We consider positive solutions of a fractional Lane–Emden-type problem in a bounded domain with Dirichlet conditions. We show that uniqueness and nondegeneracy hold for the asymptotically linear problem in general domains. Furthermore, we also prove that all the known uniqueness and nondegeneracy results in the local case extend to the nonlocal regime when the fractional parameter s is sufficiently close to 1.
Uniqueness and nondegeneracy for Dirichlet fractional problems in bounded domains via asymptotic methods / Dieb, A.; Ianni, I.; Saldana, A.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 236:(2023). [10.1016/j.na.2023.113354]
Uniqueness and nondegeneracy for Dirichlet fractional problems in bounded domains via asymptotic methods
Ianni I.;
2023
Abstract
We consider positive solutions of a fractional Lane–Emden-type problem in a bounded domain with Dirichlet conditions. We show that uniqueness and nondegeneracy hold for the asymptotically linear problem in general domains. Furthermore, we also prove that all the known uniqueness and nondegeneracy results in the local case extend to the nonlocal regime when the fractional parameter s is sufficiently close to 1.File | Dimensione | Formato | |
---|---|---|---|
Dieb_Uniqueness_2023.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
843.12 kB
Formato
Adobe PDF
|
843.12 kB | Adobe PDF | Contatta l'autore |
Dieb_Uniqueness_2023.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
321.43 kB
Formato
Adobe PDF
|
321.43 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.