022

Abstract

Hyperspectral imaging captures in an image all the information of the electromagnetic spectrum generating valuable data for a wide variety of applications, my research focuses on infrastructural monitoring. Hyperspectral sensors acquire high dimensional data which deep learning (DL) architectures can manage but require high computational sources. The aim is to exploit the advantages of using DL for hyperspectral image classification, while reducing the computing time by applying dimensionality reduction to input data. An approach using PCA and CNN is described in the following.
2022
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1704252
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact