Numerical simulations with rigid particles, drops, or vesicles constitute some exam- ples that involve 3D objects with spherical topology. When the numerical method is based on boundary integral equations, the error in using a regular quadrature rule to approximate the layer potentials that appear in the formulation will increase rapidly as the evaluation point approaches the surface and the integrand becomes sharply peaked. To determine when the accuracy becomes insufficient, and a more costly spe- cial quadrature method should be used, error estimates are needed. In this paper, we present quadrature error estimates for layer potentials evaluated near surfaces of genus 0, parametrized using a polar and an azimuthal angle, discretized by a combination of the Gauss-Legendre and the trapezoidal quadrature rules. The error estimates involve no unknown coefficients, but complex-valued roots of a specified distance function. The evaluation of the error estimates in general requires a one-dimensional local root- finding procedure, but for specific geometries, we obtain analytical results. Based on these explicit solutions, we derive simplified error estimates for layer potentials evalu- ated near spheres; these simple formulas depend only on the distance from the surface, the radius of the sphere, and the number of discretization points. The usefulness of these error estimates is illustrated with numerical examples.
Estimation of quadrature errors for layer potentials evaluated near surfaces with spherical topology / Sorgentone, Chiara; Tornberg, Anna-Karin. - In: ADVANCES IN COMPUTATIONAL MATHEMATICS. - ISSN 1572-9044. - 49:6(2023). [10.1007/s10444-023-10083-7]
Estimation of quadrature errors for layer potentials evaluated near surfaces with spherical topology
Chiara Sorgentone
;
2023
Abstract
Numerical simulations with rigid particles, drops, or vesicles constitute some exam- ples that involve 3D objects with spherical topology. When the numerical method is based on boundary integral equations, the error in using a regular quadrature rule to approximate the layer potentials that appear in the formulation will increase rapidly as the evaluation point approaches the surface and the integrand becomes sharply peaked. To determine when the accuracy becomes insufficient, and a more costly spe- cial quadrature method should be used, error estimates are needed. In this paper, we present quadrature error estimates for layer potentials evaluated near surfaces of genus 0, parametrized using a polar and an azimuthal angle, discretized by a combination of the Gauss-Legendre and the trapezoidal quadrature rules. The error estimates involve no unknown coefficients, but complex-valued roots of a specified distance function. The evaluation of the error estimates in general requires a one-dimensional local root- finding procedure, but for specific geometries, we obtain analytical results. Based on these explicit solutions, we derive simplified error estimates for layer potentials evalu- ated near spheres; these simple formulas depend only on the distance from the surface, the radius of the sphere, and the number of discretization points. The usefulness of these error estimates is illustrated with numerical examples.File | Dimensione | Formato | |
---|---|---|---|
Sorgentone_Spherical topology_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.