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a b s t r a c t

Given a plane graph it is known how to compute the union of non-crossing shortest
paths. These algorithms do not allow neither to list each single shortest path nor to
compute length of shortest paths. Given the union of non-crossing shortest paths, we
introduce the concept of shortcuts that allows us to establish whether a path is a shortest
path by checking local properties on faces of the graph. By using shortcuts we can
compute the length of each shortest path, given their union, in total linear time, and
we can list each shortest path p in O(max{`, ` log log k

`
}), where ` is the number of

edges in p and k the number of shortest paths.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The problem of finding non-crossing shortest paths in a plane graph (i.e., a planar graph with a fixed planar embedding)
has its primary applications in VLSI layout [7,15,16], where two paths are non-crossing if they do not cross each other in
the chosen embedding. Thanks to Reif [20], it also appears as a basic step in the computation of maximum flow in a planar
network and related problems [1,5]. The non-crossing shortest path (NCSP) problem can be formalized as follows: given
an undirected plane graph G with non-negative edge lengths and k terminal pairs that lie on a specified face boundary,
w.l.o.g, the external face boundary, find k non-crossing shortest paths in G, each connecting a terminal pair. It is assumed
that terminal pairs appear in the infinite face so that non-crossing paths exist; this property can be easily verified in linear
time.

We deal with a problem strictly linked to the NCSP problem. Our input is an undirected plane graph U composed by
the union of k non-crossing shortest paths in a plane graph G whose extremal vertices lie on the same face of G. Thus U
arises from the union of paths p1, . . . , pk, where, for each i 2 [k], pi is a shortest path from xi to yi in G, xi and yi are on
the infinite face f 1 of G, pi and pj are non-crossing for every i, j 2 [k]. We stress that we know U but we ignore the pi’s;
indeed, algorithms solving the NCSP problem in [3,4,21] compute the union of the non-crossing shortest paths without
listing every single path.

We show how to compute the lengths of the pi’s shortest paths in linear time, i.e., in time proportional to the number
of edges/vertices in U . In this way we prove that if there exists an algorithm solving the NCSP problem, then we can
compute the lengths of shortest non-crossing paths in the same time complexity. We also explain an efficient way to list
each path.

Our problem was already discussed in the geometrical case [17,19] under Euclidean distances, but not in a weighted
plane graph which have a more general structure.

I A preliminary version of this paper appeared in [6].⇤ Corresponding author.
E-mail addresses: lorenzo.balzotti@uniroma1.it (L. Balzotti), paolo.franciosa@uniroma1.it (P.G. Franciosa).

https://doi.org/10.1016/j.dam.2023.12.011
0166-218X/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).



L. Balzotti and P.G. Franciosa Discrete Applied Mathematics 346 (2024) 183–191

Fig. 1. In this example the union of shortest paths from xi to yi , for i = 1, 2, 3, contains a cycle (the union is highlighted with bold edges).

Fig. 2. Union of 15 non-crossing shortest paths that cannot be decomposed into two forests so that each path is contained in at least one forest
(parallel adjacent segments represent overlapping paths).

State of the art Takahashi et al. [21] proposed an algorithm able to compute k non-crossing shortest paths that requires
O(n log n) time, where n is the size of G. In the same article it is also analysed the case where the terminal pairs lie on two
different face boundaries, and this case is reduced to the previous one within the same computational complexity. The
complexity of their solution can be reduced to O(n log k) by plugging in the linear time algorithm by Henzinger et al. [12]
for computing a shortest path tree in a planar graph. In the unweighted case, by using the result of Eisenstat and Klein [9],
Balzotti and Franciosa showed that k non-crossing shortest paths can be found in O(n) time [3].

Our problem is a special case of computing distances between vertices lying on the same face of a plane undirected
graph. This problem can be solved in O(n log n) by Klein’s algorithm [14], that has been recently improved [8] to O(n log |f |),
where f is the face of G where terminal pairs lie.

The algorithm proposed in [21] first computes the union of the k shortest paths, which is claimed to be a forest. The
second step relies on the data structure due to Gabow and Tarjan [11] for efficiently solving least common ancestor (LCA)
queries in a forest, in order to obtain distances between the terminal pairs in O(n) time.

Actually, the union of the k shortest paths may in general contain cycles. An instance is shown in Fig. 1, in which the
unique set of three shortest paths forms a cycle, hence the distances between terminal pairs cannot always be computed
by solving LCA queries in a forest. This limitation was noted first in [10,19].

Ericksonn and Nayyeri [10] generalized the work in [21] to the case in which the k terminal pairs lie on h face
boundaries. They proved that k non-crossing paths, if they exist, can be found in 2O(h2)n log k time. The authors also stated
that the union of non-crossing shortest paths can always be covered with two (possibly non edge-disjoint) forests so that
each path is contained in at least one forest. They do not describe how to obtain such a decomposition. This is in contrast
with the example in Fig. 2, where we report the union of 15 non-crossing shortest paths that cannot be covered with two
forests so that each path is contained in at least one forest (it can be easily proved by enumeration). Recently, Balzotti [2]
proved that the union of non-crossing shortest paths can always be covered with four (possibly not edge-disjoint) forests
so that each path is contained in at least one forest, and he also showed that four forests are necessary for some instances.
We stress that the theoretical result in [2] does not provide a linear time algorithm for computing the covering forests,
thus it does not allow to compute path lengths in linear time exploiting lower common ancestors computation as in [11].

Our contribution In this article we exploit the novel concept of shortcuts, that are portions of the boundary of a face that
allow us to modify a path without increasing (and possibly decreasing) its length. We show that it is possible to establish
whether a path is a shortest path by looking at the presence of shortcuts. Hence while being a shortest path is a global
property, we can verify it locally by checking a single face at a time for the presence of shortcuts adjacent to the path,
ignoring the rest of the graph. Notice that this is only possible when the input graph is the union of non-crossing shortest
paths, not for general plane graphs. Without this property, finding one distance is as difficult as finding a shortest path
on U; where we recall that U is the graph arising from the union of all non-crossing shortest paths.

Shortcuts allow us to compute the lengths of non-crossing shortest paths in total linear time. Thus we extend the
result in [21] also in the case in which U contains cycles. Our novel simple technique does not require the result by
Gabow and Tarjan [11]. Moreover, we also propose an algorithm for listing the sequence of edges in a shortest path p
joining a terminal pair in O(max{`, ` log log( k

`
)}), where ` is the number of edges in p.
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In this way we prove that if there exists an algorithm able to compute the union of non-crossing shortest paths whose
extremal vertices lie on the same face of a plane undirected graph, then we can compute the lengths of these paths in
the same time complexity.

The algorithm we propose can be easily implemented and it does not require sophisticated data structures. A
preliminary version of this algorithm can be found in [6]. We follow the same approach of Polishchuck and Mitchell [19],
that was inspired by Papadopoulou’s work [17]. They solve the problem of finding k non-crossing shortest paths in a
polygon with n vertices, where distances are defined according to the Euclidean metric.

Structure The article is organized as follows: in Section 2 we give preliminary definitions and notations that will be used
in the whole article. In Section 3 we deal with shortcuts and in Section 4 we use shortcuts in algorithm ImplicitPaths
for describing an implicit representation of non-crossing shortest paths. This representation is used to compute distances
between terminal pairs in linear time, and, in Section 5, it is also used to list the non-crossing shortest paths. Finally, in
Section 6 conclusions are given and we mention some open problems.

2. Preliminaries

General definitions and notations are given. Then we deal with paths, non-crossing paths, and we define a partial order
on terminal pairs, the genealogy tree. All graphs in this article are undirected.

2.1. Definitions and notations

Let G = (V (G), E(G)) be a plane graph, i.e., a planar graph with a fixed planar embedding. We denote by FG the set of
faces and by f 1

G its infinite face. When no confusions arise we use the term face to denote both the boundary and the
finite region bounded by the boundary, and the infinite face is simply denoted by f 1.

We use standard union and intersection operators on graphs.

Definition 1. Given two graphs G = (V (G), E(G)) and H = (V (H), E(H)), we define the following operations and relations:

• G [ H = (V (G) [ V (H), E(G) [ E(H));
• G \ H = (V (G) \ V (H), E(G) \ E(H));
• H ✓ G () V (H) ✓ V (G) ^ E(H) ✓ E(G);
• G \ H = (V (G), E(G) \ E(H)).

Given a graph G = (V (G), E(G)), an edge e and a vertex v we write, for short, e 2 G in place of e 2 E(G) and v 2 G in
place of v 2 V (G). An ab path is a path whose extremal vertices are a and b.

We use round brackets to denote ordered sets. For example, {a, b, c} = {c, a, b} and (a, b, c) 6= (c, a, b). Moreover, for
every r 2 N we denote by [r] the set {1, . . . , r}.

Let ! : E(G) ! R+ be a weight function on edges. The weight function is extended to a subgraph H of G so that
!(H) = P

e2E(H) !(e).
We assume that the input of our problem is a plane undirected graph U = S

i2[k] pi, where pi is a shortest xiyi path in
a plane graph G, and the terminal pairs {(xi, yi)}i2[k] lie on the infinite face f 1 of G. We stress that we work with a fixed
embedding of U . W.l.o.g. we assume that U is connected, otherwise it suffices to work on each connected component.

For a (possibly not simple) cycle C , we define the region bounded by C the maximal subgraph of U whose infinite face
has C as boundary. If R is a subgraph of U , then we denote by @R the infinite face of R. Moreover, we define R̊ = R \ @R.

Given a path p and a face f , we say that f is adjacent to p if p and f share at least one edge.
Let �i be the path in f 1 that goes clockwise from xi to yi, for i 2 [k]. We assume also that pairs {(xi, yi)}i2[k] are

well-formed, i.e., for all j, ` 2 [k] either �j ✓ �` or �j ◆ �` or �j and �` share no edges. We note that if terminal pairs are
well-formed, then there exists a set of pairwise non-crossing shortest xiyi paths. The reverse is not true if some paths are
subpaths of the infinite face of G; this case is not interesting in the applications and has never been studied in literature,
where the terminal pairs are always assumed to be well-formed. The well-formed property can be easily verified in linear
time, since it corresponds to checking that a string of parentheses is balanced, and it can be done by a sequential scan
of the string. We also assume that the terminal pairs are distinct, i.e., there does not exist any pair i, j 2 [k] such that
{xi, yi} = {xj, yj}.

Given i 2 [k], we denote by i-path an xiyi path. It is always useful to see each i-path as oriented from xi to yi, for i 2 [k],
even if the path is undirected. For an i-path p, we define Leftp as the left portion of U with respect to p, i.e., the finite
region bounded by the cycle formed by p and �i; similarly, we define Rightp as the right portion of U with respect to p,
i.e., the finite region bounded by the cycle formed by p and f 1 \ �i.

For an i-path p and a j-path q, we say that q is to the right of p if q ✓ Rightp, similarly, we say that q is to the left of p
if q ✓ Leftp. Given R ✓ U and an i-path p ✓ R, for some i 2 [k], we say that p is the leftmost i-path in R if p is to the left of
q for each i-path q ✓ R. Similarly, we say that p is the rightmost i-path in R if p is to the right of q for each i-path q ✓ R.
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Fig. 3. Illustrating operator o.

Fig. 4. Paths in (a) and (b) are crossing, while paths in (c), (d), (e) are non-crossing. Moreover, paths in (a), (c) and (d) are not single-touch, while
paths in (b) and (e) are single-touch.

2.2. Paths and non-crossing paths

Given an ab path p and a bc path q, we define p � q as the (possibly not simple) path obtained by the concatenation of
p and q. Given a simple path p and two vertices u, v of p, we denote by p[u, v] the subpath of p with extremal vertices u
and v.

Now we introduce the operator o, explained in Fig. 3, that allows us to replace a subpath in a path.

Definition 2. Let p be a simple ab path, let u, v 2 V (p) such that a, u, v, b appear in this order in p and let q be a uv path.
We denote by p o q the (possibly not simple) path p[a, u] � q � p[v, b].

We say that two paths in a plane graph G are non-crossing if the curves they describe in the graph embedding do not
cross each other; a combinatorial definition of non-crossing paths can be based on the Heffter–Edmonds–Ringel rotation
principle [18]. We stress that this property depends on the embedding of the graph. Non-crossing paths may share vertices
and/or edges. We also define a class of paths that will be used later.

Definition 3. Two paths p and q are single-touch if p \ q is a (possibly empty) path.

Examples of non-crossing paths and single-touch paths are given in Fig. 4.
Our algorithm builds a set of single-touch paths even if the shortest pi’s paths in G composing the input graph

U = S
i2[k] pi are not pairwise single-touch. This may happen if there are more shortest paths in G joining the same

pair of vertices. Uniqueness of shortest paths can be easily ensured by introducing small perturbations in the weight
function of G. We wish to point out that the technique we describe in this article does not rely on perturbation, but
we break ties by choosing rightmost or leftmost paths. This implies that our results can also be used in the unweighted
case, as done in [3]. Note that the single-touch property does not depend on the embedding, and if the terminal-pairs are
well-formed, then it implies the non-crossing property. This is explained in the following remark, and, for this reason, we
can say that the solution found by our algorithm holds for any feasible planar embedding of the graph.

Remark 1. If {⇡i}i2[k] is a set of simple single-touch paths, where ⇡i is an i-path, for i 2 [k], then {⇡i}i2[k] is a set of
pairwise non-crossing paths for all the embeddings of U such that the terminal pairs {(xi, yi)}i2[k] are well-formed.

2.3. Genealogy tree

Given a well-formed set of pairs {(xi, yi)}i2[k], we define here a partial ordering as in [21] that represents the inclusion
relation between �i’s. This relation intuitively corresponds to an adjacency relation between non-crossing shortest paths
joining each pair.

Choose an arbitrary i⇤ such that there are neither xj nor yj, with j 6= i⇤, walking on f 1 from xi⇤ to yi⇤ (either clockwise
or counterclockwise), and let e⇤ be an arbitrary edge on that walk. For each j 2 [k], we can assume that e⇤ 62 �j, indeed if
it is not true, then it suffices to switch xj and yj. We say that i � j if �i ✓ �j. We define the genealogy tree Tg of a set of
well formed terminal pairs as the transitive reduction of poset ([k], �).

Fig. 5 shows an example of well-formed terminal pairs, and the corresponding genealogy tree for i⇤ = 1. From now
on, in all figures we draw f 1 by a solid light grey line.
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Fig. 5. On the left a set of well-formed terminal pairs. If we choose i⇤ = 1, then we obtain the genealogy tree on the right.

Fig. 6. All edges have unit weight. On the left, highlighted in orange, there is a shortcut for p contained in @ f . In the middle there are two shortcuts
for p both contained in @ f . On the right there are no shortcuts for p. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

3. Shortcuts

Now we introduce shortcuts, that are the main tool of algorithm ImplicitPaths introduced in Section 4, and the
most important theoretical novelty of this article.

Roughly speaking, a shortcut appears if there exists a face f adjacent to a path p so that we can modify p going around
f without increasing its length. We show that we can decide whether a path is a shortest path by looking at the existence
of shortcuts: in this way, we can check a global property of a path p—i.e., being a shortest path—by checking a local
property—i.e., the presence of shortcuts in faces adjacent to p. This result is not true for general plane graphs, but it only
holds when the input graph is the union of shortest paths joining well-formed terminal pairs on the same face. Shortcuts
are the main tool of algorithm ImplicitPaths described in Section 4, and the most important theoretical novelty of this
article.

Now we can formally define shortcuts, which are clarified in Fig. 6. The main application of shortcuts is stated in
Theorem 1.

Definition 4. Given a path p and a face f containing two vertices u, v 2 p, we say that a uv subpath q of @ f not contained
in p is a shortcut for p if !(p o q)  !(p).

Theorem 1. Let � be an i-path, for some i 2 [k]. If there are no shortcuts for �, then � is a shortest i-path.

Proof. If � = pi then the thesis holds. Thus let us assume by contradiction that !(pi) < !(�) and � has no shortcuts.
Let a, b 2 V (�)\ V (pi) be two vertices such that pi[a, b] and �[b, a] share no edges (such a and b exist because pi 6= �

and they are both i-path). Let C be the simple cycle pi[a, b] � �[b, a], and let R be the region bounded by C . If R is a face
of U , then pi[a, b] is a shortcut for �, absurdum. Hence we assume that there exist edges in R̊, see Fig. 7 on the left.

Either R ✓ Leftpi or R ✓ Rightpi . W.l.o.g., we assume that R ✓ Leftpi . Being U = S
j2[k] pj, for every edge e 2 R̊ there

exists at least one path q 2 P such that e 2 q. Moreover, the extremal vertices of q are in �i because paths in P are
non-crossing and R ✓ Leftpi .

Now we show by construction that there exist a path p 2 P and a face f such that f ✓ R, @ f intersects � on vertices
and @ f \ � ✓ p; thus @ f \ � is a shortcut for � because p is a shortest path.

For all q 2 P such that q ✓ Leftpi we assume that Leftq ✓ Leftpi (if it is not true, then it suffices to switch the extremal
vertices of q).

For each q ✓ Leftpi , let Fq = {f 2 F | @ f ✓ R \ Leftq}, where F is the set of the faces of U . To complete the proof, we
have to find a path p such that |Fp| = 1, indeed, the unique face f in Fp satisfies @ f \ � ✓ p, and thus @ f \ � is a shortcut
for �.
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Fig. 7. Paths and regions used in Theorem 1’s proof. Path � is in green, pi in red, q1 in blue and region R is highlighted in grey. It holds that
|Fq1 | = 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Now, let e1 2 R̊ and let q1 2 P be such that e1 2 q1. Being e1 2 R̊, then |Fq1 | < |Fpi | and |Fq1 | > 0 because e1 2 q1, see
Fig. 7 on the right. If |Fq1 | = 1, the proof is completed, otherwise we choose e2 2 R̊ \ ˚Leftq1 and q2 2 P such that e2 2 q2.
It holds that |Fq2 | < |Fq1 | and |Fq2 | > 0 because e2 2 q2. By repeating this reasoning, and being U = S

j2[k] pj, we find a
path p such that |Fp| = 1. ⇤

Given a path p, we say that a path q is a right shortcut for p if q is a shortcut for p and q ✓ Rightp. The following
corollary can be proved by the same approach of Theorem 1 and is more useful for our purposes.

Corollary 1. Let � be an i-path, for some i 2 [k]. If there are no right shortcuts for �, then there does not exist any path
�0 ✓ Right� satisfying !(�0)  !(�).

4. Computing lengths in linear time

In Theorem 2 we show that the distances between terminal pairs can be computed in O(|E(U)|) time by knowing U .
This is the main result of this article. To achieve it, we introduce algorithm ImplicitPaths, that gives us an implicit
representation of non-crossing shortest paths used in the proof of Theorem 2. The implicit representation is described in
Remark 3.

The main idea behind algorithm ImplicitPaths is the following. We build a set of shortest i-paths {�i}i2[k], by finding
�i at iteration i, where the terminal pairs are numbered according to a postorder visit of Tg . In particular, at iteration i we
find the rightmost shortest i-path in Ui = T

j2[i�1] Right�j in the following way: first we set �i as the leftmost i-path in
Ui, then we update �i by moving right through right shortcuts (the order in which shortcuts are chosen is not relevant).
When �i has no more right shortcuts, then it is the rightmost shortest i-path in Ui by Corollary 1.

Algorithm ImplicitPaths:
Input: an undirected plane graph U composed by the union of k non-crossing shortest paths in a plane graph G

each one joining a terminal pair on the infinite face of G
Output: an implicit representation of a set of paths {�1, . . . , �k}, where �i is a shortest i-path, for i 2 [k]

1 Compute Tg and renumber the terminal pairs according to a postorder visit of Tg ;
2 for i = 1, . . . , k do

3 Let �i be the leftmost i-path in Ui = T
j2[i�1] Right�j (U1 = U);

4 while there exists a right shortcut ⌧ for �i in Ui do

5 �i := �i o ⌧ ;

Lemma 1. Let {�i}i2[k] be the set of paths given by algorithm ImplicitPaths. Then

1.(1) �i is the rightmost shortest i-path in Ui, for i 2 [k];
1.(2) {�i}i2[k] is a set of single-touch paths.

Proof. We proceed by induction to prove the first statement. Trivially �1 is the rightmost shortest 1-path in U1 = U
because of Corollary 1. Let us assume that �j is the rightmost shortest j-path in Uj, for j 2 [i � 1], we have to prove that
�i is the rightmost shortest i-path in Ui.

In Line 3, we initialize �i as the leftmost i-path in Ui. By induction and the postorder visit, at this step, there does not
exist in Ui any i-path p to the left of �i shorter than �i. Otherwise �i would cross a path �j, for some j < i, implying that
�j is not a shortest j-path. We conclude by the while cycle in Line 4 and Corollary 1.

Statement 1.(2) follows from 1.(1); indeed, if �i and �j are not single-touch, for some i, j 2 [k], then 1.(1) is denied
either for �i or for �j. ⇤
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Fig. 8. If Ci = {�j, �`}, then in (a) there are no shortcuts for �i in f , while in (b) and (c) there may be.

Given i 2 [k] we define Ci as the set of children of i in the genealogy tree, moreover, we say that �j is a child of �i if
j 2 Ci.

Before stating our main result, we introduce a trivial consequence of non-crossing property and Jordan’s Curve
Theorem [13], indeed, every i-path ⇡ satisfies that ⇡ � �i is a closed curve.

Remark 2. Let {⇡i}i2[k] be a set of non-crossing i-paths. Let i, j, ` 2 [k]. If ⇡i, ⇡j and ⇡` share a common edge, then at
least two among {i, j, `} are a couple of ancestor/descendant in the genealogy tree.

Theorem 2. Given an undirected plane graph U composed by the union of k non-crossing shortest paths in a plane graph G
each one joining a terminal pair on the infinite face of G, we can compute the length of each shortest path in O(|E(U)|) total
time.

Proof. We show that during the execution of algorithm ImplicitPaths we can also compute the length of �i, for all
i 2 [k], in linear total time. If we also prove that algorithm ImplicitPaths can be executed in linear time, then the
thesis follows from Lemma 1.

We define, for all i 2 [k], �i,0 as �i after Line 3, i.e., the leftmost i-path in Ui = T
j2[i�1] Right�j . We have to show that

all the �i,0’s and all the shortcuts required in Line 4 can be computed in total linear time.
Let us start dealing with the shortcuts. We do a linear preprocessing that visits clockwise every face. Fixed a face f ,

let v
f
1, v

f
2, . . . , v

f
q be its vertices in clockwise order. We visit these vertices clockwise and compute the distance between

v
f
1 and v

f
i , for i 2 [q], and the length of the boundary of f . After this preprocessing, the lengths of the clockwise path and

of the counterclockwise path in @ f joining any given pair of vertices in f can both be computed in constant time. Now, if
the intersection between @ f and �i, for some i 2 [k], is contained in �j, for some j 2 Ci, then we know that there are no
right shortcuts in f for �i, otherwise they would be right shortcuts for �j, see Fig. 8.(a). Thus we ask for a right shortcut
in f for �i if and only if �i visits at least one edge in @ f that is not contained in its children, see Fig. 8.(b), or �i \ @ f is
contained in an least two children of �i, see Fig. 8.(a), and consequently at least one more edge of @ f is visited. In this
way, during the execution of algorithm ImplicitPaths we ask for a shortcut in f at most O(|E(f )|) times thank also to
Remark 2. This implies that finding all the shortcuts requires total linear time.

Now we prove that all the �i,0’s can be computed in total linear time. We stress that all the �i’s and all the �i,0’s
are represented as list, in this way we can join two paths in constant time. We recall that �i,0 is the leftmost i-path in
Ui = T

j2[i�1] Right�j , Ci is the set of children of i, and �i is the clockwise path on the infinite face of G from xi to yi. Let
Yi = S

j2Ci �j and let fi be the infinite face of Yi [ �i. We observe that, by its definition, �i,0 is the counterclockwise i-path
on fi. Clearly, if all the �j’s, for j 2 Ci, are vertex disjoint, then �j is contained in fi, for all j 2 Ci, see Fig. 9 on the left. If
the �j’s are not vertex disjoint, then some edges of Yi are not in fi, and by construction, they are not in f`, for all i � `,
see Fig. 9 on the right. Thus we can see the sequence of the fi’s as an updating graph for which if an edge is deleted
at iteration i, then it does not appear again in f` for all i � `. Hence, thanks to Remark 2, every edge appears at most
two times in this construction. Consequently, all the �i,0’s can be computed in total linear time because also to their list
representation.

We have proved that algorithm ImplicitPaths requires linear time. We use the same argument to compute paths’
lengths. Let i 2 [k] and j 2 Ci. At iteration i we know !(�j), and we compute !(�i,0 \ �j) by subtracting from !(�j) the
length of edges of �j that are not in �i,0. In this way we can compute the lengths of �i,0 for all i 2 [k] in total linear time
because every edge is considered at most two times thanks to Remark 2. Being the shortcuts computable in linear time,
the thesis follows. ⇤

By following Theorem 2’s proof we obtain the following implicit representation of the �i’s.

Remark 3. Paths �i’s computed by algorithm ImplicitPaths are implicitly represented as follows: �i = q1��j1 [a1, b1]�
q2 � �j2 [a2, b2] � . . . � qr � �jr [ar , br ] � qr+1 where {j1, j2, . . . , jr} ✓ Ci and E(q` \ �z) = ; for all ` 2 [r + 1] and z 2 Ci. Note
that the q`’s can be empty.
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Fig. 9. �j , �` and �m are the children of �i . The grey region represents fi .

Fig. 10. (a) the union of shortest i-paths, for i 2 [4], in unit-weighted graph, each different path has different style, (b) the union of {�i}i2[4] , the
output paths of algorithm ImplicitPaths.

Now we explain the implicit representation of the �i’s. If i is a leaf of the genealogy tree, then �i is given explicitly.
Otherwise we give explicitly edges that do not belong to the children of �i, that is the qi’s paths, and we give
the intersection path between �i and one of its child by specifying the extremal vertices of this intersection. This
representation requires linear space thanks to Remark 2.

5. Listing paths

We study the problem of listing the edges in �i, for some i 2 [k], after the execution of algorithm ImplicitPaths.
We want to underline the importance of the single-touch property. In Fig. 10, in (a) four shortest paths are drawn (the
graph is unit-weighted), we observe that the single-touch property is clearly not satisfied. A single-touch version of the
previous four paths is drawn in (b); it can be obtained by algorithm ImplicitPaths. It is clear that the problem of listing
the edges in a path in this second case is easier. We stress that in the general case the union of a set of single-touch paths
can form cycles, see Fig. 1 for an example.

Theorem 3. After O(n) time preprocessing, each shortest path �i, for i 2 [k], can be listed in O(max{`i, `i log log( k
`i
)}) time,

where `i is the number of edges of �i.

Proof. For any i 2 [k], we denote by
�!
�i the oriented version of �i from xi to yi. During the execution of algorithm

ImplicitPaths, we introduce a function Mark that marks a dart d with i if and only if the d is used for the first time
in the execution of algorithm ImplicitPaths at iteration i. It means that Mark(d) = i if and only if d belongs to

�!
�i and

d does not belong to
�!
�j , for all j � i and j 6= i. This function can be executed within the same time bound of algorithm

ImplicitPaths. Now we explain how to find darts in
�!
�i .

Let us assume that (d1, . . . , d`i ) is the ordered sequence of darts in
�!
�i . Let v = head[dj�1], and let us assume that

deg(v) = r in the graph
S

j2[k] �j. We claim that if we know dj�1, then we find dj in O(log log r) time. First we order the
outgoing darts in v in clockwise order starting in dj�1, thus let Outv = (g1, . . . , gr ) be this ordered set (this order is given
by the embedding of the input plane graph). We observe that all darts in Outv that are in Left�i are in

�!
�w for some w  i,

thus Mark(d)  i for all d 2 Outv \ Left�i . Similarly, all darts in Outv that are Right�i are in
�!
�z for some z � i, thus

Mark(d) � i for all d 2 Outv \ Right�i . Using this observation, we have to find the unique l 2 [r] such that Mark(gl)  i
and Mark(gl+1) > i. This can be done in O(log log r) by using a van Emde Boas tree [22].

Being the
�!
�i ’s pairwise single-touch, then

P
v2V (�i)

deg(v)  2k, where the equality holds if and only if every
�!
�j , for

j 6= i, intersects on vertices
�!
�i exactly two times, that is the maximum allowed by the single-touch property.

190



L. Balzotti and P.G. Franciosa Discrete Applied Mathematics 346 (2024) 183–191

Finally, if 2k  `i, then we list
�!
�i in O(`i) because the searches of the correct darts do not require more than O(k)

time, otherwise we note that
X

j=1,...,`
a1+···+a`2k

log log aj  ` log log
✓
2k
`

◆
,

so the time complexity follows. ⇤

6. Conclusions

In this article we extend the result of Takahashi et al. [21] by computing the lengths of non-crossing shortest paths in
undirected plane graphs also in the general case when the union of shortest paths is not a forest. Moreover, we provide
an algorithm for listing the sequence of edges of each path in O(max{`, ` log log( k

`
)}), where ` is the number of edges in

the shortest path.
We also introduced shortcuts on non-crossing shortest paths in plane graphs. They are a useful tool of interest itself.
All results of this article can be easily applied in a geometric setting, where it is asked to search for paths in polygons

instead of plane graphs. The same results can be extended to the case of terminal pairs lying on two distinct faces, by the
same argument shown in [21].

We left open the problem of listing a shortest path in time proportional to its length and finding the union of
non-crossing shortest paths joining k terminal pairs lying on the same face of a plane graph in o(n log k) time.

Data availability

No data was used for the research described in the article.
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