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Weakly Kähler hyperbolic manifolds and the
Green–Griffiths–Lang conjecture
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Stefano Trapani at Rome

In loving memory of Jean-Pierre Demailly

Abstract. We introduce the notion of weakly Kähler hyperbolic manifold which gener-
alizes that of Kähler hyperbolic manifold given in the early 1990s by M. Gromov, and establish
its basic features. We then investigate its spectral properties and show a spectral gap result (on
a suitable modification). As applications, we prove that weakly Kähler hyperbolic manifolds
are of general type and we study the geometry of their subvarieties and entire curves, verify-
ing – among other things – various aspects of the Lang and the Green–Griffiths conjectures for
this class of manifolds.

1. Introduction

Ran the year 1991 when M. Gromov introduced, in one of his seminal papers [37], the
concept of Kähler hyperbolic manifold. These are compact Kähler manifolds endowed with
a Kähler form whose pull-back to the universal cover not only is d -exact, but also has a prim-
itive which is bounded. Gromov showed in that paper several beautiful and highly non-trivial
properties for such a manifold X , among which we find in order: the vanishing of L2-Hodge
numbers hp;q

.2/
.X/ for p C q ¤ dimX and their non-vanishing for p C q D dimX , the con-

sequent non-vanishing for the Euler characteristic of the sheaves of holomorphic p-forms as
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well as for the topological Euler characteristic, the bigness of their canonical bundle (and hence
their projectivity, by Moishezon’s theorem), and stated their Kobayashi hyperbolicity.

Since then, a quite huge amount of literature has been written in connection and around
the notion of Kähler hyperbolicity; just to cite very few, we find [16, 20, 24, 35, 41, 42, 46, 49,
53–55].

Here we focus on a variation around the notion of Kähler hyperbolicity, especially in con-
nection with Kobayashi hyperbolicity and distribution of entire curves, which naturally arose
in trying to answer the following question raised in [13]. Kähler hyperbolic manifolds form a
remarkable class of Kobayashi hyperbolic projective manifolds, and Lang’s conjecture predicts
that these should be of general type together with all of their subvarieties (regardless of whether
they are singular or not). Given that general typeness of Kähler hyperbolic manifolds and their
smooth subvarieties is already contained in [37], does it hold true for singular subvarieties
as well?

Answering this question requires to prove the vanishing/non-vanishing of the L2-Hodge
numbers as above, but this time for a desingularization of a singular subvariety of a Kähler
hyperbolic manifold. In this case the Kähler hyperbolic metric is pulled-back and so it is no
longer positive everywhere, but it degenerates along some exceptional locus (cf. Definition 2.2
of semi-Kähler hyperbolic manifold, introduced in [35]). Especially, we loose completeness,
which is particularly annoying in L2-Hodge theory.

We introduce, more generally, the notion of weakly Kähler hyperbolic manifold (cf. Def-
inition 2.3, where we allow the cohomology class to be merely big and nef instead of Kähler).
To some extent, the definition of Kähler hyperbolicity can be seen as an incarnation of neg-
ative (holomorphic sectional) curvature. Thus, morally, a weakly Kähler hyperbolic manifold
should be thought as “non-positively curved” and “negatively curved” in a Zariski dense open
set which corresponds to the locus where the big and nef cohomology class is Kähler (in a
precise sense, cf. Section 2.5).

It turns out that we still can prove the spectral gap, vanishing and non-vanishing theorems
in this general situation (cf. (i) of Theorem 3.1 and (ii) of Theorem 3.1), but the price to pay
is that these are obtained after passing to a suitable modification of the given weakly Kähler
hyperbolic manifold.

We collect these results in the following statement.

Theorem A (Spectral gap for weakly Kähler hyperbolic manifolds). LetM be a weakly
Kähler hyperbolic manifold of complex dimension m. There exist a modification �WM 0 !M

and a Kähler form ! on M 0 such that 0 is not in the spectrum of the L2 N𝜕-Laplacian �N𝜕;p;0 of
the Kähler universal cover of .M 0; !/ for all 0 � p � m � 1, and moreover�N𝜕;m;0 has closed
range and non-trivial (infinite-dimensional indeed) kernel.

While the general strategy to establish such a spectral gap result dates back to the works
[35, 37], several quite recent and deep technologies in Kähler geometry are needed to achieve
the proof, such as the theory of complex Monge–Ampère equations in big cohomology classes
developed in [14].

All in all, we will see that this gives in particular that a weakly Kähler hyperbolic mani-
fold admits a modification which is of general type, and hence it is of general type itself.
Thus, this provides a confirmation of Lang’s conjecture for Kähler hyperbolic manifolds (cf.
Theorem 4.5).
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Theorem B (Lang’s conjecture for Kähler hyperbolic manifolds). Let M be a Kähler
hyperbolic manifold. Then M is Kobayashi hyperbolic and given any X �M , a possibly sin-
gular closed subvariety, we have that any desingularization yX ! X is of general type, i.e.X is
of general type.

We saw that weakly Kähler hyperbolic manifolds are of general type. On the one hand,
as such, the Green–Griffiths conjecture predicts that there should exists a proper subvariety
containing the image of every entire curve. On the other hand, if a compact Hermitian mani-
fold of non-positive holomorphic sectional curvature admits an entire curve (with bounded
derivative), then it must totally geodesically land following the directions where the curvature
is zero [44]. Therefore, pursuing the philosophical parallel between weakly Kähler hyper-
bolicity and (semi)negative holomorphic sectional curvature, we show that entire curves in
a weakly Kähler hyperbolic manifold have to sit in the non-Kähler locus of the cohomology
classes which provide weakly Kähler hyperbolicity, which is always a proper subvariety, see
Theorem 4.4.

Theorem C (Green–Griffiths’ conjecture for weakly Kähler hyperbolic manifolds). Let
M be a weakly Kähler hyperbolic manifold. Then there exists a proper subvariety Z ¨ M

which contains the image of all entire curves traced in M .

This locus thus morally encodes the flat directions in our manifold, and the algebraic
degeneracy of entire curves is proved by coupling Ahlfors’ currents with a sort of linear
isoperimetric inequality which holomorphic discs must satisfy thanks to the weakly Kähler
hyperbolicity assumption.

Let us finally point out that, even if we are unfortunately not able for the moment to pro-
duce examples of weakly Kähler hyperbolic manifolds which are not semi-Kähler hyperbolic
(see Remark 2.14), Theorems A and C are completely new even in the semi-Kähler hyperbolic
setting (except for Theorem A in dimension 2, see [35]), which is already a broad and very
natural generalization of Kähler hyperbolicity. Moreover, the semi-Kähler hyperbolic setting is
the minimal one needed in order to treat singular subvarieties of Kähler hyperbolic manifolds,
and hence to prove Theorem B.

Last but not least, our definition of weakly Kähler hyperbolic manifolds seems to be
the most general possible in order to make the so-called Vafa–Witten trick work to get the
non-vanishing in L2-cohomology, and this is one reason why we believe it is the right one to
consider in this context.

Acknowledgement. We warmly thank Benoït Claudon for pointing out reference [1].

2. Background material, basic definitions and properties, and examples

In this section we first of all recall the classical notion of Kähler hyperbolicity, and then
consider a new weaker notion which we shall call weakly Kähler hyperbolicity which is better
suited and perhaps more natural to consider from the point of view of birational geometry.

We shall provide examples and basic properties, and then recall some basic facts in spec-
tral theory, Kobayashi hyperbolicity, special loci of cohomology classes on compact Kähler
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manifolds, Ahlfors currents, and pluripotential theory in order to make more reader friendly
and self-contained the rest of the paper.

2.1. Kähler hyperbolic and weakly Kähler hyperbolic manifolds: Definitions and
first properties. We begin by recalling the original definition of Kähler hyperbolic manifolds
due to Gromov. Let .M;!/ be a compact connected Kähler manifold and � W . zM; z!/! .M;!/

its Kähler universal cover, so that ��! WD z!.

Definition 2.1 ([37]). The manifold M is said to be Kähler hyperbolic if it carries
a Kähler metric ! such that there exists on zM a 1-form ˛ in such a way that z! D d˛ and
j˛jz! is bounded on zM .

A natural corresponding notion in the framework of birational geometry was considered
in [35] (see also [46]), and is the following.

Definition 2.2. Given a real closed .1; 1/-form � onM such that � is non-negative and
moreover strictly positive on a nonempty Zariski open set, one says that .M;�/ is semi-Kähler
hyperbolic if there exists a 1-form ˛ on zM such that z� WD ��� D d˛ and j˛jz! is bounded
on zM .

Note that the boundedness of the primitive does not depend on the particular Kähler
metric ! that we fix on M since they are all quasi-isometric.

More generally, we introduce the following variant:

Definition 2.3. A compact Kähler manifold M is weakly Kähler hyperbolic if there
exists a closed real .1; 1/-form � whose cohomology class Œ�� 2 H 1;1.M;R/ is big and nef
and such that there exists on zM a 1-form ˛ with z� WD ��� D d˛ and j˛jz! is bounded on zM .

We shall recall in Section 2.5 the notion of big and nef cohomology classes.

Remark 2.4. These three notions depend only on the cohomology class of the consid-
ered .1; 1/-form, for any other representative differs by an exact 1-form onM , whose pull-back
to zM is bounded in L1 norm, since M compact.

Next, given a compact Kähler manifold M , call WM the positive convex cone of all big
and nef cohomology classes Œ�� 2 H 1;1.X;R/ which can be represented by a smooth form �

as in Definition 2.3. Sometimes, by a slight abuse of notation, we shall say that a smooth
closed real .1; 1/-form � belongs to WM if its cohomology class Œ�� does. Clearly, such an M
is weakly Kähler hyperbolic if and only if WM ¤ ;.

Remark 2.5. The property of being Kähler hyperbolic is easily seen to be inherited
by all smooth closed irreducible submanifolds. More generally, the properties of being semi-
Kähler hyperbolic and weakly Kähler hyperbolic are inherited by smooth closed irreducible
submanifolds too, provided

� they intersect non-trivially the locus where � is positive definite in the former case,
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� the top power of the restriction to the given subvariety of some class in WM is strictly
positive in the latter case. This is because the restriction of a nef class stays nef, and a nef
class is big if and only if the integral of its top power is positive (cf. Section 2.5).

Next, the above notions of Kähler hyperbolicity are preserved under finite étale coverings.
More precisely we have.

Proposition 2.6. Let �W yM !M be a finite étale cover. Then M is Kähler hyperbolic
(resp. weakly Kähler hyperbolic) if and only if yM is so.

Proof. If M satisfies one of the above Kähler hyperbolicity properties, it is immediate
by pulling-back via � that yM satisfies the same property.

Conversely, let H � �1.M/ be the subgroup of finite index which corresponds to the
covering �W yM !M . The group �1.M/ acts on the set of, say, left cosets �1.M/=H by per-
mutation. Then we have a group homomorphism �1.M/! S.�1.M/=H/ from �1.M/ to the
finite group of permutations of �1.M/=H . It is straightforward to verify that its kernel N is a
normal subgroup of �1.M/ of finite index and contained in H . Corresponding to N we thus
have a finite Galois étale cover �W LM !M which factorizes through yM . By the first part, LM
satisfies the same Kähler hyperbolicity properties of yM . But now, the average under the deck
transformation group of �W LM !M of any form � 2 W LM

gives a non-zero invariant form
which descends to a form in WM . It is immediate to see that this form is Kähler if � is, and we
are done.

The mere fact that the Kähler form becomes exact after pulling-back to the universal
cover implies that the manifold has large fundamental group in the sense of Kollár [46, Sec-
tion 4.1]. We will see later on that in the weaker context of weakly Kähler hyperbolicity one
can say that M has generically large fundamental group (still in the sense of Kollár [46]).

Here is another remarkable property of the fundamental group of a weakly Kähler hyper-
bolic manifold.

Proposition 2.7. The fundamental group of a weakly Kähler hyperbolic manifold M is
not amenable. In particular, it has exponential growth for any finite system of generators and
can be neither virtually abelian nor virtually nilpotent.

Proof. If the fundamental group of M were amenable, then the pull-back morphism
H 2.M/! H 2

ˇ
. zM/, where the H i

ˇ
. zM/’s are the de Rham cohomology groups based on dif-

ferential forms ˛ such that ˛ and d˛ are uniformly bounded, would be injective thanks to
[3, Proposition]. But this is impossible since any � 2 WM gives a non-zero class in H 2.M/

which pulls-back to zero in H 2
ˇ
. zM/.

Weakly Kähler hyperbolic manifolds do satisfy the following linear isoperimetric inequal-
ity (cf. the proof of Corollary 2.18 for an analogue inequality for holomorphic discs in the
stronger Kähler hyperbolic setting).

Proposition 2.8. Let M be a weakly Kähler hyperbolic manifold, g any Riemannian
metric on M , and consider the Riemannian universal cover � W . zM;��g/! .M; g/. Then
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there exists a constant C > 0 such that for any bounded domain with C 1 boundary � � zM
we have the following linear isoperimetric inequality

Volume��g.�/ � C Area��g.𝜕�/:

Proof. Let � 2 WM and let ˛ be a bounded real 1-form such that ��� D d˛. Then the
.2n � 1/-form ˇ WD ˛ ^ ���n�1 satisfies dˇ D ���n, and it is bounded.

Given any Riemannian metric g on M , normalize it in such a way thatZ
M

dvolg D
Z
M

�n:

As
R
M WH

2n.M;R/!R is an isomorphism, it follows that there exists a smooth .2n�1/-form
� on M such that dvolg ��n D d�. Therefore, �� dvolg D d.���C ˇ/ has a bounded prim-
itive, say

j���C ˇj��g � C:

This means that for any v1; : : : ; v2n�1 2 T zM , one has

j.���C ˇ/.v1 ^ � � � ^ v2n�1/j � C jv1 ^ � � � ^ v2n�1j��g ;

and therefore, it follows using Stokes’ formula that for every relatively compact domain with
C 1-boundary � � zM one has

Volume��g.�/ � C Area��g.𝜕�/:

As a corollary, we immediately get a spectral gap type result for the Laplace–Beltrami
operator (with respect to any Riemannian metric coming from the base) on the universal cover
of a weakly Kähler hyperbolic manifold (see Theorem 3.1 for more spectral properties of
weakly Kähler hyperbolic manifolds).

Corollary 2.9. Let M be a weakly Kähler hyperbolic manifold, with universal cover
� W zM !M , and let g be any Riemannian metric on M . Then zero is not in the spectrum of
the Laplace–Beltrami operator of . zM;��g/.

Proof. Replacing a Riemannian metric g by a positive multiple c g, has the effect of
rescaling the corresponding Laplace–Beltrami operator by 1

c
. Thus, we can suppose that g

is normalized as in the proposition above, since the rescaling does not change the presence
of zero in the spectrum. The corollary then follows from Cheeger’s inequality [23] (see also
[22, Theorem VI.1.2]).

2.1.1. Examples. Let us mention here several examples to clarify which kind of objects
we are concretely working with.

Example 2.10 (Dimension one). For X a compact Riemann surface, weakly Kähler
hyperbolicity is equivalent to Kähler hyperbolicity, and they are in turn both equivalent to the
classical hyperbolicity of X .

Indeed, if .X; �/ is weakly Kähler hyperbolic, we have
R
X � > 0 and thus there exists

a Kähler form ! cohomologous to �. Therefore, .X; !/ is Kähler hyperbolic by Remark 2.4.
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On the other hand, Kähler hyperbolic implies Kobayashi hyperbolic (see Corollary 2.18),
which in turns implies negative curvature, which give us back Kähler hyperbolicity (see next
example).

Example 2.11 (Kähler hyperbolic manifolds). Examples of Kähler hyperbolic mani-
folds are given for instance by

� compact Kähler manifolds homotopically equivalent to a Riemannian manifold with
negative Riemannian sectional curvature [24, Theorem 3.1 and Lemma 3.2].

� compact Hermitian locally symmetric spaces of non-compact type [5, Proposition 8.6
and subsequent page].

� smooth closed submanifolds of Kähler hyperbolic manifolds, by Remark 2.5.
� products of Kähler hyperbolic manifolds.
� compact Kähler manifolds admitting a finite map to a Kähler manifoldY carrying a Kähler

metric with a bounded primitive on the universal covering space (cf. Lemma 2.28). This
includes quotients of bounded symmetric domains by non-necessarily cocompact torsion
free discrete subgroups.

� compact Kähler manifolds admitting a finite map to Ag;P the moduli stack of genus g
abelian varieties with a given polarization type P or to Mg;n, cf. [54] (see Remark 2.12).

Remark 2.12. There is also a non-compact version of Kähler hyperbolicity considered
for instance in [54], where it is shown that the moduli space of Riemann surfaces is Kähler
hyperbolic. We hope to reconsider this further notion in a future paper, especially in connection
with the logarithmic version of Lang’s conjecture.

Example 2.13 (Semi-Kähler hyperbolic manifolds). The main examples we have in
mind are given by compact Kähler manifolds admitting a generically finite morphism to a Kähler
hyperbolic manifold (see Proposition 2.29). In particular, explicit examples are given by

� the blow-up of a Kähler hyperbolic manifold along a smooth center.
� any resolution of singularities of a (singular) subvariety of a Kähler hyperbolic manifold.
� compact Kähler manifolds admitting a generically finite map to a Kähler manifold Y

carrying a Kähler metric with a bounded primitive on the universal covering space (cf.
again Lemma 2.28). As before, this includes quotients of bounded symmetric domains
by non-necessarily cocompact torsion free discrete subgroups.

� compact Kähler manifolds admitting a generically finite map to Ag;P the moduli stack
of genus g abelian varieties with a given polarization type P or to Mg;n.

Observe that manifolds in the first explicit class above are semi-Kähler hyperbolic but never
Kähler hyperbolic as soon as their dimension is greater than one, since they always contain
rational curves in the exceptional divisor.

One of our main results will be to show that a weakly Kähler hyperbolic manifold is of
general type (and hence projective, being both Moishezon and Kähler). Hence any compact
complex manifold whose Kodaira dimension is not maximal gives an example of something
which is not weakly Kähler hyperbolic.
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Remark 2.14. Unfortunately, we do not dispose at the moment of examples of weakly
Kähler hyperbolic manifolds which are not semi–Kähler hyperbolic. These would be urgently
needed, if any.

Summing up, the picture is:

Kähler hyperbolic
+3
semi-Kähler hyperbolic

��

NOTks

weakly Kähler hyperbolic.

2.2. Basics on spectral theory and Atiyah L2 theory. We start this subsection by
recalling some basic spectral theory of the Hodge–Kodaira Laplacian. Let .N; h/ be a complex
manifold of complex dimension n endowed with a complete Hermitian metric h. We denote
with

𝜕p;qW�p;q.N /! �p;qC1.N /

the Dolbeault operator acting on .p; q/-forms and with

𝜕
t

p;q W �
p;qC1.N /! �p;q.N /

its formal adjoint with respect to the metric h.
The Hodge–Kodaira Laplacian acting on .p; q/-forms, denoted here with

�𝜕;p;q W �
p;q.N /! �p;q.N /;

is defined as
�𝜕;p;q WD 𝜕

t

p;q ı 𝜕p;q C 𝜕p;q�1 ı 𝜕
t

p;q�1:

Let L2�p;q.N; h/ be the Hilbert space of .p; q/-forms with measurable coefficients u such
that

hhu; uiiL2�p;q.N;h/ WD

Z
N

juj2h dvolh <1;

where dvolh stands for the volume form corresponding to h and, with a little abuse of notations,
we have still used h to denote the Hermitian metric induced by h on ƒp;q.N /. It is well
known that �p;qc .N /, the space of smooth .p; q/-forms with compact support, is dense in
L2�p;q.N; h/.

We now look at

(2.1) �𝜕;p;qWL
2�p;q.N; h/! L2�p;q.N; h/

as an unbounded, closable and densely defined operator defined on �p;qc .N /. A well known
result says that (2.1) is essentially self-adjoint, see, e.g., [10, Proposition 12.2]. Since (2.1) is
formally self-adjoint this is equivalent to saying that (2.1) admits a unique closed extension.
Henceforth with a little abuse of notation we still denote with

(2.2) �𝜕;p;qWL
2�p;q.N; h/! L2�p;q.N; h/

the unique closed (and hence self-adjoint) extension of (2.1). Since .N; h/ is complete, (2.2) is
nothing but

𝜕
�

p;q ı 𝜕p;q C 𝜕p;q�1 ı 𝜕
�

p;q�1WL
2�p;q.N; h/! L2�p;q.N; h/:
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Here
𝜕p;qWL2�p;q.N; h/! L2�p;qC1.N; h/

and
𝜕p;q�1WL2�p;q�1.N; h/! L2�p;q.N; h/

are the unique closed extensions of

𝜕p;qW�p;qc .N /! �p;qC1c .N /;

and
𝜕p;q�1W�p;q�1c .N /! �p;qc .N /

respectively, and
𝜕
�

p;qWL
2�p;qC1.N; h/! L2�p;q.N; h/

and
𝜕
�

p;q�1WL
2�p;q.N; h/! L2�p;q�1.N; h/

are the corresponding adjoints. Note that since the manifold is assumed to be complete, the
map 𝜕

�

p;q is the unique closed extension of the formal adjoint 𝜕
t

p;q . It follows immediately that
in L2�p;q.N; h/ we have

ker.�𝜕;p;q/ D ker.𝜕p;q/ \ ker.𝜕
�

p;q�1/; im.�𝜕;p;q/ D im.𝜕p;q�1/˚ im.𝜕
�

p;q/;

and the following L2-Hodge–Kodaira orthogonal decomposition holds true:

L2�p;q.N; h/ ' ker.�𝜕;p;q/˚ im.𝜕p;q�1/˚ im.𝜕
�

p;q/:

Now we continue this section by recalling the definition and the basic properties of the
L2-Hodge numbers. We introduce only what is strictly necessary for our scopes with no goal of
completeness. We invite the reader to consult the seminal paper of Atiyah [2] for more on this.
Moreover, for an in-depth treatment of this topic we refer to [51] whereas quick introductions
can be found in [46], [52] and [59].

Let .M; h/ be a compact Hermitian manifold of complex dimension m. Let � W zM !M

be a Galois covering ofM and let zh WD ��h be the pull-back metric on zM . Let � be the group
of deck transformations acting on zM , � � zM ! zM . We recall that � is a discrete group acting
fiberwise on zM and such that the action is transitive on each fiber and properly discontinuous.
In particular, we have zM=� DM . An open subset A � zM is a fundamental domain of the
action of � on zM if

� zM D
S

2� 
.A/,

� 
1.A/ \ 
2.A/ D ; for every 
1; 
2 2 � with 
1 ¤ 
2,

� A n A has zero measure.

It is not difficult to show that, in the sense of tensor product of Hilbert spaces, it holds

L2�p;q. zM; zh/ ' L2� ˝ L2�p;q.A; zhjA/ Š L
2� ˝ L2�p;q.M; h/:

Moreover, it is clear that � acts on L2�p;q. zM; zh/ by isometries. Let us consider a �-module
V � L2�p;q. zM; zh/, that is, a closed subspace of L2�p;q. zM; zh/ which is invariant under the
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action of � . If ¹�j ºj2N is an orthonormal basis for V , then the following (possibly infinite)
real number X

j2N

Z
A

j�j j
2
zh

dvolzh

is well-defined, that is, it does depend neither upon the choice of the orthonormal basis of V
nor on the choice of the fundamental domain of the action of � on zM , see, e.g., [2]. The von
Neumann dimension of a �-module V is thus defined as

dim�.V / WD
X
j2N

Z
A

j�j j
2
zh

dvolzh;

where ¹�j ºj2N is any orthonormal basis for V and A is any fundamental domain for the action
of � on zM .

Since the Hodge–Kodaira Laplacian

�𝜕;p;qWL
2�p;q. zM; zh/! L2�p;q. zM; zh/

commutes with the action of � , a natural and important example of �-module with finite
�-dimension is provided by ker.�𝜕;p;q/, the space of L2-harmonic .p; q/-forms on . zM; zh/,
for each p; q D 0; : : : ; m, cf. [2]. The L2-Hodge numbers of .M; h/ with respect to a Galois
�-covering � W zM !M endowed with the pull-back metric zh WD ��h are then defined as

h
p; q

.2/;�;𝜕.M/ WD dim�.ker.�𝜕;p;q//:

We point out that hp; q
.2/;�;𝜕.M/ are non-negative real numbers independent on the choice of the

Hermitian metric h on M . We recall now a deep result which is nothing but the celebrated
Atiyah L2-index theorem applied to a compact complex manifold (see [2]).

Theorem 2.15. Let .M; h/ be a compact complex Hermitian manifold of complex di-
mension m. Let � W zM !M be a Galois �-covering of M and let zh WD ��h be the pull-back
metric on zM . Then for any fixed p 2 ¹0; : : : ; mº we have

mX
qD0

.�1/q h
p;q

𝜕
.M/ D

mX
qD0

.�1/q h
p;q

.2/;�;𝜕
.M/:

Finally, we conclude this section with a remark about the notation. In the case of a com-
pact Kähler manifold .M; h/ we will simply denote with hp;q

.2/
.M/ the L2-Hodge numbers

of M with respect to its universal covering.

2.3. Kobayashi hyperbolicity, manifolds of general type and Lang’s conjecture. We
refer the reader to [45] for a omni-comprehensive account of Kobayashi hyperbolicity. LetX be
a complex manifold, or more generally a complex space. One can define a pseudodistance dX
onX as the largest among those pseudodistances d with the property �.a; b/ � d.f .a/; f .b//,
where � is the Poincaré distance on the complex unit disc D for all holomorphic map f WD!X

and all a; b 2 D.

Definition 2.16. The pseudodistance dX is called Kobayashi pseudodistance, and the
manifold X is said to be Kobayashi hyperbolic if dX is a genuine distance, i.e., it separates
points.
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More generally, given a closed (in the Euclidean topology) subset F � X , we say that
X is Kobayashi hyperbolic modulo F if for every pair of distinct points p; q of X we have
dX .p; q/ > 0 unless both are contained in F .

From the very definition, we immediately see that being Kobayashi hyperbolic is an
hereditary property for complex subspaces of a Kobayashi hyperbolic complex space. WhenX
is moreover compact, Kobayashi hyperbolicity turns out to be equivalent to Brody hyperbol-
icity, namely X is Kobayashi hyperbolic if and only if it does not admit any entire curve, i.e.,
a non-constant holomorphic map f WC ! X . More generally, if X is hyperbolic modulo F ,
then any entire curve must land into F ; conversely, if X is compact then for each x 2 X we
have that

Fx WD ¹y 2 X j dX .x; y/ D 0º

is a connected set and, if Fx ¤ ¹xº, then there exists an entire curve whose image is inside Fx .
WhenX is a smooth projective manifold (or, more generally, a compact Kähler manifold)

the analytic property of being Kobayashi hyperbolic is expected to be completely characterized
by the following algebraic property: X is of general type together with all of its subvarieties.
This is the content of Lang’s conjecture [47, Conjecture 5.6].

Recall that a smooth compact complex manifold X is said to be of general type if its
canonical bundle KX is big, i.e., the growth of the dimension of the space of pluricanonical
sections is the largest possible h0.X;K˝mX / � mdimX . When X is singular, by definition, it is
of general type if it admits a desingularization of general type.

The direction of Lang’s conjecture which state that Kobayashi hyperbolic manifolds are
of general type together with their subvarieties has been verified in some particular cases
besides the trivial case of curves, among which we mention

(i) compact Kähler surfaces (this follows from bimeromorphic classification, plus the non-
hyperbolicity of K3s).

(ii) compact Kähler manifolds with negative holomorphic sectional curvature [39,64,66,67].

(iii) compact, free quotients of bounded domains � � Cn, see [13, 16, 18].

(iv) generic projective hypersurfaces of high degree, and consequently generic projective
complete intersections of high multi-degree [15, 25, 30, 32, 34, 56–58, 62, 63, 65, 68].

(v) Consider a compact Kähler manifold X whose fundamental group has a semi-simple
representation �W�1.X/! GL.N;C/ such that, for all positive-dimensional irreducible
subvarieties Z � X (including X itself), �.�1. yZ// is an infinite group with a semi-
simple real Zariski closure, where yZ is a desingularization ofZ. It follows from the ideas
of [71] (see [69] and [19, Proposition 3.14]) that in this situation we can infer that X is
Kobayashi hyperbolic and all its subvarieties are of general type. In the case � underlies
a C-VHS, these real Zariski closures are automatically semi-simple.

The other direction can be seen as a consequence of [47, Conjecture 5.5], which Lang
attributes to Green and Griffiths, which states that in a projective manifold of general type
the Zariski closure of the image on an entire curve must be a proper subvariety. There is also
a stronger variant of this conjecture, which predicts that in a projective manifold of general
type there should exists a proper subvariety containing the image of every entire curve. Even
stronger, one might ask [45, Conjecture 4, p. 80] if a projective manifold of general type is
hyperbolic modulo a proper algebraic subvariety, which should be the union of its subvarieties
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which are not of general type. We shall see some results in this directions in Section 4.2,
especially in connection with null and non-Kähler loci (cf. Section 2.5).

Next, let us mention the following beautiful characterization of Kobayashi hyperbolic
compact complex manifolds.

Theorem 2.17 ([33]). A compact complex manifold is Kobayashi hyperbolic if and only
if any “holomorphic disc” in X satisfies a linear isoperimetric inequality.1)

This means that there exists a real constant C > 0 such that given any holomorphic map
f WD ! X which is say continuously differentiable up to the boundary, we have

Area.D/ � C Length.𝜕D/;

with respect to some (hence any, by compactness, by properly modifying the constant C )
Hermitian metric on X .

Using this theorem, it is almost immediate to prove Kobayashi hyperbolicity of Kähler
hyperbolic manifolds.

Corollary 2.18 (cf. [24, 37]). Suppose X is a Kähler hyperbolic manifold. Then X is
Kobayashi hyperbolic.

Proof. Let f WD ! X be a holomorphic disc as above and ! a Kähler form such that
��! D d˛, where � W zX ! X is the universal cover and j˛j��! � C . Take any holomorphic
lifting zf WD ! zX and observe that

Area!.D/ D
Z

D
f �! D

Z
D
.� ı zf /�!

D

Z
D

zf �d˛ D

Z
𝜕D
zf �˛

� C Length!.𝜕D/;

since k˛k��! < C implies precisely that for any v 2 TD one has

j zf �˛.v/j � C j zf�.v/j��! D C j��. zf�.v//j! D C jf�.v/j! :

Lang’s conjecture would then predict that a Kähler hyperbolic manifold X should be
of general type together with all of its subvarieties. One of the main theorems in [37] asserts
that a Kähler hyperbolic manifold is indeed of general type. In particular, X is Moishezon and
Kähler so that it is projective algebraic by Moishezon’s theorem. But then, since X cannot
posses any rational curve, e.g., by Kähler hyperbolicity, its canonical bundle KX is ample
([27, Exercise 8, p. 219], see also [24]). Also, all its closed smooth submanifolds are of general
type, being again Kähler hyperbolic (cf. Remark 2.5), and with ample canonical bundle.

As announced in the introduction, in Section 4.2 we shall see that also singular subvari-
eties of a Kähler hyperbolic manifold are of general type, thus establishing Lang’s conjecture
for this class of Kobayashi hyperbolic manifolds, answering a question raised in [13].

1) As also mentioned in J. Duval’s paper, an analogous statement was also independently proved by Bruce
Kleiner in an unpublished work.
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2.4. Ahlfors’ currents. Morally speaking, Ahlfors’ currents provide a way to perform
intersection theory with certain non-compact objects, namely entire curves on compact Kähler
manifolds.

Let f WC ! .X; !/ be such an entire curve, dimX D n. For any smooth .1; 1/-form
 2 �1;1.X/, let

Tf;r. / D

Z r

0

dt

t

Z
Dt

f � ;

where Dt � C is the disc of radius t . For r > 0, consider the positive current ˆr of bidimen-
sion .1; 1/ given by

 7! ˆr. / D
Tf;r. /

Tf;r.!/
:

The family ¹ˆrºr>0 is bounded, and so we certainly have an accumulation point ˆ which is
a positive current. One important fact is that we can always choose such a limit current (which
is by no means unique) to be in addition closed (see for instance [17, Lemme 0]). One can see
that this amounts to proving that

lim inf
r!C1

Sf;r.!/

Tf;r.!/
D 0;

where

Sf;r.!/ D

Z r

0

L!.t/
dt

t
; L!.t/ D Lenght!.𝜕Dt /:

We shall call an increasing diverging sequence ¹rkºk2N such that ˆrk
converges to a

closed limit an admissible sequence. For such a sequence we certainly have

lim
rk!C1

Sf;rk
.!/

Tf;rk
.!/
D 0:

A closed positive current which arises in this way is called an Ahlfors current associated to
f WC ! .X; !/. It can be thought as a “current of integration along f .C/”.

Given an Ahlfors currentˆ, its cohomology class Œˆ�2Hn�1;n�1.X;R/ satisfies a basic
intersection inequality which will be crucial for our applications.

Proposition 2.19 ([17, Lemme 1]). Let Y � X be an irreducible closed analytic hyper-
surface such that f .C/ 6� Y , and let ŒY � 2 H 1;1.X;R/ be its Poincaré dual cohomology class.
Then

Œˆ� � ŒY � � 0:

2.5. Big and nef classes, non-Kähler locus, and null locus. For the terminology and
main result of this section we refer the reader to [12]. As an excellent source for the theory of
positive currents the reader may consult [29].

Let X be a compact Kähler manifold, and fix some reference Kähler metric !. Given
a cohomology class Œ˛� 2 H 1;1.X;R/, we say that it is big if it contains a Kähler current, i.e.,
under the natural isomorphism between cohomology of forms and currents, it can be repre-
sented by a closed positive .1; 1/-current T which is bounded below in the sense of currents by
some positive multiple of ! (such a current is called a Kähler current).

We say that Œ˛� is nef if it can be represented by smooth real .1; 1/-forms bounded below
by arbitrarily small negative multiples of !.
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This terminology is borrowed from algebraic geometry: indeed ifX is projective andL is
a holomorphic line bundle on X , then L is big (in the sense that it has maximal Kodaira–Iitaka
dimension) if and only if c1.L/ is big in the sense just described, and it is nef (in the sense that
its intersection with any irreducible curve is non-negative) if and only if c1.L/ is nef as above
(see [28]).

Thanks to [31, Theorem 0.5], a nef class Œ˛� is big if and only if
R
X ˛

dimX > 0.

Example 2.20. A class which can be represented by a smooth closed semi-positive
.1; 1/-form ˛ which is strictly positive somewhere is both big and nef. In this case, in fact,
Œ˛� is trivially a nef class by the very definition, and moreover

R
X ˛

dimX > 0. Therefore, as
just observed, by [31, Theorem 0.5], Œ˛� is a big (and nef) class. In particular, a semi-Kähler
hyperbolic manifold is weakly Kähler hyperbolic.

Now, given a closed positive current T and a positive real number c > 0, its correspond-
ing Lelong super-level set is the set

Ec.T / D ¹x 2 X j �.T; x/ � cº;

where �.T; x/ is the Lelong number of T at x. It is a fundamental theorem of Y.-T. Siu [60]
that such sets are in fact closed analytic subvarieties of X . Next, call

EC.T / D
[
c>0

Ec.T /;

which is seen to be a countable union of analytic subvarieties.
Coming back to our big classes, we have the following definition, due to [12].

Definition 2.21. Given a big class Œ˛� 2 H 1;1.X;R/, its non-Kähler locus EnK.Œ˛�/ is
defined to be

EnK.Œ˛�/ D
\
T2Œ˛�

EC.T /;

where T ranges among all Kähler currents representing Œ˛�.

One can prove [12, Theorem 3.17] that the class Œ˛� is Kähler if and only ifEnK.Œ˛�/ D ;
(thus the non-Kähler locus gives a measure of the failure for the class Œ˛� of being Kähler and
also “locates” this failure), and moreover, given a big class Œ˛� one can always find a Kähler cur-
rent T 2 Œ˛� with analytic singularities such that EC.T / D EnK.Œ˛�/ (in particular, EnK.Œ˛�/
is an analytic subvariety). Recall that a positive .1; 1/-current is said to have analytic singular-
ities if it is locally congruent to


 i𝜕N𝜕 log
X
jfj j

2 .mod smooth forms/;

for some real number 
 > 0 and a finite set of (locally defined) holomorphic functions fj ,
so that if T has analytic singularities EC.T / is an analytic subset and T is smooth outside
of EC.T /.

Example 2.22. To have a more geometric flavor of what the non-Kähler locus is, sup-
pose X is projective and L! X is a holomorphic line bundle. Then Kodaira’s lemma states
that L is big if and only if for any ample line bundle A! X we have that L˝k ˝ A�1 has
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a non-zero holomorphic global section for all k 2 N sufficiently large and divisible. In other
words, L is big if and only if all of its sufficiently large and divisible tensor powers are isomor-
phic to an ample line bundle tensor an effective one. The augmented base locus of the big line
bundle L is then defined as

BC.L/ D
\

L˝k�A˝OX .E/

Supp.E/

where k 2 N is an exponent for which Kodaira’s lemma holds, A is ample, E is an effective
divisor and Supp.E/ is the support of the divisor E.

Then, if L is big as a line bundle, so is c1.L/ as a cohomology class, and one can prove
that EnK.c1.L// D BC.L/.

Suppose now that the class Œ˛� is nef. Another subset of X which measures the non-
Kählerity of Œ˛� in this case is the so-called null locus

Null.Œ˛�/ D
[

R
Z ˛

dim ZD0

Z;

where Z varies among all the irreducible positive-dimensional analytic subvarieties of X over
which ˛ (raised to the right power) integrates to zero. By [31, Theorem 0.5], Null.Œ˛�/ ¤ X if
and only if the class Œ˛� is also big.

We have the following result, which will be an important tool for us later on.

Theorem 2.23 ([26, Theorem 1.1]). If Œ˛� 2 H 1;1.X;R/ is a nef class on a compact
(complex manifold bimeromorphic to a) Kähler manifold X , then

EnK.Œ˛�/ D Null.Œ˛�/:

Thus, in the nef case, the non-Kähler locus of a class Œ˛� is a numerical invariant. This
leads to the following.

Definition 2.24. For M a weakly Kähler hyperbolic manifold, the degeneracy set ZM
is defined to be

ZM D
\

Œ��2WM

Null.Œ��/:

Remark 2.25. IfM is a weakly Kähler hyperbolic manifold, then there exists�0 2WM

such that
ZM D EnK.Œ�0�/ D Null.Œ�0�/:

In fact, by the Noetherianity, the intersection is stationary, so that ZM D
TN
jD1 Null.Œ�j �/, for

some �1; : : : ; �N 2 WM . But then �0 WD
PN
jD1 �j belongs to WM and

Null.Œ�0�/ �
N\
jD1

Null.Œ�j �/;

since, for any k D 1; : : : ; dimM , and any irreducible subvariety Z �M of dimension k, we
have Œ�k0 � �Z �

PN
jD1Œ�

k
j � �Z.
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In particular, ZM is empty if and only if M is Kähler hyperbolic, and if it is nonempty,
then it cannot have isolated points.

The numerical degeneracy set is always a proper (positive-dimensional, whenever non-
empty) subvariety. We shall see later how ZM controls some properties of geometrical nature,
e.g., the Kobayashi hyperbolicity defect of M (see Section 4.2), or the following.

Proposition 2.26. Let M be a weakly Kähler hyperbolic manifold and let �WX ,!M

be an irreducible closed complex analytic subvariety such that X 6� ZM . Then the image
Im.��W�1.X/! �1.M// is infinite.

Since ZM is always a proper subvariety, this exactly means that a weakly Kähler hyper-
bolic manifold has generically large fundamental group.

Proof. Let � 2 WM be such that X 6� Null.Œ��/, so that
R
X �

dimX > 0. If the image
Im.��W�1.X/! �1.M// were finite, then passing to a finite cover �W yX ! X , we would have
that � ı �W yX !M lifts to the universal cover � W zM !M . We would thus obtain a compact
subvariety zX of zM such that �j zX W zX ! X is finite. We would therefore get a contradiction,
since on the one hand this would imply

R
zX
.���/dim zX > 0 and on the other hand this integral

has to be zero since ��� is exact.

2.6. Monge–Ampère equation in big cohomology classes. During the proof of Theo-
rem 3.1 we shall need a few important results as well as the notion of non-pluripolar product,
taken from [14]. We briefly recall them here for the reader’s convenience.

Given p arbitrary closed positive .1; 1/-currents T1; : : : ; Tp, there exists a well-defined
[14, Proposition 1.6] notion of non-pluripolar product

.T1 ^ � � � ^ Tp/

which gives back a closed [14, Theorem 1.8] positive .p; p/-current which puts no mass on
pluripolar sets. This notion enables one to give a meaning and to solve a quite general class of
degenerate complex Monge–Ampère equations. In op. cit. it is indeed shown the following.

Theorem 2.27 ([14, Theorem A and Theorem 3.1]). Let ˛ 2 H 1;1.X;R/ be a big co-
homology class on a compact Kähler n-dimensional manifold X . If � is a positive measure
on X which puts no mass on pluripolar sets and satisfies moreover the necessary condition
�.X/ D vol.˛/, then there exists a unique closed positive current T 2 ˛ such that

.T n/ D �:

Here .T n/ stands for the non-pluripolar product of T with itself taken n times, and vol.˛/
is the volume of the cohomology class ˛ in the sense of [12]. If moreover the measure � has
L1C" density with respect to the Lebesgue measure for some " > 0, then the solution T has
minimal singularities [14, Theorem B and Theorem 4.1] in the sense of Demailly.

Finally, whenever the measure � is a smooth strictly positive volume form and the class
˛ is moreover nef, then the solution T is also smooth in the complement of the non-Kähler
locus EnK.˛/ of ˛ (this is the content of [14, Theorem C and Theorem 5.1]).
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2.7. Kähler hyperbolicity and generically finite maps. Here we study how the differ-
ent notions of Kähler hyperbolicity propagate backwards under generically finite morphisms.
We first need a lemma.

Lemma 2.28. Letf W .M; gM /! .N; gN / be a smooth map between compact Riemann-
ian manifolds, and suppose that we are given a bounded k-form � on the Riemannian universal
cover . zN; zgN / of .N; gN /. Let zf W . zM; zgM /! . zN; zgN / be a lifting of f . Then the pull-back
zf �� is bounded.

Proof. For the pointwise norm of zf �� we have at a point p 2 zM

j zf ��jzgM
D sup
ˇ2ƒkTp

zM; jˇ jzgM
D1

j zf ��.ˇ/j

D sup
ˇ2ƒkTp

zM; jˇ jzgM
D1

j�.^kdp zf .ˇ//j � k�kL1�k. zN;zgN /
k^

kdp zf kop;

where k^kdp zf kop denotes the operator norm of

^
kdp zf W .ƒ

kTp zM; zgM /! .ƒkTp zN; zgN /:

Since M is compact and the coverings are Riemannian, there exists a positive constant C such
that

sup
p2 zM

k^
kdp zf kop � C:

Thus, we can conclude that

sup
p2 zM

j zf ��jzgM
� Ck�k

L1�k. zN;zgN /
;

that is, zf �� is bounded.

With this lemma at our disposal, we can show the following key proposition.

Proposition 2.29. LetN be a smooth compact connected Kähler manifold of dimension
dimN D k > 0, and let F WN !M be a generically finite holomorphic map, then:

(i) If M is Kähler hyperbolic, then N is semi-Kähler hyperbolic.

(ii) If k D m D dimM , then N is weakly Kähler hyperbolic if so is M .

(iii) If k < m, M is weakly Kähler hyperbolic, and F.N/ 6� ZM , then N is weakly Kähler
hyperbolic, too.

Proof. Let X D F.N/, and consider the following diagram:

zN
zF //

p
��

zM

�

��

N

F !!

X
� � //M ,

where pW zN ! N is the universal covering and zF is a lifting of F ı p.
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Recall that the manifoldN is Kähler with respect to some Kähler metric �, and letR � N
be the set of points where the rank of the differential of F is smaller than k. Let Xreg the set of
regular points in X and set

U WD Xreg n F.R/:

Then U and F�1.U / are nonempty Zariski open sets such that

F jF�1.U /WF
�1.U /! U

is a finite étale cover.
To prove (i), we observe that if .M;!/ is Kähler hyperbolic, then the form F �.!/ is semi-

positive and it is positive on F�1.U /, therefore by Lemma 2.28, .N; F �.!// is semi-Kähler
hyperbolic.

To prove (ii), we note that if k D m, thenX DM . IfM is weakly Kähler hyperbolic and
� 2 WM , then F �.�/ 2 WN , which is thus nonempty.

We now prove (iii). The fact that X D F.N/ is not contained in ZM gives us a � 2 WM

such that X 6� EnK.Œ��/. We have that F �Œ�� is a nef class. Since F has generically finite
fibers, the integral

R
N F

�.�/k is positive if and only if the integral
R
X �

k is. The latter being the
intersection number Œ��k �X , it must be nonzero by [26, Theorem 1.1], for X is not contained
in EnK.Œ��/. Thus F �Œ�� is also big and F �Œ�� 2 WN by Lemma 2.28.

Question 2.30. Can we replace the condition that F is a generically finite holomorphic
map with generically finite meromorphic map? This would amount to understand if and how
Kähler hyperbolic type properties descend through a proper modification.

We plan to address this question which is essentially about whether the property of being
weakly Kähler hyperbolic is of birational nature in a forthcoming note.

So, ifM is weakly Kähler hyperbolic, since ZM is always a proper subvariety, submani-
folds passing through a general point of M have to be weakly Kähler hyperbolic. Especially,
any rational or elliptic curve in M is contained in ZM . We shall see later that a weakly Kähler
hyperbolic manifold M is of general type, and therefore in this case if ZM does not contain
rational curves, then KM is ample.

Let us finish this subsection with the following proposition, whose goal is to construct
a bounded primitive (on the universal cover) of closed real .1; 1/-forms which represents the
cohomology class of a real Cartier divisor, after a finite ramified covering.

Proposition 2.31. Let X be a complex projective manifold. There exists a smooth pro-
jective manifold Z together with a finite surjective morphism f WZ ! X such that, for every
R-divisor D and every closed real .1; 1/-form u on X representing the cohomology class
ŒD� 2 H 1;1.X;R/, we have that ��f �u has a bounded primitive, where � W zZ ! Z denotes
the universal covering space of Z.

Proof. Given any ample line bundle A! X , fix a projective embedding �WX ! PN so
that ��O.1/ ' A˝m for somem 2 N. Let„N be a compact complex manifold uniformized by
the unit ball BN � CN . Observe that the latter always exists by [11, Corollary of Theorem A]
and is projective, since it has ample cotangent bundle.
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By Noether’s lemma, there exists a finite surjective morphism �W„N ! PN . By a theo-
rem of Kleiman [43] (see also [40, Theorem III.10.8]) acting with a generic projective automor-
phism, we can assume that the subscheme ��1.�.X//�„N which is isomorphic toX�PN„N
is in fact a smooth submanifold. Call ZA a nonempty connected component of such fiber
product.

Then the natural map fAWZA ! X is a finite surjective map and � WD �jZA
D � ı fA. In

particular, f �A A
˝m D ��O.1/.

Since „N has negative Riemannian sectional curvature, every closed form v on „N is
such that p�v has a bounded primitive, where pWBN ! „N denotes the universal covering
space.

For every de Rham representative u of c1.A/ we have at the level of cohomology

Œf �A u� D Œ�
�w� D Œ��w�jZA

for some w 2 1
m
c1.O.1//, and using Lemma 2.28 and Remark 2.4, it follows that q�f �A u has

a bounded primitive, where qW zZA ! ZA denotes the universal covering space, since p���w
has.

To finish the proof, let A1; : : : ; Ad ! X be a finite set of ample line bundles such that
their real Chern classes form a basis of the real Néron–Severi space NS.X/R � H 1;1.X;R/,
which is spanned by the numerical classes of R-divisors. This exists because the ample cone is
open and thus contains a basis consisting of classes of ample divisors.

We now iterate the above construction, starting with A1 ! X . We take f �A1
A2 ! ZA1

,
and observe that f �A1

A2 is still ample since f �A1
is a finite morphism. We thus get a smooth

projective manifold ZA1;A2
together with a finite surjective morphism fA1;A2

WZA1;A2
! X

such that every de Rham representative of c1.A1/ or c1.A2/ has a bounded primitive once
pulled-back on the universal cover of ZA1;A2

.
If we continue in this fashion, then we come up with a smooth projective manifold

Z WDZA1;:::;Ad
and with a finite surjective map f WD fA1;:::;Ad

WZ!X which has the required
properties for all classes ¹c1.Ai /º1�i�d , and hence for all classes ŒD� 2 NS.X/R.

Corollary 2.32. There exists a complex projective manifold Z together with a nef and
big divisor D such that every closed positive current representing the cohomology class
ŒD� 2 H 1;1.X;R/ has no representative with locally bounded plurisubharmonic local poten-
tials and for every smooth closed .1; 1/-form u on X representing ŒD�, ��u has a bounded
primitive, where � W zZ ! Z denotes the universal covering space of Z.

Proof. Let X be a projective manifold on which there is a nef and big divisor D0 such
that every closed positive current representing ŒD0� has locally unbounded local plurisubhar-
monic potentials. For the construction of such a manifold with a divisor with these properties,
see, e.g., [14, Example 5.4].

Now, apply Proposition 2.31 to the pair .X;D0/. The divisorD D ��D0 has the required
property for, if ŒD� had a representative with locally bounded plurisubharmonic local potentials,
then ŒD0� D 1

deg.�/��ŒD� would, too.

Remark 2.33. Unfortunately, the manifoldZ we construct is Kähler hyperbolic. Hence,
we have to leave open the question whether there exists a weakly Kähler hyperbolic manifold
which is not semi-Kähler hyperbolic.
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3. Spectral gap and nonvanishing for degenerate Kähler hyperbolic metrics

In this section we show how the notion of weakly Kähler hyperbolicity we introduced ear-
lier entails various consequences for the spectrum of the Hodge–Kodaira Laplacian acting on
the space of L2 .p; 0/-forms of the universal covering of a suitable modification �WM 0 !M

of our starting manifold M . We will prove that it yields the absence of zero in the spectrum of
�𝜕;p;0 acting on L2�p;0. zM 0/, and consequently the vanishing of L2 holomorphic p-forms on
the universal covering zM 0 with 0 � p < m.

In the second part, joining these vanishing results with the argument given by Gromov
in [37] and the birational invariance ofL2-Hodge .p; 0/-numbers, we show that the space ofL2

holomorphic m forms on the universal cover zM of M is infinite dimensional provided M is
weakly Kähler hyperbolic.

3.1. Spectral gap. We first deal with the announced spectral gap.

Theorem 3.1. LetM be a compact Kähler manifold of complex dimension dimM D m,
and suppose thatM is weakly Kähler hyperbolic. Then there exists a compact Kähler manifold
.M 0; !/ together with a modification �WM 0 !M such that the following holds.

Let � W . zM 0; z!/! .M 0; !/ be the universal covering of M 0 endowed with the pull-back
metric z! WD ��!. For 0 � p � m � 1, let

�𝜕;p;0WL
2�p;0. zM 0; z!/! L2�p;0. zM 0; z!/

be the closure of �𝜕;p;0W�
p;0
c . zM 0/! �

p;0
c . zM 0/. Then zero is not in the spectrum �.�𝜕;p;0/

for any 0 � p � m � 1, and furthermore �𝜕;m;0 has closed range.

Observe that, by Example 2.10, the above theorem in dimension one follows immediately
from the work of Gromov, so that in its proof we can restrict our attention to dimension at least
two (this will be used in the proof of Lemma 3.4). We need now some preliminary results.

Lemma 3.2. Let .M;!/ be a Hermitian manifold of dimensionm, let 0 � k � m be an
integer, and let respectively ˛ be a .2m � 2k/-form and ˇ a .m � k; 0/-form. Then we have

j˛ ^ !kj! �
mŠ

.m � k/Š
j˛j! ; jˇj

2
!

!m

mŠ
D i .m�k/

2

ˇ ^ Ň ^
!k

kŠ
:

Proof. Call ˛0 the bidegree .m � k;m � k/ component of ˛. Observe first that

˛ ^ !k D ˛0 ^ !k D
kŠ

.m � k/Š
˛0 ^ �!m�k D

kŠ

mŠ.m � k/Š
h˛0; !m�ki! !

m:

By Cauchy–Schwarz we have

j˛ ^ !kj! D
kŠ

.m � k/Š
jh˛0; !m�ki! j � kŠj˛

0
j!

ˇ̌̌̌
!m�k

.m � k/Š

ˇ̌̌̌
!

�
mŠ

.m � k/Š
j˛j! ;

since j!kj! D kŠ
�
m
k

�
, and obviously j˛0j! � j˛j! .

The equality for the squared norm of ˇ times the volume form is just a straightforward
pointwise computation in (unitary) coordinates.
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Proposition 3.3. On a compact Kähler manifold .M;!/ with Kähler universal cover
. zM; z!/! .M;!/, given any p; q 2 ¹0; : : : ; mº, let

�𝜕;p;qWL
2�p;q. zM; z!/! L2�p;q. zM; z!/

be the closure of�𝜕;p;qW�
p;q
c . zM/! �

p;q
c . zM/ and let ¹E.�/º� be its spectral resolution. For

any fixed �0 > 0, there exists "0.�0/ > 0 such that if 0 < " < "0.�0/, and U" is an open set
in M with

vol!.U"/ < ";

we have: Z
zU"

j�j2
z! dvolz! �

Z
zMn zU"

j�j2
z! dvolz!

for all � 2 im.E.�0//, where zU" is the preimage of U" through � W zM !M .

The above proposition will follow easily from the next.

Lemma 3.4. LetD1; : : : ;DN andB1; : : : ; BN be finite sequences of open subsets of zM
such that

(i) Di is a fundamental domain of � W zM !M for each i D 1; : : : ; N ,

(ii) Bi is a relatively compact open subset with smooth boundary of zM such that Bi � Di ,
for each i D 1; : : : ; N ,

(iii) ¹�.Bi /º1;:::;N is an open cover of M .

Given �0 > 0, there exists "0.�0/ > 0 such that if 0 < " < "0.�0/ and U" is an open set in M
satisfying

vol!.U"/ < ";

then we have Z
�1.M/:Bi\ zU"

j�j2
z! dvolz! �

1

2N

Z
zM

j�j2
z! dvolz!

for any � 2 im.E.�0// and i D 1; : : : ; N .

For the standard construction of such fundamental domains see for instance [52, Sec-
tion 3.6.1].

Proof. Throughout the proof let us fix arbitrarily a pair Bi � Di that for simplicity we
will denote with B � D. Let � 2 im.E.�0// be fixed. Since � 2 im.E.�0// we have thatZ

zM

j�𝜕;p;q�j
2
z! dvolz! � �

2
0

Z
zM

j�j2
z! dvolz! :

Therefore, X

2�1.M/

Z

D

.j�𝜕;p;q�j
2
z! � �

2
0j�j

2
z!/ dvolz! � 0

and thus there exists at least an element 
 2 �1.M/ such thatZ

D

.j�𝜕;p;q�j
2
z! � �

2
0j�j

2
z!/ dvolz! � 0:



22 Bei, Diverio, Eyssidieux and Trapani, Weakly Kähler hyperbolic manifolds

Let us define S.�/ � �1.M/ as

S.�/ WD

²

 2 �1.M/ W

Z

D

j�𝜕;p;q�j
2
z! dvolz! � 4N�

2
0

Z

D

j�j2
z! dvolz!

³
:

We have Z
zM

j�j2
z! dvolz! � �

�2
0

Z
zM

j�𝜕;p;q�j
2
z! dvolz!

�

X

…S.�/

��20

Z

D

j�𝜕;p;q�j
2
z! dvolz!

�

X

…S.�/

4N

Z

D

j�j2
z! dvolz! :

Thus, we can deduce that, for any " > 0,

(3.1)
X


…S.�/

Z

D\ zU"

j�j2
z! dvolz! �

1

4N

Z
zM

j�j2
z! dvolz! :

Let us consider now any 
 2 S.�/ and let us label with �
 the pull-back of � through 
�1, that
is, �
 WD .
�1/��. Since 
�1W zM ! zM is both a biholomorphism and an isometry we haveZ

D

j�𝜕;p;q�
 j
2
z! dvolz! D

Z

D

j�𝜕;p;q�j
2
z! dvolz!(3.2)

� 4N�20

Z

D

j�j2
z! dvolz!

D 4N�20

Z
D

j�
 j
2
z! dvolz! :

Thanks to the elliptic estimates, see, e.g., [48, Lemma 1.1.17], we know that there exists
a positive constant C such that for any  2 D.�𝜕;p;q/ we have  jB 2 W 2;2�p;q.B; z!/ and

k kW 2;2�p;q.B;z!/ � C.k kL2�p;q.D;z!/ C k�𝜕;p;q kL2�p;q.D;z!//:

Thanks to the Sobolev embedding theorem (see for instance [4]), since m � 2, we have a con-
tinuous inclusion

W 1;2�p;q.B; z!/ ,! L
2m

m�1�p;q.B; z!/;

and hence we can deduce that there exists a possibly new positive constant – which we still
call C – such that for any  2 D.�𝜕;p;q/ it holds

(3.3) k k
L

2m
m�1�p;q.B;z!/

� C.k kL2�p;q.D;z!/ C k�𝜕;p;q kL2�p;q.D;z!//:

Thus, for 
 2 S.�/ we get, thanks to (3.2) and (3.3),

k�
k
L

2m
m�1�p;0.B;z!/

� C.k�
kL2�p;q.D;z!/ C k�𝜕;p;q�
kL2�p;q.D;z!//

� C.1C 2
p
N�0/k�
kL2�p;q.D;z!/;
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and therefore Z
B\ zU"

j�
 j
2
z! dvolz! �

�Z
B\ zU"

dvolz!

� 1
m
�Z

B\ zU"

.j�
 j
2
z!/

m
m�1 dvolz!

�m�1
m

D .volz!.B \ zU"//
1
m

�Z
B\ zU"

j�
 j
2m

m�1

z!
dvolz!

�m�1
m

D .volz!.B \ zU"//
1
m k�
k

2

L
2m

m�1�p;q.B\ zU";z!/

� .volz!.B \ zU"//
1
mC 2.1C 2

p
N�0/

2
k�
k

2
L2�p;q.D;z!/

D .volz!.B \ zU"//
1
mC 2.1C 2

p
N�0/

2

Z
D

j�
 j
2
z! dvolz! :

(3.4)

Finally, let us pick " in such a way that

.volz!.B \ zU"//
1
mC 2.1C 2

p
N�0/

2 <
1

4N
;

in order to obtainZ
�1.M/:B\ zU"

j�j2
z! dvolz! D

X

2S.�/

Z

B\ zU"

j�j2
z! dvolz! C

X

…S.�/

Z

B\ zU"

j�j2
z! dvolz!

(by (3.1))
�

X

2S.�/

Z

B\ zU"

j�j2
z! dvolz! C

1

4N

Z
zM

j�j2
z! dvolz!

D

X

2S.�/

Z

.B\ zU"/

j�j2
z! dvolz! C

1

4N

Z
zM

j�j2
z! dvolz!

D

X

2S.�/

Z
B\ zU"

j�
 j
2
z! dvolz! C

1

4N

Z
zM

j�j2
z! dvolz!

(by (3.4))
�

X

2S.�/

1

4N

Z
D

j�
 j
2
z! dvolz! C

1

4N

Z
zM

j�j2
z! dvolz!

D

X

2S.�/

1

4N

Z

D

j�j2
z! dvolz! C

1

4N

Z
zM

j�j2
z! dvolz!

�
1

4N

Z
zM

j�j2
z! dvolz! C

1

4N

Z
zM

j�j2
z! dvolz!

D
1

2N

Z
zM

j�j2
z! dvolz! :

Repeating the above procedure for each pair Bi � Di and choosing " > 0 in such a way that

.volz!.Bi \ zU"//
1
mC 2.1C 2

p
N�0/

2 <
1

4N
for i D 1; : : : ; N ;

we can conclude that for any arbitrarily fixed �0 > 0 there exists "0.�0/ > 0 such that if
0 < " < "0.�0/ and U" is an open set in M satisfying

vol!.U"/ < ";
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then we have Z
�1.M/:Bi\ zU"

j�j2
z! dvol! �

1

2N

Z
zM

j�j2
z! dvolz! ;

for any � 2 im.E.�0// and i D 1; : : : ; N , as desired.

With Lemma 3.4 at our disposal, we can now prove Proposition 3.3.

Proof of Proposition 3.3. We haveZ
zU"

j�j2
z! dvolz! �

NX
iD1

Z
�1.M/:Bi\ zU"

j�j2
z! dvolz!

�

NX
iD1

1

2N

Z
zM

j�j2
z! dvolz! (by Lemma 3.4)

D
1

2

Z
zM

j�j2
z! dvolz! :

Thus, Z
zU"

j�j2
z! dvolz! �

1

2

Z
zMn zU"

j�j2
z! dvolz! C

1

2

Z
zU"

j�j2
z! dvolz!

and so we reach the desired conclusionZ
zU"

j�j2
z! dvolz! �

Z
zMn zU"

j�j2
z! dvolz! :

We are finally in a position to prove Theorem 3.1.

Proof of Theorem 3.1. The first step is to produce the required modification �WM 0!M

for which we proceed as follows. We pick Œ�� 2 WM and select a Kähler current T 2 Œ��,
which exists since Œ�� is big. Now, by the proof of [12, Proposition 2.3], or the proof of
[31, Theorem 3.4 and Lemma 3.5] there exists a modification �WM 0 !M , an effective R-divi-
sor E, and a Kähler form ! on M 0 such that the pull-back ��T is cohomologous to ! C ŒE�,
where ŒE� denotes the current of integration along E. Moreover, one has that E D ��1.�.E//,
and the restriction �jM 0nE is a biholomorphism onto M n �.E/.

Set �0 D ���. Since Œ�� is nef and big, so is Œ�0� and Œ�0� 2 WM 0 . From now on we shall
be working on M 0, so for the sake of simplicity let us replace M with M 0 and Œ�� with Œ�0�.

Define, for t � 0, the function

�.t/ WD log

R
M .�C t !/

mR
M !m

:

For 0 � t � 1, �.t/ is bounded independently of t . For any fixed 0 � t � 1, we now consider
the Monge–Ampère equation

.�C; ! C i𝜕N𝜕�t /m D e�.t/!m;

where .�/m denotes the non-pluripolar m-th power. Since Œ�� is nef,Z
M

e�.t/!m D

Z
M

.�C t!/m

is the volume of the class Œ�C t!�.
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By [14, Theorem 3.1], the above equation has a unique �-psh solution �t such that
maxM �t D 0. Moreover, by [70], for t > 0, �t is smooth on M and �C t! C i𝜕N𝜕�t is
a Kähler form on M .

Next, given a smooth real closed .1; 1/-form � on M , set

V� WD sup¹� j � is �-psh and � � 0º:

By definition, � is �-psh if � is an upper semi-continuous function � WM ! Œ�1;C1/ such
that �C i𝜕N𝜕� is a positive .1; 1/-current. Note that V� is a �-psh function and that V�Ct! # V�
as the positive real parameter t decreases to 0.

Now, (the proof of) [14, Theorem 4.1] shows that there exists a constant L > 0 such that
�LC V�Ct ! � �t � 0, for 0 < t � 1. Moreover, �t is uniformly bounded independently of t
on compact sets in M nE since the current T we started with was smooth on the complement
of �.E/.

We can then repeat the proof of [14, Theorem 5.1] to show that for 0 < t < 1 sufficiently
small, the !-Laplacian of �t is bounded independently of t on compacta of M nE. It follows
from standard theory of complex Monge–Ampère equations (see, e.g., [61]) that, for 0 < ˇ < 1
and k any non-negative integer, the C k;ˇ .W /-norm of �t is bounded independently of t for
every open set W relatively compact in M nE.

Now, by Hartogs theorem (see [38]), for a given sequence ¹tnº � .0; 1/ converging to 0,
up to subsequences, we have that �tn converges in L1 to some �-plurisubharmonic function
 with maxM  D 0. On the other hand for each ¹tnº � .0; 1/ converging to 0, up to subse-
quences, �tn converges in C k;ˇ .W /. In particular, the function  above is smooth on M nE
and solves the corresponding Monge–Ampère equation there. Since E is a pluripolar set, we
conclude that  D �0 and that �t converges to �0 in each C k;ˇ .W / as above. Observe that, in
particular, �C i𝜕N𝜕�0 is a Kähler form on M nE.

Next, we are going to show that 0 is not in the spectrum of the z!-Laplacian�N𝜕;p;0 on the
Kähler universal cover . zM; z!/ of .M;!/ for all 0 � p � m � 1.

We consider the smooth forms

�t WD �C i𝜕N𝜕�t

so that �t C t ! is a Kähler form on M for all t > 0. Let ˛ be a smooth bounded primitive
of the pull-back of � to the universal covering zM (which exists by Lemma 2.28 applied to the
morphism �WM 0 !M ), so that

˛t WD ˛ C i N𝜕z�t

is a smooth bounded primitive of z�t D ���t , where z�t D �t ı � .
Now, let � be a smooth .p; 0/-form with compact support on . zM; z!/, and let r be an

integer with 0 � r � m � p � 1. We have the following equality of top degree forms:

d.� ^ � ^ ˛t ^ z�t
m�p�r�1

^ z!r/ D d.� ^ �/ ^ ˛t ^ z�t
m�p�r�1

^ z!r

C � ^ � ^ z�t
m�p�r

^ z!r

D d� ^ � ^ ˛t ^ z�t
m�p�1

^ z!r

C .�1/p� ^ d� ^ ˛t ^ z�t
m�p�r�1

^ z!r

C � ^ � ^ z�t
m�p�r

^ z!r :
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By Stokes, and using Lemma 3.2, we findˇ̌̌̌Z
zM

ip
2

� ^ N� ^ z�
m�p�r
t ^ z!r

ˇ̌̌̌
(3.5)

D

ˇ̌̌̌Z
zM

ip
2

d� ^ � ^ ˛t ^ z�t
m�p�r�1

^ z!r

C ip
2

.�1/p� ^ d� ^ ˛t ^ z�t
m�p�r�1

^ z!r
ˇ̌̌̌

�
mŠ

.m � r/Š

�Z
zM

jd� ^ � ^ ˛t ^ z�t
m�p�r�1

jz! dvolz!

C

Z
zM

j� ^ d� ^ ˛t ^ z�t
m�p�r�1

jz! dvolz!

�
� 2

mŠ

.m � r/Š

Z
zM

jd�jz! j�jz! j˛t jz! j z�t
m�p�r�1

jz! dvolz! :

Summarizing, there exists a positive function Cr.t/ defined by

Cr.t/ WD 2
p
2

mŠ

.m � r/Š
k˛tkL1�1. zM;z!/

k z�t
m�p�r�1

k
L1�2.m�p�1/. zM;z!/

such that for each � 2 �p;0c . zM/ we haveˇ̌̌̌Z
zM

ip
2

� ^ � ^ z�t
m�p�r

^ z!r
ˇ̌̌̌
� Cr.t/ k�kL2�p;0. zM;z!/

h�𝜕;p;0�; �i
1
2

L2�p;0. zM;z!/
:

Since . zM; z!/ is complete, we can conclude that for each � 2 D.�𝜕;p;0/ it holds

(3.6)
ˇ̌̌̌Z
zM

ip
2

�^�^ z�t
m�p�r

^ z!r
ˇ̌̌̌
�Cr.t/k�kL2�p;0. zM;z!/

h�𝜕;p;0�; �i
1
2

L2�p;0. zM;z!/
:

With the notations of Proposition 3.3, let us now choose �0 D 1, 0 < " < "0.1/, and for
U" an open neighborhood of E with Lebesgue measure smaller than ". Let W be a relatively
compact open set in M nE which contains M n U".

Since �t converges to �0 in C 2;˛.W /, and �0 C i𝜕N𝜕�0 is a Kähler form onM nE, there
exists a constant C1 D C1."/ > 0 independent of t such that z�t C t z! � C1 z! on zM n zU",
provided t > 0 is sufficiently small (here zU" is the preimage of U" by the universal covering
map). By Proposition 3.3 we have thatZ

zM

j�j2
z! dvolz! � 2

Z
zMn zU"

j�j2
z! dvolz! ;

for each � 2 im.E.1//. Therefore, for � 2 im.E.1// we get, using Lemma 3.2,Z
zM

j�j2
z! dvolz! � 2

Z
zMn zU"

j�j2
z! dvolz!

D
2

.m � p/Š

Z
zMn zU"

ip
2

� ^ N� ^ z!m�p

�
2

.m � p/Š C
m�p
1

Z
zMn zU"

ip
2

� ^ N� ^ .z�t C t z!/
m�p

�
2

.m � p/Š C
m�p
1

Z
zM

ip
2

� ^ N� ^ .z�t C t z!/
m�p:

(3.7)
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If we now choose 0 < t � 1, then by inequality (3.6), we have

2

.m � p/Š C
m�p
1

Z
zM

ip
2

� ^ N� ^ .z�t C t z!/
m�p

D

ˇ̌̌̌
2

.m � p/Š C
m�p
1

Z
zM

ip
2

� ^ N� ^ .z�t C t z!/
m�p

ˇ̌̌̌

�
2

.m � p/Š C
m�p
1

m�p�1X
rD0

tr

 
m � p

r

!ˇ̌̌̌ Z
zM

ip
2

� ^ N� ^ z�t
m�p�r

^ z!r
ˇ̌̌̌

C
2

.m � p/Š C
m�p
1

tm�p
Z
zM

ip
2

� ^ N� ^ z!m�p

�
2

.m � p/Š C
m�p
1

m�p�1X
rD0

 
m � p

r

!
tr Cr.t/

� k�k
L2�p;0. zM;z!/

h�𝜕;p;0�; �i
1
2

L2�p;0. zM;z!/

C
2

.m � p/Š C
m�p
1

tm�p
Z
zM

ip
2

� ^ N� ^ z!m�p

D
2

.m � p/Š C
m�p
1

m�p�1X
rD0

 
m � p

r

!
tr Cr.t/

� k�k
L2�p;0. zM;z!/

h�𝜕;p;0�; �i
1
2

L2�p;0. zM;z!/

C
2

C
m�p
1

tm�p
Z
zM

j�j2
z! dvolz! :

So, by (3.7),Z
zM

j�j2
z! dvolz! �

2

.m � p/Š C
m�p
1

m�p�1X
rD0

 
m � p

r

!
tr Cr.t/

� k�k
L2�p;0. zM;z!/

h�𝜕;p;0�; �i
1
2

L2�p;0. zM;z!/

C
2

C
m�p
1

tm�p
Z
zM

j�j2
z! dvolz! ;

i.e.,�
1 �

2

C
m�p
1

tm�p
�Z
zM

j�j2
z! dvolz! �

2

.m � p/Š C
m�p
1

m�p�1X
rD0

 
m � p

r

!
tr Cr.t/

� k�k
L2�p;0. zM;z!/

h�𝜕;p;0�; �i
1
2

L2�p;0. zM;z!/
:

Since 1 � 2tm�p

C
m�p
1

> 0 for t > 0 sufficiently small, we have that the function

H.t/ WD

2

.m�p/ŠC
m�p
1

Pm�p�1
rD0

�
m�p
r

�
tr Cr.t/

1 � 2tm�p

C
m�p
1
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is non-zero (in fact positive) for t > 0 sufficiently small, so that we find in the end

h�𝜕;p;0�; �iL2�p;0. zM;z!/
�

1

H.t/2
k�k2

L2�p;0. zM;z!/
:

Let us now consider any  2 D.�𝜕;p;0/, let � WD E.1/. / and � WD  � �. Then

h�; �i
L2�p;0. zM;z!/

D h�;�𝜕;p;0�iL2�p;0. zM;z!/
D 0

and
h�𝜕;p;0�; �iL2�p;0. zM;z!/

� k�k2
L2�p;0. zM;z!/

:

Therefore we have

h�𝜕;p;0 ; iL2�p;0. zM;z!/
D h�𝜕;p;0.�C �/; �C �iL2�p;0. zM;z!/

D h�𝜕;p;0�; �iL2�p;0. zM;z!/
C h�𝜕;p;0�; �iL2�p;0. zM;z!/

�
1

H.t/2
k�k2

L2�p;0. zM;z!/
C k�k2

L2�p;0. zM;z!/

� K.t/.k�k2
L2�p;0. zM;z!/

C k�k2
L2�p;0. zM;z!/

/

D K.t/k k2
L2�p;0. zM;z!/

;

where

K.t/ WD min
²

1

H.t/2
; 1

³
:

In conclusion we showed that for small t > 0 there exists a positive function K.t/ such that
any � 2 D.�𝜕;p;0/ satisfies

h�𝜕;p;0�; �iL2�p;0. zM;z!/
� K.t/k�k2

L2�p;0. zM;z!/

and this amounts to saying that 0 … �.�𝜕;p;0/.
We are left to show that �𝜕;m;0 has closed range. Since . zM; z!/ is Kähler and complete,

it follows that
�𝜕;m�q;0WL

2�m�q;0. zM; z!/! L2�m�q;0. zM; z!/

is unitary equivalent to

�𝜕;m;qWL
2�m;q. zM; z!/! L2�m;q. zM; z!/

through the action of the Hodge star operator. Hence, 0 … �.�𝜕;m;q/ with q D 1; : : : ; m.
Let us now focus on the case q D 1. Since 0 … �.�𝜕;m;1/ we know that im.�𝜕;m;1/ is

closed in L2�m;1. zM; z!/. Hence,

𝜕m;0WL2�m;0. zM; z!/! L2�m;1. zM; z!/

has closed range and this in turn implies that its adjoint

𝜕
�

m;0WL
2�m;1. zM; z!/! L2�m;0. zM; z!/

has closed range, too. Finally, since both 𝜕m;0 and 𝜕
�

m;0 have closed range, we can conclude
that

𝜕
�

m;0 ı 𝜕m;0WL
2�m;0. zM; z!/! L2�m;0. zM; z!/

has closed range, i.e., im.�𝜕;m;0/ is closed in L2�m;0. zM; z!/ as required.
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Remark 3.5. The above property amounts to saying that 0 is at most an isolated eigen-
value of �𝜕;m;0.

Remark 3.6. It can be proved that if we moreover suppose that a class Œ�� 2 WM can
be represented by a semi-positive form which is strictly positive almost everywhere, then the
conclusions of Theorem 3.1 hold also on the universal cover of M with no need to pass to
a modification first (cf. Version 1 of the present paper on the arXiv for more on this).

In view of the remark above, it is natural to ask the following.

Question 3.7. Is it possible to prove Theorem 3.1 without passing to a modification first?

3.2. Nonvanishing. In this subsection we aim to show that the space ofL2 holomorphic
m-forms on zM is infinite dimensional (recall that we replaced M 0 with M ). Since the original
argument of Gromov applies verbatim, we provide simply a sketch and we refer to [5, 35, 37]
for details.

For each p D 0; : : : ; m let

ÄpWL2�p;�. zM; z!/! L2�p;�. zM; z!/

be the unique closed (and hence self-adjoint) extension of

𝜕p C 𝜕
t

pW�
p;�
c . zM/! �p;�c . zM/;

with

�p;�c . zM/ WD

mM
qD0

�p;qc . zM/

and 𝜕p C 𝜕
t

p the corresponding Dirac operator.
Let F be the trivial line bundle zM �C ! zM endowed with the standard Hermitian

metric and flat connection r0.
Let � 2 WM be arbitrarily fixed and ˛ 2 �1. zM/ \ L1�1. zM; z!/ such that d˛D z�.

Given any s > 0, let rs be the connection on F defined as

r
s
WD r0 C is˛:

Note that for each fixed s there exists a (not necessarily standard) holomorphic structure on F
such that rs becomes the corresponding Chern connection, see [35, p. 191]. Let

.𝜕p C 𝜕
t

p/˝r
s
WC1c .

zM;ƒp;�. zM/˝ F /! C1c .
zM;ƒp;�. zM/˝ F /

be the first order differential operator obtained by twisting the Dirac operator 𝜕p C 𝜕
t

p with the
connection rs , see, e.g., [5, p. 111]. Finally, let us denote with

(3.8) D
s

pWL
2. zM;ƒp;�. zM/˝ F /! L2. zM; .ƒp;�. zM/˝ F /

the L2-closure of .𝜕p C 𝜕
t

p/˝r
s and let D

s;C

p (resp. D
s;�

p ) be the operator induced by (3.8)
with respect to the splitting given by .m; �/-forms with even/odd anti-holomorphic degree.
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Although D
s;C

p is not equivariant with respect to the action of �1.M/, it is possible
for each fixed s > 0 to construct a group �s as a central extension of �1.M/ with respect
to U.1/, in such a way that �s acts on L2. zM;ƒp;�. zM/˝ F /, its action commutes with
D
s

p and the L2-index of D
s;C

p with respect to �s is computed by the following formula, see
[35, Proposition 9.1.1] or [5, Theorem 8.31]:

(3.9) L2 � ind�s
.D

s;C

p / D

Z
M

Todd.M/ ^ ch.ƒp;0.M// ^ ch.F /;

with ch.F / D exp.� s�
2�
/.

Since
R
M �m > 0, we deduce that (3.9) is a polynomial function in s with non-trivial

leading coefficient, and hence it has only isolated zeros, see [37, p. 281].
In particular, for all but a discrete subset of real values s we have that ker.D

s

p/ ¤ ¹0º.

Corollary 3.8. Let M be a weakly Kähler hyperbolic manifold, and let z! be the lift
on the universal cover zM of a Kähler form ! on M . Then the space of holomorphic m-forms
which are L2 with respect to z! on zM is infinite dimensional and the operator

�𝜕;m;0WL
2�m;0. zM; z!/! L2�m;0. zM; z!/

has closed range.
Moreover, for 0 � p � m � 1, there are no non-trivial L2 (with respect to any Kähler

metric coming from M ) holomorphic p-forms on the universal cover zM !M .

In particular, this corollary improve the statement of Theorem 3.1 about the closedness
of the range of �𝜕;m;0 which now holds on M with no need to pass to the modification M 0.

Proof. To begin with, let us observe that if �WM 0 !M is a birational morphism, then
by [46, Corollary 11.4] we have the equality of the L2-Hodge numbers hp;0

.2/
.M/ D h

p;0

.2/
.M 0/

for 0 � p � m. The last assertion about the vanishing of holomorphic p-forms then follows
directly from Theorem 3.1.

From now on, let us work with the modification M 0 of Theorem 3.1, and let us call it M
for simplicity. As recalled above, we know that ker.D

s

p/ ¤ ¹0º except for a discrete subset of
real values s. In particular, there exists an " > 0 such that ker.D

s

p/ ¤ ¹0º for each 0 < s < "
and therefore, thanks to [35, Proposition 7.1.2], we can conclude that 0 2 �.Äp/, that is, 0 lies
in the spectrum of Äp.

Let us now focus on the case p D m. Since

Ä2mWL
2�m;�. zM; z!/! L2�m;�. zM; z!/ D

mM
qD0

�𝜕;m;qWL
2�m;�. zM; z!/(3.10)

! L2�m;�. zM; z!/;

we know on the one hand that 0 2 �.�𝜕;m;q/ for some q D 0; : : : ; m.
On the other hand, as

�𝜕;m;qWL
2�m;q. zM; z!/! L2�m;q. zM; z!/

and
�𝜕;m�q;0WL

2�m�q;0. zM; z!/! L2�m�q;0. zM; z!/
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are unitary equivalent through the action of the Hodge star operator, we deduce from Theo-
rem 3.1 that 0 … �.�𝜕;m;q/ for each q D 1; : : : ; m. Hence 0 2 �.�𝜕;m;0/.

Furthermore, given that �𝜕;m;0 has closed range, we can conclude that 0 is actually an
eigenvalue of �𝜕;m;0, i.e., ker.�𝜕;m;0/ ¤ ¹0º. As previously recalled, in L2�m;0. zM; z!/ we
have

ker.�𝜕;m;0/ D ker.𝜕m;0/:

Hence, we know that on zM the space of L2 holomorphic m-forms is not trivial. Finally, since
this space is preserved by the action of �1.M/, we can conclude that it is infinite dimensional,
see [59, Lemma 15.10].

Next we show that closedness of the range of �𝜕;m;0 holds on M . Since . zM; z!/ is
complete, in order to show that �𝜕;m;0 has closed range it suffices to prove that both

𝜕m;0WL2�m;0. zM; z!/! L2�m;1. zM; z!/

and its adjoint
𝜕
�

m;0WL
2�m;1. zM; z!/! L2�m;0. zM; z!/

have closed range. Moreover, by the fact that these two operators are one the adjoint of the
other it is enough to show only that the first one above has closed range. Let �WM 0 !M be
the modification introduced in Theorem 3.1 endowed with a Kähler metric !0. Let X �M 0

and Y �M be analytic subsets such that �jAWA! B is a biholomorphism, with B WDM n Y
and A WDM 0 nX . Let

� 0W . zM 0; z!0/! .M 0; !0/ and � W . zM; z!/! .M;!/

be the corresponding universal coverings and let z�W zM 0 ! zM be a lift of �.
Clearly z�W zA! zB is a biholomorphism, with zA WD .� 0/�1.A/ and zB WD ��1.B/. More-

over, we point out that

(3.11) ��WL2�m;0. zM; z!/! L2�m;0. zM 0; z!0/

is an isometry of Hilbert spaces and

(3.12) ��WL2�m;q. zM; z!/! L2�m;q. zM 0; z!0/

is injective and continuous for each q D 1; : : : ; m. These claims follow easily, e.g., by the
computations carried out in [8, equations (7) and (10)] and the fact that both zM 0 n zA and zM n zB
have measure zero.

Let now � 2 L2�m;1. zM; z!/ be a form lying in the closure of the range of

𝜕m;0WL2�m;0. zM; z!/! L2�m;1. zM; z!/:

Since . zM; z!/ is complete, there exists a sequence ¹�j º � �
m;0
c . zM/ such that 𝜕m;0�j ! �

in L2�m;1. zM; z!/ as j !1. In view of (3.11) and (3.12), the sequence ¹���j º is made of
smooth forms, it is contained in the domain of 𝜕m;0WL2�m;0. zM 0; z!0/! L2�m;1. zM 0; z!0/ and
𝜕m;0.���j /! ��� in L2�m;1. zM 0; z!0/ as j !1.

Since N𝜕m;0WL2�m;0. zM 0; z!0/! L2�m;1. zM 0; z!0/ has closed range, it follows that there
exists � 2 L2�m;0. zM 0; z!0/ such that N𝜕m;0� D ���. We claim that  WD .��/�1� lies in the
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domain of N𝜕m;0WL2�m;0. zM; z!/! L2�m;1. zM; z!/ and that N𝜕m;0 D �. Thanks to [9, Propo-
sition 5.6] we know that the operator N𝜕m;0WL2�m;0. zM; z!/! L2�m;1. zM; z!/ equals the L2

distributional extension

N𝜕m;0;maxWL
2�m;0. zB; z!j zB/! L2�m;1. zB; z!j zB/

of N𝜕m;0W�m;0c . zB/! �
m;1
c . zB/.

Hence, in order to verify the claim above, it is enough to check that

.�1/m�1
Z
zM

 ^ N𝜕0;m�1' D
Z
zM

� ^ ' for all ' 2 �0;m�1c . zB/:

We have
.�1/m�1

Z
zM

 ^ N𝜕0;m�1' D .�1/m�1
Z
zB

 ^ N𝜕0;m�1'

D .�1/m�1
Z
zA

�� „ƒ‚…
D�

^N𝜕0;m�1��'

D

Z
zA

��� ^ ��' D

Z
zB

� ^ ';

and the claim is proved.
We can thus conclude that

𝜕m;0WL2�m;0. zM; z!/! L2�m;1. zM; z!/

has closed range and so that

�𝜕;m;0WL
2�m;0. zM; z!/! L2�m;0. zM; z!/

has closed range, as well.

4. Geometric consequences

In this section we derive three type of geometric consequences of our weaker notion
of Kähler hyperbolicity. Namely, we deduce several statements of general typeness, but also
index-type consequences and, to finish with, geometric consequences about the distribution of
entire curves and Kobayashi hyperbolicity properties. In the last part we shall derive stronger
consequences in the case of surfaces.

4.1. General typeness, index, and topology. We already know that a Kähler hyper-
bolic manifold is of general type. We now see how the weaker notion of weakly Kähler
hyperbolicity gives in fact the same consequence.

Theorem 4.1. Let M be a weakly Kähler hyperbolic manifold. Then M is projective
and of general type and moreover the Euler characteristic �.KM / is strictly positive.

The last part of the statement above extends, for p D m, Gromov’s computation for
Kähler hyperbolic manifolds [37, Theorem 0.4.A] to weakly Kähler hyperbolic manifolds.
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Proof. By Corollary 3.8, there exists on zM a non-zero L2 holomorphic top form. This
implies that KM is big, thanks to [46, 13.10 Corollary], since M has generically large fun-
damental group. This means by definition that M is of general type. Since KM is a big line
bundle, the manifold M is Moishezon, and being also Kähler, it is projective by Moishezon’s
theorem.

The last part follows from Theorem 2.15, Theorem 3.1, Corollary 3.8, and the birational
invariance [46, Corollary 11.4] of L2-Hodge numbers in bidegree .m; q/, beingM Kähler.

Thanks to [1, 4.4 Corollary], it is known that the universal cover zM of a compact Kähler
manifold M has at most one end. Here, we give a short proof of this fact in the case where M
is a weakly Kähler hyperbolic manifold.

Proposition 4.2. Let M be a weakly Kähler hyperbolic manifold and let pW zM !M

be its universal covering. Then zM has only one end and

H 1
c .
zM;Z/ D H2m�1. zM;Z/ D ¹0º:

Proof. Fix a Kähler metric ! on M and let z! be its lifting to the universal cover. We
follow [21, Section 5.1] (see also [50, Section 4], cf. in particular [21, Propositions 5.1 and 5.2].
First of all we want to show that the first de Rham cohomology group with compact support
of zM , denoted here withH 1

c .
zM/, is trivial. Let us consider theL2-de Rham cohomology group

of degree one:
H 1
.2/.
zM; z!/ WD ker.d1/=im.d0/;

where

d0WL
2. zM; z!/! L2�1. zM; z!/ and d1WL

2�1. zM; z!/! L2�2. zM; z!/

are the L2-closed extensions of d0WC1c . zM/! �1c.
zM/ and d1W�1c. zM/! �2c.

zM/, respec-
tively.

As . zM; z!/ has bounded geometry, it is not difficult to see that given any compact subset
K � zM , each non-compact connected component of zM nK has infinite volume with respect
to z!. Using this latter remark, it is easy to deduce that the inclusion �1c. zM/ ,! L2�1. zM; z!/

induces an injective map H 1
c .
zM/! H 1

.2/
. zM; z!/.

On the other hand, thanks to Theorem 3.1, birational invariance, L2 Hodge decompo-
sition, begin . zM; z!/ Kähler and complete, we know that H1

.2/
. zM; z!/ D ¹0º, that is, the space

of L2-harmonic 1-forms on . zM; z!/ is trivial. Moreover, since 0 … �.�0/, we also know that
H 1
.2/
. zM; z!/ ' H1

.2/
. zM; z!/. Hence, we can conclude that H 1

c .
zM/ D ¹0º, as desired.

Next, let us recall how the vanishing ofH 1
c .
zM/ implies that zM has only one end. If there

were a compact subset K � zM such that zM nK has two non-compact connected components
X and Y , then we could find a relatively compact open subset U � K and f 2 C1. zM/

such that Supp.f / � U [X [ Y , f jXn.U\X/ D c1 and f jY n.Y\U/ D c2 with c1; c2 2 R
and c1 ¤ c2. At this point, it is straightforward to check that 0 ¤ Œd0f � 2 H 1

c .
zM/, thus con-

tradicting the fact that H 1
c .
zM/ D ¹0º.

We observe that since zM is simply connected, we know that we have H 1. zM;Z/ D ¹0º,
as well. Finally, since zM as only one end, we have an injectionH 1

c .
zM;Z/ ,! H 1. zM;Z/, and

thus we can conclude that H 1
c .
zM;Z/ D ¹0º. Finally, we obtain that H2m�1. zM;Z/ D ¹0º by

Poincaré duality.
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4.2. Applications to Lang’s conjecture and Kobayashi hyperbolicity. The first thing
we want to treat here is the distribution of entire curves in a weakly Kähler hyperbolic manifold.
We begin with the following basic lemma.

Lemma 4.3. Let .M;�/ be a weakly Kähler hyperbolic manifold, and fix a Kähler
form ! on M. If f WC !M is an entire curve, and ˆ is an Ahlfors current associated to
f WC ! .M;!/, then ˆ.�/ D 0.

Proof. Let zf WC ! zM be a lifting of f . Assume that z� D d� with j�jz! � C . Then for
any vector v 2 TC we have

j zf ��.v/j D j�. zf�.v/j � C j zf�.v/jz! D C jf�.v/j! :

Then, by the Stokes theorem,ˇ̌̌̌ Z
Dt

f ��

ˇ̌̌̌
D

ˇ̌̌̌ Z
Dt

zf �d�

ˇ̌̌̌
D

ˇ̌̌̌ Z
𝜕Dt

zf ��

ˇ̌̌̌
� CL!.𝜕Dt /:

If we divide the above inequality by t and integrate over .0; r/, we find

jTf;r.�/j � CSf;r.!/:

Thus, if we divide by Tf;r.!/, we obtain

0 �
jTf;r.�/j

Tf;r.!/
� C

Sf;r.!/

Tf;r.!/
:

We finally choose an admissible sequence ¹rkº in the above inequality, and let k go to C1,
to obtain ˆ.�/ D 0.

Using this lemma, we can prove the theorem below.

Theorem 4.4. If M is a weakly Kähler hyperbolic manifold, then the image of any
entire curve in M is contained in ZM .

In particular, if ZM has dimension 1 with no rational or elliptic components, then M is
Kobayashi hyperbolic.

Thus, in a weakly Kähler hyperbolic manifold we cannot have Zariski dense entire curves
or an entire curve passing through a general point.

Since weakly Kähler hyperbolic implies general type, Theorem 4.4 then gives a confir-
mation of the (stronger version of the) Green–Griffiths conjecture for this particular class of
manifolds of general type.

Proof. Let � 2 WM , and let f WC !M be an entire curve. By [12, Theorem 3.17 (ii)]
there exists a Kähler currentR in the cohomology class of�which is smooth onM nEnK.Œ��/.
As in the proof of Theorem 3.1, we consider a modification � W yM !M such that

� the pull-back ��R is cohomologous to the sum of a Kähler form ! and a real effective
divisor D D

P
1�j�N �j Ej on yM ,

� the modification � is a biholomorphism between yM n Supp.D/ and M nEnK.Œ��/,
� each irreducible divisor Ej is mapped by � into EnK.Œ��/.
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Observe that, by (ii) of Proposition 2.29, the manifold yM is weakly Kähler hyperbolic,
since ��� 2 W yM

. We want to show that f .C/ � EnK.Œ��/. Assume this is not the case. Then
the map f can be lifted to an entire curve yf WC ! yM . Let ˆ be an Ahlfors current associated
to yf WC ! . yM;!/. Then, by Lemma 4.3, we have

0 D Œˆ� � Œ���� D Œˆ� � Œ!�C
X
j

�j Œˆ� � ŒEj �:

Since ˆ is an Ahlfors current associated to yf WC ! . yM;!/, we have Œˆ� � Œ!� D 1, and there-
fore there exists j0, 1 � j0 � N , such that Œˆ� � ŒEj0

� < 0. By [17, Lemme 1], it follows that
yf .C/ � Ej0

. Since �.Ej0
/ � EnK.Œ��/, we have f .C/ � EnK.Œ��/, and we get a contradic-

tion.
Finally, if ZM has dimension 1 with no rational or elliptic components, then there exists

no entire curves in M , and M is Kobayashi hyperbolic by Brody’s criterion.

We can now come to the proof of Lang’s conjecture for Kähler hyperbolic manifolds.

Theorem 4.5. Let M be a Kähler hyperbolic manifold, and let X �M be a possibly
singular closed subvariety. Then any desingularization yX ! X is of general type, i.e., X is of
general type.

Proof. Being Kähler hyperbolic is a hereditary property for closed complex submani-
folds. We already know that a Kähler hyperbolic manifold is of general type, therefore we are
left to prove that singular subvarieties ofM are of general type. Given X such a subvariety, we
may assume X to be irreducible, and let �W yX ! X be a desingularization. Then yX is a com-
pact connected Kähler manifold, and the map �W yX !M is a generically one-to-one map, so
by (i) of Proposition 2.29 we know that yX is semi-Kähler hyperbolic. We thus conclude by
Theorem 4.1 that yX is of general type as desired.

We can also prove a statement in the opposite direction, i.e., that a manifold of general
type together with all of its subvarieties is Kobayashi hyperbolic.

Proposition 4.6. Let M be a weakly Kähler hyperbolic manifold, and assume that any
positive-dimensional irreducible subvariety X of M has a weakly Kähler hyperbolic desingu-
larization. Then M is Kobayashi hyperbolic.

Proof. Assume by contradiction thatM is not Kobayashi hyperbolic and let f WC !M

be an entire curve. Let X be the Zariski closure of f .C/ and let � W yX ! X be a weakly Kähler
hyperbolic desingularization of X . Let E � yX be the exceptional locus of � . Since f .C/ is
Zariski dense in X , it is not contained in �.E/. Then there exists a lifting yf WC ! yX of f .
Since yX is weakly Kähler hyperbolic, it follows from Proposition 4.4 that yf .C/�Z yX , so that
f .C/� �.Z yX /. This is impossible since f .C/ is Zariski dense in X and X is irreducible.

4.3. Surfaces. To finish with, we restrict our attention to the case of surfaces. Indeed, in
dimension two it is possible to get stronger statements. First, we generalize the exact analogous
of [37, Theorem 0.4.A, Remark 0.4.B] in the weakly Kähler hyperbolic case in the next theorem
and corollary.
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Theorem 4.7. Let S be a weakly Kähler hyperbolic surface. Let ! be an arbitrarily
fixed Kähler form on S . Let � W . zS; z!/! .S; !/ be the Kähler universal covering of .S; !/.
Finally, let

�𝜕;p;qWL
2�p;q. zS; z!/! L2�p;q. zS; z!/ and �k WL

2�k. zS; z!/! L2�k. zS; z!/

be the L2-closures of �𝜕;p;qW�
p;q
c . zS/! �

p;q
c . zS/ and �k W�kc . zS/! �kc .

zS/, respectively.
Then we have the following two statements:

(1) If p C q ¤ 2, then 0 … �.�𝜕;p;q/. If p C q D 2, then ker.�𝜕;p;q/ is infinite dimensional
and im.�𝜕;p;q/ is closed.

(2) If k ¤ 2, then 0 … �.�k/. If k D 2, then ker.�k/ is infinite dimensional and im.�k/ is
closed.

Proof. Thanks to Corollary 2.9 we know that 0 … �.�0/. Since . zS; z!/ is Kähler and
complete, we know that

�𝜕;0;0WL
2�0;0. zS; z!/! L2�0;0. zS; z!/

equals
1

2
�0WL

2�0. zS; z!/! L2�0. zS; z!/:

Thus, 0 … �.�𝜕;0;0/ and, using the Hodge star operator, we conclude also that 0 … �.�𝜕;2;2/.
As a next step we want to show that 0 … �.�𝜕;2;1/. This is equivalent to proving that

ker.�𝜕;2;1/ D ¹0º and that

�𝜕;2;1WL
2�2;1. zS; z!/! L2�2;1. zS; z!/

has closed range. By Theorem 3.1 we know that

�𝜕;1;0WL
2�1;0. zS 0; z!0/! L2�1;0. zS 0; z!0/

has trivial kernel. Thanks to [46, 11.4 Corollary], the fact that . zS; z!/ is Kähler and complete,
and using the Hodge star operator we can conclude that

�𝜕;2;1WL
2�2;1. zS; z!/! L2�2;1. zS; z!/

has trivial kernel, too. In order to show that im.�𝜕;2;1/ is closed it is enough to show that both

𝜕2;0WL2�2;0. zS; z!/! L2�2;1. zS; z!/

and
𝜕
�

2;1WL
2�2;2. zS; z!/! L2�2;1. zS; z!/

have closed range; this latter implication follows easily by using theL2-Hodge–Kodaira decom-
position. Note that by the proof of Corollary 3.8 we already know that

𝜕2;0WL2�2;0. zS; z!/! L2�2;1. zS; z!/

has closed range.
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Moreover, as a consequence of the fact that 0 … �.�𝜕;2;2/, we obtain that both

𝜕2;1WL2�2;1. zS; z!/! L2�2;2. zS; z!/

and
𝜕
�

2;1WL
2�2;2. zS; z!/! L2�2;1. zS; z!/

have closed range. Thus, we can conclude that 0 … �.�𝜕;2;1/.
By using conjugation, the Hodge star operator, the fact that . zS; z!/ is Kähler and com-

plete, and the L2-Hodge–Kodaira decomposition, we obtain 0 … �.�𝜕;p;q/, with p C q ¤ 2,
and that im.�𝜕;p;q/ is closed for each p; q 2 ¹0; 1; 2º. Since we have already observed in the
proof of Corollary 3.8 that 0 2 �.Äp/ for each p 2 ¹0; 1; 2º, we can conclude as in Corol-
lary 3.8 that �𝜕;p;2�pWL

2�p;2�p. zS; z!/! L2�p;2�p. zS; z!/ has infinite-dimensional kernel
for each p D 0; 1; 2. The proof of (1) is thus complete.

Concerning (2), we observe that since . zS; z!/ is Kähler and complete we have an equality
between

2�𝜕;p;qWL
2�p;q. zS; z!/! L2�p;q. zS; z!/

and
�pCqjL2�p;q. zS;z!/

WL2�p;q. zS; z!/! L2�p;q. zS; z!/

for each p; q 2 ¹0; 1; 2º. Now the conclusion follows immediately by the first point.

Remark 4.8. Note that the above proof does not work to show that �𝜕;p;q has closed
range for arbitrary .p; q/ because we used in a crucial way (3.11) and (3.12) and these proper-
ties in general do not hold when .p; q/ differs from .s; 0/ and .s; q/ with q > 0, respectively.

Corollary 4.9. Let S be a weakly Kähler hyperbolic surface. Then, for each 0 � p � 2,
the Euler characteristic �.S;�pS / does not vanish and we have

sign�.S;�pS / D .�1/
p:

Moreover, �top.S/ > 0 and the L2-Hodge and Betti numbers, hp;q
.2/
.S/ and hpCq

.2/
.S/, vanish if

and only if p C q ¤ 2 D dimS .

Proof. This follows at once by the above theorem and Atiyah’s L2-index theorem.
Observe anyway, that our surface S is of general type and hence the claims about the

various Euler characteristic then follow, since they hold true in general for surfaces of general
type. Indeed, we immediately get by [6, (2.4) Proposition] that c2.S/ D �top.S/ > 0, and by
[7, Theorem X.4] that �.S;OS / > 0. But then, by duality, �.S;KS / D �.S;OS / > 0. Since

�top.S/ D �.S;OS / � �.S;�
1
S /C �.S;KS /;

we obtain

�.S;�1S / D 2 �.S;OS / � �top.S/ D
c1.S/

2 C c2.S/

6
� c2.S/;

thanks to Noether’s formula and the Chern–Gauss–Bonnet Theorem. But then, since c2.S/ > 0,
using the Bogomolov–Miyaoka–Yau inequality we find

6 �.S;�1S / D c1.S/
2
� 5 c2.S/ < c1.S/

2
� 3c2.S/ � 0:
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Finally, Proposition 4.4 has the following stronger formulation in the case of surfaces,
which in turn leads to a confirmation of the strongest possible version of the Green–Griffiths
conjecture for this particular class of surfaces of general type.

Proposition 4.10. Let S be a weakly Kähler hyperbolic surface. The image of any entire
curve in S is contained inZS , and hence in a rational or elliptic irreducible component ofZS .

In particular, there exists only a finite number of rational or elliptic curves in S , and
moreover the Gram intersection matrix of the family of all irreducible rational and elliptic
curves is negative definite.

Proof. By (iii) of Proposition 2.29, any rational or elliptic curve lies in ZS , hence it is
an irreducible component of ZS . In particular, there is only a finite number ¹C1; C2; : : : ; CN º
of rational and elliptic curves.

By Theorem 4.4, the image of any entire curve is contained in ZS , hence in one of
the curves Ci , 1 � i � N . Given � 2 WS , we have that any rational or elliptic curve is in
ZS � EnK.Œ��/. Then, by [12, Propositions 3.12 and Theorem 4.5], the Gram intersection
matrix .Ci � Cj /i;jD1;:::;N is negative definite.

Corollary 4.11. Let S be a weakly Kähler hyperbolic surface, and let C be the union
of all its rational and elliptic curves. If we contract each connected component of C to a point,
we get a (possibly singular) Kobayashi hyperbolic surface.

In particular, two distinct points of S have Kobayashi distance 0 in S if and only if they
both belong to the same connected component of C , and hence S is Kobayashi hyperbolic
modulo C .

Proof. The proof is on the line of the proof of [36, Proposition 2.1]. If two distinct
points in S belong to the same connected component of C , then there is a chain of rational or
elliptic curves connecting them, therefore their Kobayashi distance vanishes. Conversely, by
Proposition 4.10, the Gram intersection matrix of the irreducible components of C is negative
definite, and every entire curve in S has image contained in some connected component of C .

By Grauert’s criterion [6, (2.1) Theorem 2.1, Chapter III]), we can contract each such
connected component to a point to obtain a possibly singular surface S 0. Assume S 0 is not
Kobayashi hyperbolic and let f WC ! S 0 be an entire curve. Then we can lift f to an entire
curve zf in S . Since the image of zf is contained in some connected component of C , it follows
that f is constant and this gives a contradiction.

In particular, the decreasing property of the Kobayashi pseudometric implies that if two
distinct points have zero Kobayashi distance in S their image must be the same in S 0, so that
they must both belong to some connected component of C .
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