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Uniqueness and nondegeneracy for Dirichlet fractional problems in

bounded domains via asymptotic methods

Abdelrazek Dieb, Isabella Ianni∗, & Alberto Saldaña †

Abstract

We consider positive solutions of a fractional Lane-Emden type problem in a bounded do-
main with Dirichlet conditions. We show that uniqueness and nondegeneracy hold for the
asymptotically linear problem in general domains. Furthermore, we also prove that all the
known uniqueness and nondegeneracy results in the local case extend to the nonlocal regime
when the fractional parameter s is sufficiently close to 1.

1 Introduction and main results

We study the uniqueness and the nondegeneracy of positive solutions of the Dirichlet Lane-
Emden-type fractional problem

(−∆)su+ λu = up in Ω, u = 0 in R
N\Ω, u > 0 in Ω, (1.1)

where Ω is a bounded domain of class C2 in RN (N > 2), p > 1, λ ∈ R, s ∈ (0, 1), and (−∆)s

denotes the fractional Laplacian given by

(−∆)su(x) := cN,s p.v.

∫

RN

u(x)− u(y)

|x− y|N+2s
dy, cN,s := 4sπ−N

2

Γ(N2 + s)

Γ(2− s)
s(1− s). (1.2)

A solution u of (1.1) is called nondegenerate if the linearized problem

(−∆)sv + λv = pup−1v in Ω, v = 0 on R
N\Ω, (1.3)

admits only the trivial solution.
It is immediate to see (by testing the equation with the first Dirichlet eigenfunction of

(−∆)s in Ω) that in order to have solutions of (1.1) the parameter λ must satisfy λ > −λs1(Ω)
(here λs1(Ω) is the first Dirichlet eigenvalue of (−∆)s in Ω). Actually, similarly to the local
case s = 1, standard variational methods can be used to yield the existence of solutions of
(1.1) in any bounded smooth domain Ω whenever λ > −λs1(Ω) and 1 < p < N+2s

N−2s , see, for

example, [58]. For critical (p = N+2s
N−2s ) and supercritical (p > N+2s

N−2s ) regimes, existence is more
involved. Indeed, the fractional Pohozaev identity implies the nonexistence of solutions of (1.1)
if p >

N+2s
N−2s , λ = 0, and if Ω is starshaped, see [27, 55]; on the other hand, there are many

existence results available in the literature when either λ 6= 0 or the domain is not starshaped,
see, for instance, [20, 39, 40, 49, 57, 59].
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Concerning uniqueness of solutions, this is a difficult problem—even in the local case —and
it depends in a subtle way on the geometry and topology of the domain Ω, on the value of
the parameter λ, and on the exponent p. As we discuss below, this analysis is even harder for
nonlocal problems and it has been addressed so far only for ground state solutions of fractional
Schrödinger equations in RN in [14, 26, 31, 32, 47]. As far as we know, in the nonlocal case
s ∈ (0, 1), the results that we present in this paper are the first to consider uniqueness of
solutions in bounded domains.

We remark that the uniqueness of solutions to (1.1) does not hold in general, for instance,
multiplicity results can be obtained in suitable domains using a Lyapunov-Schmidt reduction
argument, see [20, Theorem 1.2] (see also Remark 2.11 below) for results when p is close to the
critical exponent N+2s

N−2s (from below and from above) and s ∈ (0, 1), see also [49] for multiplicity
results in the critical case (with λ = 0) in domains with shrinking holes.

Our first theorem shows that all the uniqueness results known for the Laplacian can be
extended to the fractional case for s sufficiently close to 1. Let λ11(Ω) > 0 denote the first
Dirichlet eigenvalue for −∆ in Ω, and let 2∗ = 2N

N−2 if N > 2 and 2∗ = ∞ if N = 2.

Theorem 1.1. Let N > 2, p ∈ (1, 2∗ − 1), λ > −λ11(Ω), and Ω be such that the problem

−∆u+ λu = up in Ω, u = 0 on ∂Ω, (1.4)

has a unique positive solution u which is nondegenerate. Then, there is σ = σ(Ω, λ, p) ∈ (0, 1)
such that, for s ∈ (σ, 1], the problem (1.1) has a unique solution and it is nondegenerate.

To clarify the reach of Theorem 1.1, we review briefly the literature on known results for
uniqueness and nonuniqueness of positive solutions to (1.4).

It is known that uniqueness does not hold in general, indeed both the geometry and the
topology of the domain play a role to obtain multiplicity results. The typical case when there
is more than one positive solution for problem (1.4) is when Ω is the annulus or, more in
general, a suitable annular shaped domain (see, for example, [6, 12, 36, 46], see also [24] for not
simply connected planar domains), but uniqueness may fail also in some contractible domains
(see [16, 17, 24] for dumb-bell domains, even starshaped).

Conversely, if Ω is a ball, then the solutions of (1.4) are radially symmetric as a consequence
of the classical symmetry result by Gidas, Ni, and Nirenberg [33]; hence, one can get uniqueness
in the local case using ODEs techniques. In particular, in the case λ = 0 one immediately
obtains uniqueness by scaling arguments which exploit the homogeneity of the power nonlinearity
(see [33]), while, for λ 6= 0, the proof turns out to be less direct and the complete result, for
the full range of values of p and λ for which existence holds, is contained in several papers
(see [45,52,61,62]), where uniqueness is obtained by first showing that radial solutions are non-
degenerate, thus highlighting a strong relationship between uniqueness and nondegeneracy. We
also mention [3] and [4], where the uniqueness result in the ball for the local problem (1.4) is
reobtained via the Pohozaev identity and a purely PDE approach, respectively.

In view of these results for the local problem (1.4), we deduce the following corollary of
Theorem 1.1.

Corollary 1.2. Let Ω be a ball of RN , N > 2, p ∈ (1, 2∗ − 1), λ > −λ11(Ω). Then, there is
σ = σ(N, λ, p) ∈ (0, 1) such that, for s ∈ (σ, 1], the problem (1.1) has a unique solution and it
is nondegenerate.

Although a general characterization of the domains Ω for which uniqueness and nondegen-
eracy for problem (1.4) hold is still missing, results are know also for some domains different
from the ball, from which other applications of Theorem 1.1 can be deduced. In [16, 44] it is
conjectured that the convexity of the domain Ω is a sufficient condition to guarantee uniqueness
for problem (1.4). This conjecture has been partially proved in dimension N = 2 and for λ = 0,
again showing first that the solutions are nondegenerate. We refer to [48], where it has been
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proved for least energy solutions, and to [21], where recently the proof has been extended to any
positive solution for p sufficiently large, via a delicate computation of the Morse index which
exploits the asymptotic behavior of the solutions. As a consequence of the result in [48], we
state the following asymptotic result for least energy solutions.

Corollary 1.3. Let Ω ⊂ R2 be a smooth convex planar domain, p > 1, λ = 0. Then, there is
σ = σ(Ω, p) ∈ (0, 1) such that, for s ∈ (σ, 1], the problem (1.1) has a unique least energy solution
and it is nondegenerate.

For general positive solutions, from the results in [21], we derive the following.

Corollary 1.4. Let Ω ⊂ R2 be a smooth convex planar domain, λ = 0. Then, there exists
p0 = p0(Ω) > 1 such that for any p > p0 there is σ = σ(Ω, p) ∈ (0, 1) such that, for s ∈ (σ, 1],
the problem (1.1) has a unique solution and it is nondegenerate.

Let us stress that convexity of the domain is not necessary in order to have uniqueness.
Indeed, for problem (1.4) some uniqueness and nondegeneracy results are available in the case
λ = 0 also in non-convex domains. We refer to [15, 19, 38] where domains which are symmetric
and convex with respect to N orthogonal directions are considered. In particular, a pure PDE
approach based on the maximum principle in dimension N = 2 is introduced in [15], while
in [38] the same result is shown to hold in dimension N > 3 and for almost critical powers,
using an asymptotic analysis of the blow-up behavior of the solutions. From this discussion we
can deduce the following consequence of Theorem 1.1.

Corollary 1.5. Let λ = 0 and let Ω ⊂ RN be a smooth bounded domain symmetric with respect
to the hyperplanes {xi = 0} and convex in the direction xi for all 1 6 i 6 N . If either

N = 2 and p > 1 or N > 3 and p+ 1 ∈ (2∗ − ε, 2∗)

for ε > 0 small enough; then, there is σ = σ(Ω, p) ∈ (0, 1) such that, for s ∈ (σ, 1], the problem
(1.1) has a unique solution and it is nondegenerate.

Uniqueness for (1.4) is also known for domains which are a suitable (even non-convex)
perturbation of a ball if λ = 0 [63], and for suitable large symmetric domains when λ = 1
[18]. Nevertheless, to derive the uniqueness for the nonlocal problem via Theorem 1.1, the
nondegeneracy property for the solutions of (1.4) is essential, and this is not shown in [18, 63].

If Ω is the unit planar square and λ 6= 0, then uniqueness results for (1.4) are known for
specific values of p. The case p = 2 can be found in [50] and p = 3 in [51]. In both papers,
the proof relies on a computer-assisted argument. These results cannot be extended directly via
Theorem 1.1 to nonlocal problems, since Ω has some smoothness restrictions, which are used
to guarantee boundary regularity of solutions (see Lemmas 2.2 and 2.6). We remark that the
proofs in [50, 51] can possibly be adapted to a smooth perturbation of the square. In any case,
we believe that the regularity assumptions in Ω can be weakened, but in order to make the ideas
in our arguments more transparent, we do not pursue this here.

A particularly interesting case regarding uniqueness of solutions is the asymptotically linear
problem, i.e. when p is close to 1, since the domain does not play any role. As a matter
of fact, in the local case s = 1, uniqueness and nondegeneracy hold in any bounded domain,
see [15,19,48], where the proofs exploit the asymptotics of the positive solutions as p→ 1. Our
next result shows that this is also the case in the nonlocal setting, for any s ∈ (0, 1).

Theorem 1.6. Let s ∈ (0, 1), N > 2, Ω ⊂ RN be a bounded domain of class C2, and λ >
−λs1(Ω). There is p0 = p0(Ω, s, λ) > 1 such that problem (1.1) has a unique solution for every
p ∈ (1, p0). Moreover, the solution is non-degenerate.

As we mentioned before, showing uniqueness results in the nonlocal case is particularly
difficult and challenging, even in seemingly simple cases. For instance, let λ = 0 and let Ω
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be a ball. Then, a moving plane argument shows that all the solutions of (1.1) are radially
symmetric (see, e.g., [42]); however, a general uniqueness result for this problem with s ∈ (0, 1)
is still open and Corollary 1.2 and Theorem 1.6 are the first results in this direction. The main
obstacle when trying to extend the methods used in the local case to the fractional regime
is the lack of essential tools such as shooting methods and other ODE techniques. Moreover,
Courant’s nodal theorems, Hopf Lemmas for sign-changing solutions, and monotonicity formulas
in bounded domains are also not available, which complicates the analysis of the linearized
associated problem to understand the nondegeneracy properties of solutions. Our results provide
a first answer to these questions, showing the uniqueness and nondegeneracy of solutions for
either s close to 1 or p close to 1.

The proofs of Theorems 1.1 and 1.6 rely on a delicate asymptotic analysis that involves
several elements such as interior and boundary regularity estimates, precise a priori bounds
which are uniform in p and s (see Remark 4.2), Hopf Lemmas for positive solutions, Liouville
type theorems for linear and nonlinear nonlocal equations in unbounded domains, and the known
results for the local problem (s = 1) and for the linear equation (p = 1). A similar approach
is used in [26], where an asymptotic analysis as s → 1 together with the Caffarelli-Silvestre
extension is used to characterize the uniqueness and nondegeneracy of ground state solutions of
a fractional Schrödinger equation in RN . We emphasize that our proofs do not require extension
operators. In particular, we believe that our proofs can be adapted to consider more general
nonlocal operators as well. Furthermore, we think that Theorems 1.1 and 1.6 could be a first
step towards a more complete answer on the uniqueness properties of solutions for all s ∈ (0, 1)
and general values of p, by using the implicit function theorem (as in [15, Theorem 4.4], since
the p dependence on σ in Theorem 1.1 can be relaxed, see Remark 4.6) and by showing the
nondegeneracy of solutions in this range.

Finally, a natural question is if a similar uniqueness result holds for more general nonlineari-
ties. We emphasize that our proofs use different blow up arguments that take advantage on the
particular homogeneity of the power nonlinearity. However, it should be noted that uniqueness
may not hold for general superlinear nonlinearities; for instance, multiplicity of positive solu-
tions is known in the case of concave-convex nonlinearities (in any bounded domain), see, for
instance, [5]. On the other hand, general uniqueness results for fractional sublinear type prob-
lems are available, see e.g. [9, Theorem 6.1 & Corollary 6.3], and for large solutions (blowing-up
at the boundary), see for example [2, 8].

The organization of the paper is as follows. In Section 2 we detail our functional setting,
include some interior and boundary regularity results, and show some Liouville-type results. In
Section 3 we present the proof of Theorem 1.6 and the proof of Theorem 1.1 can be found in
Section 4.

2 Preliminaries

2.1 Functional setting and notation

In this section we introduce some notations and preliminary results needed throughout this
paper.

Let N > 2 and let Ω ⊂ RN be a bounded domain of class C2. For p ∈ [1,∞], we use ‖·‖Lp(Ω)

to denote the norm in Lp(Ω), namely,

‖u‖Lp(Ω) :=

(∫

Ω

|u|p dx

) 1
p

for p ∈ [1,∞), ‖u‖L∞(Ω) := sup
Ω

|u|.

We sometimes omit Ω if Ω = RN , namely, ‖u‖Lp := ‖u‖Lp(RN ).
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Let s ∈ (0, 1), we define Hs(RN ) the classical fractional Sobolev space,

Hs(RN ) =

{
u ∈ L2(RN ) :

|u(x)− u(y)|

|x− y|
d
2
+s

∈ L2(RN × R
N )

}
, (2.1)

endowed with the norm

‖u‖2s :=

∫

RN

|u|2 dx +
cN,s

2

∫∫

RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy.

For a given bounded domain Ω ⊂ RN , let

Hs
0(Ω) =

{
u ∈ Hs(RN ) : u = 0 in R

N\Ω
}
,

Notice that Hs
0(Ω) is a Hilbert space with the norm ‖ · ‖s. Moreover, for all u, v ∈ Hs

0(Ω),
∫

Ω

(−∆)suv dx =
cN,s

2

∫∫

RN×RN

(u(x)− u(y))(v(x) − v(y))

|x− y|N+2s
dx dy. (2.2)

We also use H1
0 (Ω) to denote the usual Sobolev space of weakly differentiable functions with

zero trace.
For m ∈ N0, σ ∈ (0, 1], s = m + σ, we write Cs(Ω) (resp. Cs(Ω)) to denote the space of

m-times continuously differentiable functions in Ω (resp. Ω) whose derivatives of order m are
locally σ-Hölder continuous in Ω (or Lipschitz continuous if σ = 1). We use [ · ]Cσ(Ω) for the
Hölder seminorm in a domain Ω, namely,

[u]Cσ(Ω) := sup
x,y∈Ω
x 6=y

|u(x)− u(y)|

|x− y|σ

and ‖u‖Cs(Ω) :=
∑

|α|6m ‖∂αu‖L∞(Ω) + sup|α|=m[∂αu]Cσ(Ω) is the usual Hölder norm in Cs(Ω).

2.2 Regularity results

We say that u ∈ Hs
0(Ω) is a weak solution of (−∆)su = f in Ω and u = 0 in RN\Ω if

cN,s

2

∫∫

RN×RN

(
u(x)− u(y)

)(
ϕ(x) − ϕ(y)

)

|x− y|N+2s
dx dy =

∫

Ω

fϕ for all ϕ ∈ Hs
0(Ω). (2.3)

Remark 2.1. A standard Moser iteration and bootstrap argument (see, for instance, [56, Propo-
sition 8.1]) readily implies that a weak solution u of (1.1) and a weak solution v of (1.3) are
smooth in the sense that u, v ∈ C∞(Ω) ∩ L∞(Ω) ∩ Cs(RN ).

In our proofs via asymptotic methods as p or as s goes to 1, it is crucial to have uniform
estimates (sometimes in p and sometimes in s) on solutions. However, many classical regularity
estimates do not emphasize explicitly the dependencies of the constants, which is not always
straightforward (see Remark 4.2). In this section, for completeness, we revisit some classi-
cal regularity estimates to remark the dependencies of the constants involved in some known
inequalities.

Lemma 2.2. Let Ω ⊂ RN be a bounded domain of class C2 and let u be a solution of (−∆)su = g
in Ω with g ∈ L∞(Ω) and u = 0 in RN\Ω. There is C = C(Ω) > 0 such that

‖u‖Cs(Ω) 6 C‖g‖L∞(Ω), (2.4)

Furthermore, u
δs

∈ Cα(Ω̄) for some α ∈ (0, 1) and
∥∥∥ u
δs

∥∥∥
Cα(Ω)

6 C1‖g‖L∞(Ω),

for some constant C1 = C1(Ω, s) > 0.
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Proof. The interior and boundary regularity with follows from [54, Proposition 1.1, Theorem
1.2 & Proposition 1.4]. The fact that the constant C = C(Ω) > 0 is independent of s, follows
from [41, Lemma 3.4].

Lemma 2.3. Let u ∈ C2s(B3R)∩C(R
N )∩L∞(RN ) with compact support in RN , then for any

α ∈ (0, 2s) there exists a constant C := C(s, d, α,R) > 0 such that

‖u‖Cα(BR) 6 C
(
‖u‖L∞(RN ) + ‖(−∆)su‖L∞(B2R)

)
.

Proof. Let α′ ∈ (α, 2s), f = (−∆)su in B2R, ηǫ be the standard mollifier. Then (−∆)s(u∗ηǫ) =
f ∗ ηǫ in B2R′ for R′ = R+ ǫ/2 and ǫ small. Thus, by [54, Proposition 2.3],

‖u ∗ ηǫ‖Cα′(BR′ ) 6 C
(
‖u ∗ ηǫ‖L∞(RN ) + ‖f ∗ ηǫ‖L∞(B2R′ )

)
.

The claim now follows passing to the limit as ε→ 0.

Lemma 2.4. Let α ∈ (0, 2s), u ∈ C2s+α(B3R) ∩ C(RN ) ∩ L∞(RN ) with compact support in
RN , then there exists a constant C := C(s, d, α,R) > 0 such that

‖u‖Cα+2s(BR) 6 C
(
‖u‖L∞(RN ) + ‖(−∆)su‖Cα(B2R)

)
.

Proof. Similar to the proof of Lemma 2.3, but using [54, Proposition 2.2].

Lemma 2.5. Let r > 0, s ∈ (0, 1), and u ∈ L∞(RN ). There is C = C(N) such that

[u]Cs(Br/2) 6 Crs

(
‖(−∆)su‖L∞(Br) + τN,s

∫

RN\Br

|u(z)|

|z|N (|z|2 − r2)s
dz

)
,

where τN,s =
2

Γ(s)Γ(1−s)|SN−1|
.

Proof. The proof can be found in [41, Lemma A.1].

The following Lemma is an easy consequence of the barrier constructed in [54, Lemma 2.6].
However, we use this result in a blow up argument as s→ 1− and as the domain grows; therefore,
we require that the constants involved in the construction of the barrier do not degenerate in
the limit. We include a proof for completeness.

Lemma 2.6. Let Ω ⊂ RN be a (possibly unbounded) domain satisfying a uniform sphere condi-
tion, namely, there is r0 > 0 such that, for every x0 ∈ ∂Ω, there is y0 ∈ R

N\Ω with Br0(y0)∩Ω =
{x0}. Let σ ∈ (0, 1), s ∈ (σ, 1), u ∈ L∞(RN ) be a pointwise solution of (−∆)su = f in Ω with
f ∈ L∞(Ω), and u = 0 in RN\Ω. Let M > 0 satisfy that ‖u‖L∞ + ‖f‖L∞(Ω) < M . Then, there
are C = C(N,M, r0, σ) > 0 and δ = δ(N,M, r0, σ) > 0 such that

|u(x)| < C dist(x, ∂Ω)s for all x ∈ Ω with dist(x, ∂Ω) < δ.

In particular, u ∈ Cs(Ω), u = 0 on ∂Ω, and there is δ0 = δ0(N,M, r0, σ) > 0 such that
|u(x)| < 1

2 if dist(x, ∂Ω) < δ0.

Proof. By contradiction, assume that there is (xn) ⊂ Ω and (sn) ⊂ (σ, 1) such that

dist(xn, ∂Ω) → 0 as n→ ∞ and |u(xn)| > n dist(xn, ∂Ω)
sn for all n ∈ N. (2.5)

Let ξn ∈ ∂Ω be such that dist(xn, ∂Ω) = |xn − ξn|. By the uniform sphere condition,

Br0(yn) ⊂ R
N\Ω, Br0(yn) ∩ Ω = {ξn}, yn = −

xn − ξn
|xn − ξn|

r0.
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By scaling the problem, we can assume that r0 = 1. Now we use the torsion function to build a
barrier, as in [54, Lemma 2.6]. Let

ψn(x) := aN,sn(1 − |x− yn|
2)sn+ , aN,sn :=

2−2snΓ(N2 )

Γ(N+2sn
2 )Γ(1 + sn)

.

Then (−∆)snψn = 1 in B1(yn). Let ζ be a fixed radial smooth function such that ζ = M in
RN\B3 and ζ = 0 in B2. Let

M1 := sup
s∈(σ,1),x∈B3

|(−∆)sζ(x)|, M0 := 32+N(M +M1),

note that M1 <∞, e.g., by [1, Lemma B.5].
Let D := B3(yn) ∩ Ω. Using the Kelvin transform [54, Proposition A.1], we have that

Ψn(x) :=M0aN,sn |x− yn|
2sn−N (1− |x− yn|

−2)sn+ + ζ(x − yn), x ∈ R
N ,

satisfies that

(−∆)snΨn(x) =M0|x− yn|
−2sn−N + (−∆)snζ(x − yn) >

M0

32+N
−M1 =M > (−∆)snu(x)

in D, Ψn = 0 in B1(yn), Ψn > M > u in RN\B3(yn), and Ψn ∈ Hsn
loc(R

N ) (see [54, Lemma
2.6]). Then, since u = 0 in R

N\Ω, we have that Ψn − u > 0 in R
N\D. Therefore, by the

weak maximum principle (see for example [25, Proposition 3.1 & Remark 3.2]), u(x) 6 Ψn(x)
in D. Arguing similarly with −u, we obtain also that |u(x)| 6 Ψn(x) in D. Since |xn − ξn| =
dist (xn, ∂Ω) → 0, we may assume that xn ∈ Ω∩B2(yn). Then, using that ζ = 0 in B2(yn) and
that |xn − yn| = 1 + |xn − ξn| = 1 + dist(xn, ∂Ω) > 1, we obtain that

u(xn) 6M0aN,sn |xn − yn|
2sn−N (1− |xn − yn|

−2)sn 6M0aN,sn

(
|xn − yn|

2 − 1
)sn

=M0aN,sn (|xn − yn|+ 1)
sn (|xn − yn| − 1)

sn
6 3M0C1dist (xn, ∂Ω)

sn (2.6)

for x ∈ Ω ∩B2(yn), where C1 := supt∈(σ,1) aN,t <∞, by the properties of the Γ function. Since
(2.6) contradicts (2.5), the claim follows.

Remark 2.7. Let Ω be a domain with C2 boundary and σ ∈ (0, 1). Then there is r0 > 0
such that Ω satisfies the uniform exterior sphere condition. Let δ0 = δ0(N,M, r0, σ) > 0 by
given by Lemma 2.6. Note that, if µ > 1, then the domain µΩ satisfies in particular the
uniform exterior sphere condition with the same r0. Therefore, for any η > 1 and s ∈ (σ, 1), if
us,η ∈ L∞(RN ) satisfies that us,η = 0 in RN\(ηΩ) and ‖us,η‖L∞ + ‖(−∆)sus,η‖L∞(ηΩ) < M for

some M independent of η and s, then |us,η(x)| <
1
2 for all x ∈ ηΩ such that dist(x, ∂(ηΩ)) < δ0.

2.3 Liouville theorems

We show the nonexistence of positive bounded solutions for a linear fractional problem both
in the whole space and in the half space. We do not require integrability assumptions on the
solutions.

We denote by λs1(BR) and ϕs
1,R the first eigenvalue and the corresponding positive eigen-

function of (−∆)s in the ball BR of radius R > 0 centred at the origin, with zero Dirichlet
exterior condition. Let us recall that λs1(BR) → 0 as R → ∞ (for instance, by the fractional
Faber-Krahn inequality [11]).

Theorem 2.8. Let R > 0 be such that λs1(BR) < 1. If w ∈ L∞(RN ) satisfies pointwisely that
{

(−∆)sw = w in BR(x0),
w > 0 in R

N .
(2.7)

for some x0 in RN , then w ≡ 0 in RN .
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Corollary 2.9. Let w be a bounded classical solution to
{

(−∆)sw = w in RN ,
w > 0 in RN .

Then w = 0 in R
N .

Corollary 2.10. Let w be a bounded classical solution to
{

(−∆)sw = w in R
N
+ ,

w > 0 in RN .
(2.8)

Then w = 0 in RN
+ .

Corollary 2.9 is a special case of a Liouville type result proved by Jin, Li and Xiong [43]
for more general, also nonlinear, problems (see also [10, 13, 53]). Our proof is very simple but
applies only in the linear case. For the half space, non-existence results for (2.8) may be found
in [27] but under integrability assumptions, see also [28] for superlinear problems.

Proof of Theorem 2.8. By contradiction, assume there is a bounded nontrivial (pointwise) so-
lution w of (2.7). Let φ(x) := ϕs

1,R(x− x0). Note that

cN,s

2

∫

RN

∫

RN

(φ(x) − φ(y))(w(x) − w(y))

|x− y|N+2s
dy dx <∞,

by [29, Lemma 2.2]. Moreover, using that φ 6 C(1 − |x − x0|
2)s and [41, Lemma 2.3] (with

N > 2, a = −s, λ = −2s), there is a constant C1 = C1(N,R, s) > 0 such that

0 6

∫

RN\BR(x0)

w(x)

∫

BR(x0)

φ(y)

|x− y|N+2s
dy dx 6 C‖w‖L∞

∫

RN\BR(x0)

∫

BR(0)

(1− |y|2)s

|x− y|N+2s
dy dx

6 CC1|w|L∞

∫

RN\BR(x0)

1 + (1− |x|2)−s

1 + (1− |x|2)N+2s
dx <∞.

Therefore, using that (−∆)sφ = λs1(BR)φ in BR(x0), w > 0, and φ > 0 in R
N ,

∫

BR(x0)

φw dx =

∫

RN

φ(−∆)sw dx = cN,s

∫

RN

p.v.

∫

RN

φ(x)
w(x) − w(y)

|x− y|N+2s
dy dx

=
cN,s

2

∫

RN

∫

RN

(φ(x) − φ(y))(w(x) − w(y))

|x− y|N+2s
dy dx

= cN,s

∫

RN

p.v.

∫

RN

w(x)
φ(x) − φ(y)

|x − y|N+2s
dy dx

= λs1(BR)

∫

BR(x0)

wφdx −

∫

RN\BR(x0)

w(x)

∫

BR(x0)

φ(y)

|x− y|N+2s
dy dx

<

∫

BR(x0)

φw dx,

which yields a contradiction.

Remark 2.11 (Multiplicity of solutions). A concrete multiplicity result for (1.1) can be deduced
from [20, Theorem 1.2] in the following way. Let s ∈ (0, 1), Ω := U ∪ V ⊂ RN , N > 2, where U
and V are two disjoint balls of different sizes. Let G denote the Green’s function for (−∆)s in
Ω and, for ξ ∈ Ω, let H be the solution of

(−∆)sH(x, ξ) = 0 for x ∈ Ω, H(x, ξ) = Γ(x− ξ) for x ∈ R
N\Ω,
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where Γ is the fundamental solution of (−∆)s in RN . The function H is the regular part of the
Green’s function. Let

Ψ(ξ,Λ) :=
H(ξ, ξ)

2
Λ2 − log(Λ), ξ ∈ Ω, Λ ∈ (0,∞).

In particular, since H(ξ, ξ) is positive for ξ ∈ Ω and H(ξ, ξ) → ∞ as ξ → ∂Ω (because Γ(x) → ∞
as |x| → 0), it is easy to see that Ψ has two local minima at (ξ1,Λ1) and (ξ1,Λ2) for some ξ1 ∈ U
and ξ2 ∈ V . These points are stable critical points of Ψ. Therefore, by [20, Theorem 1.2], there
are two different positive solutions of (1.1) with p = N+2s

N−2s − ε with ε > 0 small enough.

3 The asymptotically linear case

In this section we prove Theorem 1.6. Consider the linearized problem at a solution u of (1.1)
given by {

(−∆)sh+ λh = pup−1h in Ω,
h = 0 in RN\Ω,

(3.1)

and recall that a solution u of (1.1) is said to be nondegenerate if (3.1) has only the trivial
solution h = 0, i.e. if µ = 0 is not an eigenvalue of the linearized operator Lu := (−∆)s + λ −
pup−1.

We prove first the following key lemma.

Lemma 3.1. Let s ∈ (0, 1), (pn)n ⊂ (1, N+2s
N−2s ) be a sequence such that pn → 1, let un be a

solution to (1.1) with p = pn, and let Mn := ‖un‖L∞. Then,

Mpn−1
n → λs1(Ω) + λ and

un
Mn

→ ϕs
1 uniformly in Ω and in C2s+α

loc (Ω) as n→ ∞

for some α ∈ (0, 1), where λs1(Ω) and ϕ
s
1 denote respectively the first eigenvalue and eigenfunction

for the fractional Laplacian in Ω with exterior Dirichlet condition.

Proof. Step 1. We show that Mpn−1
n is bounded.

By contradiction, assume that Mpn−1
n → ∞ and let us perform a blow-up argument. Let

(xn)n>1 be a sequence in Ω such that Mn = un(xn). Define

vn(y) :=
1

Mn

un (µny + xn)

where µn :=M
1−pn

2s
n → 0, then vn is a function satisfying 0 6 vn 6 1, vn(0) = 1 and

{
(−∆)svn = vpn

n − λ

M
pn−1
n

vn =: fn in Ωn,

vn = 0 in RN\Ωn,
(3.2)

where Ωn =
{
y ∈ RN : µny + xn ∈ Ω

}
. Up to subsequences, two situations may occur:

either dist (xn, ∂Ω)µ
−1
n → +∞ or dist (xn, ∂Ω)µ

−1
n → ρ > 0. (3.3)

Assume the first case holds, so that Ωn → RN as n→ +∞.
We claim that, for any R > 0 and α ∈ (0,min{2s, 1}), there exists nR ∈ N and C =

C(s,N, α,R) > 0 such that

vn ∈ C2s+α(BR) and ‖vn‖C2s+α(BR) 6 C, ∀n > nR. (3.4)
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In order to prove (3.4) let us fix R > 0. Then, since Ωn → RN as n → +∞, there exists
nR ∈ N such that B4R ⊂ Ωn for any n > nR. Since vn ∈ Cs(RN ) satisfies the uniform bound
0 6 vn 6 1, then fn ∈ L∞(B4R) with uniform bounds so, as a consequence of Lemma 2.3,
vn ∈ Cα(B2R), for any α ∈ (0, 2s), and

‖vn‖Cα(B2R) 6 C,

where the constant C = C(s,N, α,R). Then fn ∈ Cα(B2R) with uniform Cα-bound and so
(3.4) follows by Lemma 2.4.

By (3.4), using Arzelà-Ascoli’s theorem and a diagonal argument we obtain that there exists

a function v ∈ C2s+α
2 (RN ) such that, passing to a subsequence, vn → v in C

2s+α
2

loc (RN ). Passing
to the limit in (3.2) we see that v solves (−∆)sv = v in R

N pointwisely. Furthermore, 0 6 v 6 1,
so v is bounded in RN and it follows that v > 0 in RN ; indeed, if v(x0) = 0 for some x0 ∈ RN ,
then

0 = v(x0) = cN,sp.v.

∫

RN

−u(y)

|x0 − y|N+2s
dy < 0.

However, by Corollary 2.9, no such w can exist and we have reached a contradiction.
If the second case in (3.3) holds then we may assume xn → x0 ∈ ∂Ω. With no loss of

generality assume also ν(x0) = −eN . In this case it will be more convenient to work with

wn(y) :=
un (µny + ξn)

Mn

,

where ξn ∈ ∂Ω is the projection of xn on ∂Ω and let Dn :=
{
y ∈ RN : µny + ξn ∈ Ω

}
. Observe

that

0 ∈ ∂Dn (3.5)

and Dn → RN
+ :=

{
y ∈ RN : yN > 0

}
as n→ +∞. It also follows that wn satisfies that

(−∆)swn = wpn
n −

λ

Mpn−1
n

wn in Dn, wn = 0 in R
N\Dn. (3.6)

Moreover, setting

yn :=
xn − ξn
µn

(∈ Dn)

so that |yn| = dist (xn, ∂Ω)µ
−1
n , and wn(yn) = 1. We claim that

ρ = lim
n→+∞

dist (xn, ∂Ω)µ
−1
n > 0. (3.7)

Observe that this will allow us to conclude that, up to passing to a further subsequence, yn → y0
where |y0| = ρ > 0, thus y0 is an interior point of the half-space RN

+ . Let us now show the claim.
Observe that ‖wn‖∞ + ‖(−∆)swn‖L∞(Dn) 6 3 =: M , for n sufficiently large, hence by Lemma
2.6 and Remark 2.7, there exists δ0 > 0 such that

wn(y) <
1

2
, for all y ∈ Dn such that dist (y, ∂Dn) < δ0, (3.8)

for n sufficiently large. Now, by contradiction, assume that

lim
n→+∞

dist (xn, ∂Ω)µ
−1
n = 0. (3.9)
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Then, since by (3.5) we have dist (yn, ∂Dn) 6 |yn|, it follows that dist (yn, ∂Dn) < δ0 for n large.
As a consequence, (3.8) implies that 1 = wn(yn) <

1
2 , which gives a contradiction and proves

the claim in (3.7).

Now, arguing similarly as in the first case, we obtain that wn → w in C
2s+α

2

loc (RN
+ ), where w

satisfies that 0 6 w 6 1 in RN
+ and w(y0) = 1. Then w is a bounded solution of

{
(−∆)sw = w in RN

+ ,
w > 0 in RN

+ ,

moreover, w > 0 in RN
+ and this yields a contradiction, by Corollary 2.10. This shows that

Mpn−1
n is bounded and concludes the proof of Step 1.

Step 2. Conclusion.

Mpn−1
n is bounded by Step 1. Thus, up to a subsequence, Mpn−1

n → µ. Let zn := un

Mn
, then it

satisfies that




(−∆)szn = −λzn +Mpn−1
n zpn

n =: gn in Ω,
0 < zn 6 1 in Ω,
zn = 0 in RN\Ω.

By Lemma 2.2,
‖zn‖Cs(Ω) 6 C‖gn‖L∞(Ω) 6 C.

Hence, zn converges to z in C(Ω) by Arzelà-Ascoli’s Theorem. Moreover, similarly to the proof
of (3.4), using Lemmas 2.2, 2.3, and 2.4, we have that, for all β ∈ (0,min{2s, 1}) and for any
compact set K ⊂⊂ Ω, there exist nK ∈ N and C = C(s,N, β,K) > 0 such that

zn ∈ C2s+β(K) and ‖zn‖C2s+β(K) 6 C, ∀n > nK . (3.10)

Hence z ∈ C2s+ β
2 (Ω) and zn converges to z in C

2s+ β
2

loc (Ω); furthermore, 0 6 z 6 1 and it satisfies
that





(−∆)sz = (−λ+ µ)z in Ω,
z > 0 in Ω,
z = 0 in RN\Ω.

Let (xn)n>1 be a sequence in Ω such that Mn = un(xn), then 1 = limn→∞ zn(xn) = z(x̄) and
then x̄ ∈ Ω. Hence, z > 0 and so µ = λs1(Ω) + λ, z = ϕs

1, and the Lemma is proved.

3.1 Proof of Theorem 1.6.

Proof of Theorem 1.6. Step 1. We prove the nondegeneracy.

Assume by contradiction that there exists a non trivial solution hn of the linearized problem
(3.1) with p = pn > 1 and pn → 1:

{
(−∆)shn = −λhn + pnu

pn−1
n hn =: gn in Ω,

hn = 0 in RN\Ω,
(3.11)

w.l.o.g. we may assume that ‖hn‖L∞ = 1. Observe that

‖gn‖L∞ 6 |λ|+ 2‖un‖
pn−1
L∞ = |λ|+ 2Mpn−1

n 6 C.
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So, by Lemma 2.2, hn → h uniformly on Ω; in particular ‖h‖L∞ = 1 and so h 6= 0. Furthermore,
by Lemma 2.2, hn ∈ C∞(Ω)∩Cs(RN )∩L∞(RN ). Taking hn as a test function, by Lemma 3.1,
we derive that

‖hn‖
2
s 6

(
|λ|+ 2Mpn−1

n

)
‖hn‖

2
L2 6

(
|λ|+ 2Mpn−1

n

)
‖hn‖

2
L∞ = |λ|+ 2Mpn−1

n 6 C.

Hence, hn converges to h also weakly in Hs
0(Ω), up to a subsequence, and strongly in L2(Ω).

Passing to the limit, in the weak formulation of (3.11), we obtain that h is a weak solution of

{
(−∆)sh = λs1(Ω)h in Ω,

h = 0 in R\Ω,

since, by Lemma 3.1, one has that

pnu
pn−1
n = pnM

pn−1
n

(
un
Mn

)pn−1

= λs1(Ω) + λ+ o(1) pointwisely in Ω as n→ ∞ (3.12)

and

‖pnu
pn−1
n ‖L∞ 6 λs1(Ω) + |λ|+ 1 for all n ∈ N. (3.13)

As a consequence, we may assume that h = ϕs
1, where ϕ

s
1 is the first Dirichlet eigenfunction of

(−∆)s in Ω. Note that hn must change sign, because

0 =

∫

Ω

hn[(−∆)sun + λun]− un[(−∆)shn + λhn] dx = (1− pn)

∫

Ω

upn
n hn dx. (3.14)

By (3.14), Lemma 3.1, and dominated convergence, we have that

0 =
1

Mpn
n

∫

Ω

upn
n hn dx =

∫

Ω

(
un
Mn

)pn−1
un
Mn

hn =

∫

Ω

(ϕs
1)

2 + o(1) as n→ ∞,

which leads to a contradiction.

Step 2. We prove the uniqueness.

By contradiction, assume that un and vn are two distinct solutions of problem (1.1) with p =
pn > 1 and pn → 1. The functions wn := un−vn

‖un−vn‖L∞
satisfy that

{
(−∆)swn = αn(x)wn − λwn =: gn in Ω,
wn = 0 in RN\Ω,

(3.15)

where, by the Mean Value Theorem,

αn :=

∫ 1

0

pn(tun + (1− t)vn)
pn−1 dt.

Since tun(x) + (1 − t)vn(x) is between un(x) and vn(x), it follows that αn(x) is between
pnun(x)

pn−1 and pnvn(x)
pn−1 for all x ∈ Ω. Since, by (3.12) and (3.13), ‖αn‖L∞ 6 λs1(Ω)+|λ|+1

for all n ∈ N and pnu
pn−1
n → λs1(Ω) + λ, pnv

pn−1
n → λs1(Ω) + λ pointwisely in Ω as n → ∞, we

have that

αn(x) → λs1(Ω) + λ pointwisely in Ω as n→ ∞.

So ‖gn‖L∞ 6 C, hence by Lemma 2.2, wn → w uniformly in Ω; in particular ‖w‖L∞ = 1 and
so w 6= 0. Furthermore, testing (3.15) with wn,

‖wn‖
2
s 6 (|λ|+ ‖αn‖L∞) ‖wn‖

2
L2 6 (|λ|+ ‖αn‖L∞) ‖wn‖

2
L∞ = |λ|+ ‖αn‖L∞ 6 C.
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Hence, wn converges to w also weakly in Hs
0(Ω), up to a subsequence, and strongly in L2(Ω).

Passing to the limit in the weak formulation of (3.15) we obtain that w is a weak solution of





(−∆)sw = λs1(Ω)w in Ω,
w 6= 0 in Ω,
w = 0 in RN\Ω.

Hence, w = ϕs
1 the first eigenfunction associated to λs1(Ω). Let us observe that also

wn

δs
→

ϕs
1

δs
in Cβ(Ω), (3.16)

for some β ∈ (0, s) . Indeed, by Lemma 2.2, one also has that wn

δs
→ ξ in Cβ(Ω), for β ∈ (0, α),

and it is easy to see that ξ =
ϕs

1

δs
, because the uniform convergence of wn to ϕs

1 implies that

ξ|Ω ≡
ϕs

1

δs
|Ω, and both ξ|Ω and

ϕs
1

δs
|Ω can be uniquely extended in Ω.

Furthermore, we show that wn must change sign in Ω. Otherwise, if wn > 0, namely un > vn,
then upn−1

n − vpn−1
n > 0 (since pn > 1), and so the equality

0 =

∫

Ω

vn[(−∆)sun + λun]− un[(−∆)svn + λvn] dx =

∫

Ω

vnun
(
upn−1
n − vpn−1

n

)
dx

would imply upn−1
n ≡ vpn−1

n , namely, un ≡ vn, a contradiction.
Let now (xn)n>1 be a sequence in Ω such that wn(xn) = minx∈Ωwn(x). Then, since wn

changes sign in Ω and wn → ϕs
1 > 0 uniformly in Ω, one has that

wn(xn) < 0 and xn → x∗ ∈ ∂Ω.

Using (3.16), limn→∞
wn

δs
(xn) =

ϕs
1

δs
(x∗); hence,

ϕs
1

δs
(x∗) 6 0, which gives a contradiction, since

ϕs
1

δs
> 0 on ∂Ω, by the fractional Hopf Lemma (see [25, 37]).

4 The asymptotically local case

Recall that λs1(Ω) > 0 denotes the first Dirichlet eigenvalue of (−∆)s in Ω for s ∈ (0, 1]. In this
section we fix

p ∈ (1, 2∗ − 1), λ > −λ11(Ω),

and Ω ⊂ RN such that the problem

−∆u+ λu = up in Ω, u = 0 on ∂Ω, (4.1)

has a unique positive solution and it is nondegenerate, namely the linearized problem

−∆v + λv = pup−1v, v ∈ H1
0 (Ω), only admits the trivial solution. (4.2)

Since lims→1 λ
s
1(Ω) = λ11(Ω) (see Remark 4.5), there is σ0 ∈ (12 , 1) such that, for all s ∈ [σ0, 1],

p <
N + 2s

N − 2s
and λ > −λs1(Ω). (4.3)

For s ∈ [σ0, 1], let Ms denote the set of positive nontrivial solutions us of

(−∆)sus + λus = ups in Ω, us = 0 in R
N\Ω. (4.4)
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The following result gives a uniform a priori bound for all positive solutions whenever s is
close to 1. The proof follows a blow-up argument similar to that of Lemma 3.1; however, since
now the blow-up parameter is the Laplacian’s exponent s, special care is required to control
the constants appearing from regularity estimates. In particular, a priori C2s+ε

loc regularity
estimates with explicit constants do not seem to be available in the literature and are nontrivial
(see Remark 4.2 below). To overcome this obstacle, we use the lower order Cs estimates with
explicit constants shown in [41] and use the regularity theory for distributional solutions.

Theorem 4.1. Let N > 2, Ω be a bounded domain of class C2, 1 < p < 2∗ − 1, λ > −λ11(Ω).
There is σ ∈ (0, 1) and a constant C = C(λ, p,Ω, σ) > 0 such that,

‖us‖L∞ < C for all s ∈ (σ, 1) and us ∈ Ms.

Proof. We argue by contradiction. Let (sn) ⊂ (12 , 1) be such that limn→∞ sn = 1, p ∈ (1, 2∗−1),
λ > −λ11(Ω), and assume that there are positive solutions un ∈ C∞(Ω) ∩ Cs(RN ) ∩ L∞(RN )
of (4.4) with s = sn and such that Mn := ‖un‖L∞ → ∞. Let xn be the points where the

maximum of un is achieved, µn := M
1−p
2sn
n , and let vn(y) :=

1
Mn

un(µny + xn) and Ωn := {y ∈
Ω : µnx+ xn ∈ Ω}. Then vn is a function satisfying that 0 6 vn 6 1, vn(0) = 1, and

(−∆)snvn = vpn − λ

M
p−1
n

vn =: fn in Ωn, vn = 0 in RN\Ωn. (4.5)

Passing to a subsequence, we consider two cases.

Case 1: limn→∞ dist (xn, ∂Ω)µ
−1
n = ∞. Then Ωn → R

N as n → +∞ and, by Lemma 2.5,
for any r > 1 with Br(0) ⊂ Ωn, there is C = C(N) > 0 such that

[vn]Csn(B r
2
)

6 rsnC

(∥∥∥∥v
p
n −

λ

Mp−1
n

vn

∥∥∥∥
L∞(Br)

+
2

Γ(sn)Γ(1− sn)|SN−1|

∫

RN\Br

|vn(z)|

|z|N (|z|2 − r2)sn
dz

)

6 2(1 + |λ|)rsnC

(
1 +

1

Γ(sn)Γ(1− sn)

∫ ∞

r

1

ρ(ρ2 − r2)sn
dρ

)
= 2(1 + |λ|)rsnC

(
1 +

1

2r2sn

)
,

were we used that, by the properties of the beta function B(·, ·),

∫ ∞

r

ρ−1(ρ2 − r2)−sn dρ = r−2sn

∫ ∞

1

t−1(t2 − 1)−sn dt =
r−2sn

2

∫ ∞

1

(τ − 1)−snτ−1 dτ

=
r−2sn

2

∫ 1

0

(ζ−1 − 1)−snζ−1 dζ =
r−2sn

2

∫ 1

0

(1 − ζ)−snζsn−1 dζ

=
r−2sn

2
B(sn, 1− sn) =

r−2sn

2

Γ(sn)Γ(1− sn)

Γ(1)
.

Using that sn is an increasing sequence, we deduce that

[vn]Cs1(B r
2
) 6 rs1−sn [vn]Csn(B r

2
) 6 4(1 + |λ|)Cr2.

This uniform bound and a diagonalization argument yields the existence of v ∈ Cβ
loc(R

N ) such

that vn → v in Cβ
loc(R

N ) for any β ∈ (0, 1). Moreover, by (4.5), v satisfies that v(0) = 1, v > 0
in RN , and

∫

RN

v(−∆)ϕdx =

∫

Ω

vpϕdx for all ϕ ∈ C∞
c (RN ),
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namely, v ∈ L∞
loc(R

N ) is a distributional solution of

−∆v = vp in R
N . (4.6)

By the regularity theory for distributional solutions in L2
loc(R

N ) (see, for example, [22, Theorem

1]), we have that v ∈ W 2,2
loc (R

N ) solves (4.6) weakly, and since v ∈ Cβ
loc(R

N ), standard elliptic
regularity yields that v is a classical solution of (4.6) which is positive by the maximum principle.
But this contradicts the classical Liouville theorem in the whole space (see [34, Theorem 1.1]).

Case 2: dist (xn, ∂Ω)µ
−1
n → d > 0. We may assume xn → x0 ∈ ∂Ω. With no loss of gener-

ality assume also ν (x0) = −eN . In this case, we use the function wn(y) = un (µny + ξn)M
−1
n for

y ∈ Dn, where ξn ∈ ∂Ω is such that |xn−ξn| = dist(xn, ∂Ω) andDn :=
{
y ∈ RN : µny + ξn ∈ Ω

}
.

Then wn satisfies that

(−∆)snwn = wp
n −

λ

Mp−1
n

wn in Dn, wn = 0 in R
N\Dn. (4.7)

Moreover, setting yn := (xn − ξn)µ
−1
n , it follows that |yn| = dist (xn, ∂Ω)µ

−1
n and wn (yn) = 1.

Since Ω is of class C2, it satisfies a uniform exterior sphere condition, namely, there is r0 > 0
such that, for every x0 ∈ ∂Ω, there is y0 ∈ RN\Ω with Br0(y0) ∩ Ω = {x0}. Furthermore, since
µ−1
n → ∞, Dn also satisfies the exterior sphere condition with the same r0 for every n ∈ N.

Then, by Lemma 2.6 and Remark 2.7 (with that r0 independent of n, σ = 1
2 , and M = 3)

there is δ0 > 0 independent of n such that wn(y) <
1
2 for all y ∈ Dn with dist (y, ∂Dn) < δ0.

Since wn(yn) = 1, this implies that dist (yn, ∂Dn) > δ0, namely, ρ = dist (xn, ∂Ω)µ
−1
n > δ0. In

particular, passing to a subsequence, yn → y0, where |y0| = ρ > 0, thus y0 is an interior point
of the half-space RN

+ . Finally, arguing similarly as in the first case, we obtain that wn → w

in Cβ
loc(R

N
+ ) for all β ∈ (0, 1), where w is a classical positive solution of −∆w = wp in RN

+ .

Moreover, by Lemma 2.6, w ∈ C(RN
+ ) and w = 0 on ∂RN

+ ; but this contradicts the classical
Liouville theorem in the halfspace (see [35, Theorem 1.3]).

Remark 4.2. The limit as s→ 1− is delicate, because it is the transition between the nonlocal
and the local regime. In the proof of Theorem 4.1, we only use uniform (in s) lower order
regularity estimates. This yields distributional solutions of (4.6) in the limit, which, using
local arguments, can then be shown to be regular. Comparing this argument with the proof of
Lemma 3.1, one may think that using uniform higher order regularity estimates would be simpler
to obtain directly a classical solution of (4.6). These precise higher order regularity estimates
are not yet available in the literature and require a careful analysis of the constants involved
in the known regularity arguments for the fractional Laplacian, where the explicit dependence
on s is often disregarded. We point out that this can be subtle issue, since several constants
and integrals involved in the analysis of fractional problems have a singular behavior in the
nonlocal-to-local transition, namely, when s → 1−. For instance, for N = 2 and s ∈ (0, 1), the
fundamental solution for (−∆)s in R2 is given by

F2,s(x) := as|x|
2s−2 for x ∈ R

2 \ {0}, as :=
Γ(1− s)

4sπΓ(s)
, (4.8)

and the constant as blows up as s → 1−. As a consequence, regularity estimates that use
the fundamental solution (see e.g. [60, Proposition 2.8]) need to be refined to obtain uniform
constants in the limit as s→ 1−.

The following Lemma is one of our main asymptotic tools. It exploits the uniform regularity
estimates given in Lemma 2.2 and describes the properties of the limiting profile.
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Lemma 4.3. Let Ω ⊂ RN be a bounded domain of class C2, (sn) ⊂ (0, 1), limn→∞ sn = 1, and
let (un) ⊂ C∞(Ω) ∩Hsn

0 (Ω) be a sequence such that

‖un‖sn + ‖(−∆)snun‖L∞(Ω) < C for all n ∈ N and for some C > 0. (4.9)

Then, passing to a subsequence, there is u∗ ∈ H1
0 (Ω)∩C

β(Ω) for all β ∈ (0, 1) such that un → u∗

in Cβ(Ω) as n→ ∞ and

∫

Ω

∇u∗∇ϕdx = lim
n→∞

∫

Ω

(−∆)snun ϕdx for all ϕ ∈ C∞
c (Ω).

Proof. By (4.9) and Lemma 2.2, there is u∗ : Ω → R such that, given β ∈ (0, 1) and passing to
a subsequence, un → u∗ in Cβ(Ω) (in particular, u∗ = 0 on ∂Ω). Moreover, u∗ ∈ H1

0 (Ω) since,
by Fatou’s Lemma,

‖u∗‖21 =

∫

RN

|ξ|2|û∗(ξ)|2 dξ 6 lim inf
n→∞

∫

RN

|ξ|2sn |ûsn(ξ)|
2 dξ = lim inf

n→∞
‖usn‖

2
sn
< C.

Then, for every ϕ ∈ C∞
c (Ω), integrating by parts,

∫

Ω

∇u∗∇ϕdx =

∫

Ω

u∗(−∆)ϕdx = lim
n→∞

∫

Ω

u∗(−∆)snϕdx

= lim
n→∞

∫

Ω

un(−∆)snϕdx = lim
n→∞

∫

Ω

(−∆)snunϕdx,

where we used that (−∆)snϕ → (−∆)ϕ pointwisely as n → ∞ and that ‖(−∆)snϕ‖L∞ is
uniformly bounded independently of n, see for example [23, Proposition 4.4] and [1, Lemma B.5].

The following result is known for ground states, see, for instance, [30, Theorem 4.5.], [7,
Theorem 1.2], or [40, Theorem 1.1] for critical equations (the argument can be easily adapted
to subcritical problems). We extend these results to general positive solutions.

Lemma 4.4. Let 1 < p < 2∗ − 1, λ > −λ11(Ω), (sn) ⊂ (0, 1) be such that limn→∞ sn = 1, and
let un ∈ Msn . Then, up to a subsequence, there is u∗ ∈ M1 such that un → u∗ in Lp+1(Ω).

Proof. By Theorem 4.1, passing to a subsequence, (4.3) holds for s = sn and there is C =
(λ, p,Ω) > 0 such that

‖un‖
2
sn

= ‖un‖
p+1
Lp+1 − λ‖un‖

2
L2 6 |Ω|(‖un‖

p+1
L∞ + |λ|‖un‖

2
L∞) < C for all n ∈ N.

By Lemma 4.3, there is u∗ ∈ H1
0 (Ω) such that un → u∗ in L∞(Ω) and, for every ϕ ∈ C∞

c (Ω),

∫

Ω

∇u∗∇ϕdx = lim
n→∞

∫

Ω

(upn − λun)ϕdx =

∫

Ω

((u∗)p − λu∗)ϕdx.

It remains to show that u∗ 6≡ 0. Let vn ∈ Msn denote the least energy solution of (1.1); then,
by [30, Theorem 4.5.], (see also [7, Theorem 1.2]), we have that vn → v∗ in Lp+1(Ω) to some
v∗ ∈ M1, and therefore,

‖u∗‖p+1
Lp+1 = lim

n→∞
‖un‖

p+1
Lp+1 > lim

n→∞
‖vn‖

p+1
Lp+1 = ‖v∗‖p+1

Lp+1 > 0.

Then u∗ 6≡ 0 and therefore u∗ ∈ M1.
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Remark 4.5. It is well known that lims→1 λ
s
1(Ω) = λ11(Ω), but we could not find a precise

reference. In this Remark, we give a brief argument. Let ϕs
1 ∈ C∞(Ω) ∩ Cs(RN ) denote the

first eigenfunction associated to λs1(Ω) for s ∈ (0, 1] normalized such that ‖ϕs
1‖L∞ = 1. Then,

since ϕ1
1 ∈ Hs

0(Ω),

lim
s→1

λs1(Ω) = lim
s→1

inf
v∈Hs

0
(Ω)

‖v‖2s
‖v‖2

L2

6 lim
s→1

‖ϕ1
1‖

2
s

‖ϕ1
1‖

2
L2

=
‖ϕ1

1‖
2
1

‖ϕ1
1‖

2
L2

= λ11(Ω).

In particular, (λs1(Ω)) is bounded and therefore (‖ϕs
1‖s+‖(−∆)sϕs

1‖L∞(Ω)) is bounded as s→ 1−

as n→ ∞. Let sn → 1−. Then by Lemma 4.3, passing to a subsequence, ϕsn
1 → ϕ in L∞(Ω) as

n→ ∞ for some ϕ ∈ H1
0 (Ω) and, by Fatou’s Lemma,

λ11(Ω) = inf
v∈H1

0
(Ω)

‖v‖21
‖v‖2

L2

6
‖ϕ‖21
‖ϕ‖2

L2

6 lim inf
n→∞

‖ϕsn
1 ‖2sn

‖ϕsn
1 ‖2

L2

= lim inf
n→∞

λsn1 (Ω).

Since this can be done for any subsequence, we conclude that lims→1 λ
s
1(Ω) = λ11(Ω).

4.1 Proof of Theorem 1.1

Proof of Theorem 1.1. Let N > 2, p ∈ (1, 2∗− 1), λ > −λ11(Ω), and Ω be such that the problem
(1.4) has a unique positive solution which is nondegenerate. Then, for s sufficiently close to
1, (4.3) holds. We argue first the nondegeneracy of solutions of (1.1). By contradiction, let
(sn) ⊂ (0, 1) be a monotone increasing sequence with limn→∞ sn = 1, un ∈ Msn , and assume
that there is a solution hn of

(−∆)snhn = pup−1
n hn − λhn, hn ∈ Hsn

0 (Ω) ∩ C∞(Ω), ‖hn‖L∞ = 1 for all n ∈ N.

In the following, we use C > 0 to denote possibly different constants independent of n. Observe
that, by Theorem 4.1, passing to a subsequence,

‖hn‖
2
sn

= p

∫

Ω

up−1
n h2n − λ‖hn‖

2
L2 6 |Ω|(p‖un‖

p−1
L∞ + |λ|) 6 C for all n ∈ N.

By Lemmas 4.3 and 4.4, there are v ∈ H1
0 (Ω) and u ∈ M1 such that hn → h and un → u in

L∞(Ω). Then,

lim
n→∞

∫

Ω

up−1
n hnϕdx =

∫

Ω

up−1hϕdx.

Note that u is the unique solution of (4.1). Then, by Lemma 4.3,
∫

Ω

∇h∇ϕdx = lim
n→∞

∫

Ω

(pup−1
n − λ)hnϕdx =

∫

Ω

(pup−1 − λ)hϕdx,

for ϕ ∈ C∞
c (Ω), which contradicts the nondegeneracy of the limiting problem (4.2).

Next we prove the uniqueness of solutions of (1.1) for s sufficiently close to 1. We argue as
in Theorem 1.6. By contradiction, assume that un and vn are two distinct solutions of problem
(1.1) with p ∈ (1, 2∗ − 1) and sn → 1−. By Lemma 4.4 and the uniqueness of solutions of the
problem with s = 1, we have that un → u, vn → u, in L∞(Ω), where u ∈ M1 is the unique
solution of (1.1) for s = 1. Let wn := un−vn

‖un−vn‖L∞
, then

(−∆)swn = αn(x)wn − λwn =: gn in Ω, wn = 0 in R
N\Ω, ‖wn‖L∞ = 1,

where αn :=
∫ 1

0
p(tun + (1 − t)vn)

p−1 dt satisfies that ‖αn‖L∞ < C for all n ∈ N and for some
C > 0 (by Theorem 4.1) and, by dominated convergence, αn → pup−1 a.e. in Ω as n → ∞.
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By Lemma 4.3, there is w ∈ H1
0 (Ω)\{0} such that wn → w in L∞(Ω) and, again by dominated

convergence,

∫

Ω

∇w∇ϕdx = lim
n→∞

∫

Ω

(αn(x)wn − λwn)ϕdx =

∫

Ω

(pup−1 − λ)wϕdx

for all ϕ ∈ C∞
c (Ω), which contradicts the nondegeneracy of the limiting problem (4.2).

Remark 4.6 (Uniform constants depending on upper bounds). In the proof of Theorem 1.1,
the constant σ depends on p. One can obtain a uniform σ for all p ∈ (1, p0) with p0 < 2∗ − 1
by considering also a sequence pn ⊂ (1, p0] such that limn→∞ pn = p ∈ [1, p0] in the proof by
contradiction of Theorem 1.1. If p > 1, basically the same argument applies, whereas if p = 1,
then one can argue as in Theorem 1.6. Note, however, that this requires more technicalities,
since uniform interior C2s+ε regularity estimates are not available for s→ 1− (see Remark 4.2).
Instead, one can use regularity theory for distributional solutions, as in Theorem 4.1. In order
to make the ideas in our arguments more transparent, we do not pursue this here.

4.2 Proofs of the corollaries

All the corollaries stated in the introduction follow directly from Theorem 1.1 and the known
results for the local case, except for Corollary 1.3, which involves only least-energy solutions
and it is a consequence of the next result.

Theorem 4.7. Let N > 2, p ∈ (1, 2∗ − 1), λ > −λ11(Ω), and Ω be such that the problem

−∆u+ λu = up in Ω, u = 0 on ∂Ω,

has a unique least energy solution u which is nondegenerate. Then, there is σ = σ(Ω, λ, p) ∈
(0, 1) such that, for s ∈ (σ, 1], the problem (1.1) has a unique least energy solution and it is
nondegenerate.

Proof. The result follows by arguing exactly as in Theorem 1.1 and by noting that, by [30,
Theorem 4.5.], a sequence of least energy solutions converges to a least energy solution of the
limiting problem.
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et Appliquées, 128:339–378, 2019.

[22] G. Di Fratta and A. Fiorenza. A short proof of local regularity of distributional solutions of
poisson’s equation. Proceedings of the American Mathematical Society, 148(5):2143–2148,
2020.

[23] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhikers guide to the fractional sobolev
spaces. Bulletin des sciences mathématiques, 136(5):521–573, 2012.
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