Given a plane graph it is known how to compute the union of non-crossing shortest paths. These algorithms do not allow neither to list each single shortest path nor to compute length of shortest paths. Given the union of non-crossing shortest paths, we introduce the concept of shortcuts that allows us to establish whether a path is a shortest path by checking local properties on faces of the graph. By using shortcuts we can compute the length of each shortest path, given their union, in total linear time, and we can list each shortest path p in O(max{l,l log log kl}), where l is the number of edges in p and k the number of shortest paths.

Non-crossing shortest paths lengths in planar graphs in linear time / Balzotti, Lorenzo; Franciosa, Paolo G.. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - 346:March 2024(2024), pp. 183-191. [10.1016/j.dam.2023.12.011]

Non-crossing shortest paths lengths in planar graphs in linear time

Balzotti, Lorenzo
;
Franciosa, Paolo G.
2024

Abstract

Given a plane graph it is known how to compute the union of non-crossing shortest paths. These algorithms do not allow neither to list each single shortest path nor to compute length of shortest paths. Given the union of non-crossing shortest paths, we introduce the concept of shortcuts that allows us to establish whether a path is a shortest path by checking local properties on faces of the graph. By using shortcuts we can compute the length of each shortest path, given their union, in total linear time, and we can list each shortest path p in O(max{l,l log log kl}), where l is the number of edges in p and k the number of shortest paths.
2024
shortest paths; undirected planar graphs; non-crossing paths
01 Pubblicazione su rivista::01a Articolo in rivista
Non-crossing shortest paths lengths in planar graphs in linear time / Balzotti, Lorenzo; Franciosa, Paolo G.. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - 346:March 2024(2024), pp. 183-191. [10.1016/j.dam.2023.12.011]
File allegati a questo prodotto
File Dimensione Formato  
Franciosa_Non-crossing_2024.pdf

accesso aperto

Note: https://doi.org/10.1016/j.dam.2023.12.011
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 546.45 kB
Formato Adobe PDF
546.45 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1703578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact