We introduce the notion of weakly Kähler hyperbolic manifold which generalizes that of Kähler hyperbolic manifold given in the early 1990s by M. Gromov, and establish its basic features. We then investigate its spectral properties and show a spectral gap result (on a suitable modification). As applications, we prove that weakly Kähler hyperbolic manifolds are of general type and we study the geometry of their subvarieties and entire curves, verifying – among other things – various aspects of the Lang and the Green–Griffiths conjectures for this class of manifolds.

Weakly Kähler hyperbolic manifolds and the Green–Griffiths–Lang conjecture / Bei, F.; Diverio, S.; Eyssidieux, P.; Trapani, S.. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - 2024:807(2024), pp. 257-297. [10.1515/crelle-2023-0094]

Weakly Kähler hyperbolic manifolds and the Green–Griffiths–Lang conjecture

Bei F.;Diverio S.
;
2024

Abstract

We introduce the notion of weakly Kähler hyperbolic manifold which generalizes that of Kähler hyperbolic manifold given in the early 1990s by M. Gromov, and establish its basic features. We then investigate its spectral properties and show a spectral gap result (on a suitable modification). As applications, we prove that weakly Kähler hyperbolic manifolds are of general type and we study the geometry of their subvarieties and entire curves, verifying – among other things – various aspects of the Lang and the Green–Griffiths conjectures for this class of manifolds.
2024
Ka ̈hler hyperbolic manifold; weakly Ka ̈hler hyperbolic mani- fold, spectral gap; Atiyah L2-theory; Lang’s conjecture; Kobayashi hyperbolicity; Ahlfors’ current, non-Ka ̈hler and null locus; pluripotential theory; variety of general type.
01 Pubblicazione su rivista::01a Articolo in rivista
Weakly Kähler hyperbolic manifolds and the Green–Griffiths–Lang conjecture / Bei, F.; Diverio, S.; Eyssidieux, P.; Trapani, S.. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 0075-4102. - 2024:807(2024), pp. 257-297. [10.1515/crelle-2023-0094]
File allegati a questo prodotto
File Dimensione Formato  
Bei_Weakly-Kähler-hyperbolic-manifolds_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 555 kB
Formato Adobe PDF
555 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1702689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact