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Abstract
Numerical simulations with rigid particles, drops, or vesicles constitute some exam-
ples that involve 3D objects with spherical topology. When the numerical method is
based on boundary integral equations, the error in using a regular quadrature rule to
approximate the layer potentials that appear in the formulation will increase rapidly
as the evaluation point approaches the surface and the integrand becomes sharply
peaked. To determine when the accuracy becomes insufficient, and a more costly spe-
cial quadrature method should be used, error estimates are needed. In this paper, we
present quadrature error estimates for layer potentials evaluated near surfaces of genus
0, parametrized using a polar and an azimuthal angle, discretized by a combination of
the Gauss-Legendre and the trapezoidal quadrature rules. The error estimates involve
no unknown coefficients, but complex-valued roots of a specified distance function.
The evaluation of the error estimates in general requires a one-dimensional local root-
finding procedure, but for specific geometries, we obtain analytical results. Based on
these explicit solutions, we derive simplified error estimates for layer potentials evalu-
ated near spheres; these simple formulas depend only on the distance from the surface,
the radius of the sphere, and the number of discretization points. The usefulness of
these error estimates is illustrated with numerical examples.
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1 Introduction

We consider a generic layer potential over a regular surface S ⊂ R
3,

u(x) =
ˆ
S

k
(
x, y

)
σ( y)

‖ y − x‖2p dS( y), (1)

where 2p ∈ Z
+ and the evaluation (or target) point x ∈ R

3 is allowed to be close to,
but not on, S. The functions k

(
x, y

)
and σ(y) as well as S are assumed to be smooth.

When x is close to S, the integrand will be peaked around the point on S closest to x,
implying that, while the integral is well defined analytically, it is difficult to resolve
well numerically.

In paper [1], we derived estimates for the numerical errors that result when applying
quadrature rules to such layer potentials. Specifically, we considered the panel-based
Gauss-Legendre quadrature rule and the global trapezoidal rule. The estimates that
were derived have no unknown coefficients and can be efficiently evaluated given the
discretization of the surface. The evaluation involves a local one-dimensional root-
finding procedure. In numerical experiments, we have found the estimates to be both
sufficiently precise and computationally cheap to be practically useful. This means
that they can be used to determine when the regular quadrature is insufficient for a
required accuracy, and hence when a more costly special quadrature method must be
invoked. In deriving these estimates, we assumed that the local (for Gauss-Legendre)
or global (for trapezoidal rule) surface parametrization is such that the map between
the parameter space and the surface coordinates is one-to-one.

Discretization of boundary integral equations has successfully been used in simu-
lations of particles in Stokes flow, including solid particles [2, 3], drops [4–6], vesicles
[7, 8] and red blood cells [9]. In such simulations, the integral equation involves layer
potentials over the particle surfaces, i.e., S in (1) is a surface of genus 0, topologically
equivalent to a sphere. In these applications, it is quite common to discretize surfaces
based on a parameterization in spherical coordinates. For deformable surfaces, spher-
ical harmonics expansions offer spherical coordinate parameterizations that can be
dynamically evolved. When combined with a global discretization such as a Gaussian
grid, i.e., a discretization with a Gauss-Legendre quadrature rule in the polar angle (or
a polar angle mapping) and the trapezoidal rule in the periodic azimuthal angle, this
allows for a relatively low number of discretization points in relation to the achievable
accuracy.

Special quadraturemethodsmust always be employed to ensure accurate evaluation
of the layer potential in the case when the integrand has a singularity, i.e., when
the target point lies on the surface. Particle interactions require evaluation of nearly
singular integrals when the distance between particles is small, and it is desirable
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with error estimates that can determine whether the regular quadrature is sufficiently
accurate. Such error estimates are of great use also in a post-processing step, when
evaluating the velocity field close to particle surfaces.

In the case of a spherical coordinate parameterization of a genus-0 surface, equiva-
lent to a sphere, the parameter-to-surface coordinate mapping is not one-to-one at the
poles. Here, the derivative of the surface coordinates with respect to the azimuth angle
becomes zero, thereby causing the surface area element to vanish at these points. Con-
sequently, the previously derived error estimates cannot be straightforwardly combined
to apply for all evaluation points x. Motivated by the applications described above, we
seek to derive error estimates applicable to this case.

Hence, in this paper, we address the case of a general smooth surface of genus
0, parametrized using a polar and an azimuthal angle, discretized by a combination
of the Gauss-Legendre quadrature rule and the trapezoidal rule as introduced above.
Before we describe the contributions of this paper, we will provide a brief overview
of the derivations of the estimates in paper [1] and the previous results that form the
foundation for this work.

Consider the following simple integrals

ˆ
E

1
(
(t − a)2 + b2

)p dt =
ˆ
E

1

(t − z0)p (t − z̄0)p
dt, (2)

with z0 = a + ib, a, b ∈ R, b > 0, p ∈ Z
+, and

ˆ
E

1

(t − z0)p
dt, z0 = a + ib, a, b ∈ R, b �= 0, p ∈ Z

+, (3)

over a basic interval E , e.g., [−1, 1] forGauss-Legendre and [0, 2π) for the trapezoidal
rule. If b is small the integrands have two poles/one pole close to the integration interval
along the real axis. The theory of Donaldson and Elliott [10] defines the quadrature
error as a contour integral in the complex plane over the integrand multiplied with
a so-called remainder function, which depends on the quadrature rule. Elliott et al.
[11] derived error estimates for the error in the approximation of (2) with an n-point
Gauss-Legendre quadrature rule. To estimate the contour integral, they used residue
calculus for p = 1 and branch cuts for 0 < p < 1. In [12], af Klinteberg and Tornberg
derived error estimates for both (2) and (3) for the Gauss-Legendre quadrature rule,
for any p ∈ Z

+. Corresponding results were derived also for the trapezoidal rule, but
for integration over the unit circle. Previous studies on the trapezoidal rule include the
survey by Trefethen and Weideman [13], and the error bound provided by Barnett in
[14] for the quadrature error in evaluating the harmonic double layer potential.

In [15], a key step was taken to accurately estimate the quadrature errors for the
Gauss-Legendre quadrature rule in the approximation of layer potentials in 2D,written
in complex form. Introducing a parametrization of a smooth curve segment, γ (t) ∈ C,
a typical form of an integral to evaluate is

ˆ
E

f (t) γ ′(t)
(γ (t) − z0)p

dt . (4)
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As compared to the estimates for the simple complex integral (3) above, the estimates
derived for this integral require the knowledge of t0 ∈ C such that γ (t0) = z0. In
practice, given the Gauss-Legendre points used to discretize the panel, a numerical
procedure is used to compute t0. Note that not all layer potentials in 2D can be written
in this form. Using the same techniques, remarkably accurate error estimates were
derived also for layer potentials for the Helmholtz and Stokes equations, in [15] and
[16], respectively.

Now, let S in Eq.1 be a curve � ∈ R
2, � = γ (E), E ⊂ R. We can then write the

layer potential in Eq.1 in the equivalent form

u(x) =
ˆ
E

k
(
x, γ (t)

)
σ(γ (t))

∥∥γ (t) − x
∥∥2p

∥∥γ ′(t)
∥∥ dt =

ˆ
E

f (t)dt
∥∥γ (t) − x

∥∥2p
. (5)

In the last step, all the components that are assumed to be smooth have been collected
in the function f (t), which has an implicit dependence on x. The location of the
poles are in this case given by each t0 ∈ C such that the denominator is zero. In
[1], error estimates were derived for such integrals, both for the Gauss-Legendre and
the trapezoidal quadrature rules. To evaluate these estimates, the pair of the complex
conjugate roots {t0, t̄0} closest to the integration interval is needed and is in practice
found through a numerical root-finding procedure. The estimates will be stated in
Sect. 3.

Akeyobservation in [1]was that the error estimates for the numerical approximation
of Eq.5 can be derived the same way for � ∈ R

d , d = 2, 3. The only difference is that
R2(t, x) = ∥

∥γ (t) − x
∥
∥2 will have three additive terms instead of two. Starting with

the curve estimates in R
3, error estimates for the prototype layer potential (1) were

derived.
With S a two-dimensional surface in R

3, parametrized by γ : E → R
3, E =

{E1 × E2} ⊂ R
2, (1) takes the form

u(x) =
¨

E

k
(
x, γ (t, ϕ)

)
σ(γ (t, ϕ))

∥∥γ (t, ϕ) − x
∥∥2p

∥
∥∥∥
∂γ

∂t
× ∂γ

∂ϕ

∥
∥∥∥ dϕdt =

¨
E

f (t, ϕ)dϕdt
∥∥γ (t, ϕ) − x

∥∥2p
.

(6)

All the components that are assumed to be smooth have here been collected
in f (t, ϕ) which depends implicitly on x. In [1] error estimates were derived for
the numerical approximation of (6) by composite Gauss-Legendre quadrature or
global trapezoidal quadrature. Numerical examples were shown with tensor product
quadrature rules based on Gauss-Legendre quadrature for surface discretizations of
quadrilateral patches, and the tensor product trapezoidal rule for global discretizations.

123



Estimation of quadrature errors for layer... Page 5 of 37    87 

2 Contributions and outline

In this paper, we will discuss the generalization of the results of paper [1] to the case of
smooth surfaces topologically equivalent to a sphere, parametrized by γ ◦ : U → R

3,
where U = {

(θ, ϕ) ∈ [0, π ] × [0, 2π)
}
.

A generic surface can be represented by

γ ◦(θ, ϕ) =
∞∑

	=0

	∑

m=−	

Cm
	 Y

m
	 (θ, ϕ), (7)

where Cm
	 ∈ C

3 and Ym
	 (θ, ϕ) is the spherical harmonic function of degree 	 and

order m. Note that each coordinate of γ ◦ ∈ R
3 is represented by a spherical harmon-

ics expansion. In this way, also non-star-shaped domains can be represented, see, e.g.,
Fig. 6 in [9]. We should, however, emphasize that it will not be important for our
estimates what type of representation is used. What will be needed is a parameteri-
zation of the surfaces in (θ, ϕ) and the ability to evaluate the first derivatives of that
parameterization.

The surface γ (t, ϕ) in (6) can be defined as

γ (t, ϕ) = γ ◦(θ(t), ϕ), (8)

where t ∈ [−1, 1] and ϕ ∈ [0, 2π). With this parametrization, we can naturally
discretize the integral using a nt -point Gauss-Legendre quadrature rule in the t coor-
dinate, and a nϕ point trapezoidal rule in the periodic ϕ coordinate. We will consider
two different maps θ(t) : [−1, 1] → [0, π ]: a simple linear scaling

θ(t) = (t + 1)π/2, (9)

and a non-linear one
θ(t) = cos−1(−t) = π − cos−1(t). (10)

The inverse mappings are t(θ) = −1+2θ/π and t(θ) = − cos(θ), respectively. With
both mappings, t = −1 corresponds to θ = 0.

In Sect. 3, we introduce the error estimates derived in [1] for the integral over a
curve in R

2 or R3 Eq.5. In section 4, we then introduce the extension to a surface of
genus 0 in R3 for our specific discretizations, based on what was done in paper [1]. In
section 5, we derive analytical results for axisymmetric surfaces. We also show how,
based on the explicit knowledge of the roots, it is possible to derive simplified error
estimates for layer potentials evaluated near spheres. In Sect. 6, we discuss how to
numerically evaluate the estimates for a general surface with spherical topology, and
in Sect. 7, we show how the error estimates perform on different numerical examples.
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3 Quadrature error estimates for curves inR
2 andR

3

Let us introduce the base interval E , which for the Gauss-Legendre quadrature will
be [−1, 1] and for the trapezoidal rule [0, 2π). Consider an integral over such a base
interval

I[g] =
ˆ
E
g(t) dt, (11)

and an n-point quadrature rule with quadrature nodes {t	}n	=1 and corresponding
quadrature weights {w	}n	=1 to approximate it,

Qn[g] =
n∑

	=1

g(t	)w	. (12)

The error
En[g] = I[g] − Qn[g], (13)

as a function of n will depend on the function g and the specific quadrature rule. We
will consider closed curves for the trapezoidal rule and open curves (segments) with
the Gauss-Legendre quadrature rule.

We now introduce the squared distance function for a curve in R
d (d = 2 or 3), to

an evaluation point x ∈ R
d ,

R2(t, x) :=∥∥γ (t) − x
∥∥2 =

d∑

i=1

(γi (t) − xi )
2. (14)

We will later evaluate this function also for t ∈ C, in which case, we will use the right
most expression. This expression can then be evaluated as a complex number and will
no longer be a norm. Our integral of interest (5) can be written in the form

I[
p](x) =
ˆ
E


p(t, x)dt, 
p(t, x) = f (t)
(
R2(t, x)

)p , (15)

and we want to estimate En[
p](x).
As x is not on γ (t), we have R2(t, x) > 0 for t ∈ E . There will, however, be

complex conjugate pairs of roots to R2(t, x), since R2(t, x) is real for real t . Let{
t0, t0

}
be the pair closest to E , s.t.

R2(t0, x) = R2(t0, x) = 0. (16)

Under the assumption that f is smooth, the region of analyticity of
p(t, x) is bounded
by these roots. We will henceforth refer to them both as roots (of R2) and singularities
(of the integrand). They are in most applications not known a priori but can be found
numerically for a given target point x (see Sect. 6.2).

The quadrature error En[
p](x) can, followingDonaldson and Elliott [10], be writ-
ten as a contour integral in the complex plane over the integrand 
p(t, x) multiplied
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with a so-called remainder function, that depends on the quadrature rule. If p is an
integer, t0 and t̄0 are pth order poles of the integrand. If p is a half-integer, the integrand
has branch points at these singularities.

An important step in the derivation leading up to estimates of the quadrature error
in [1], is to divide and multiply the integrand with the factor t − w, where w ∈ C is
the singularity at the branch begin considered. This yields the singularity (t − w)−1

to consider in the complex plane, and introduces what is denoted the geometry factor.
The geometry factor G is, for an evaluation point x ∈ R

d and w ∈ C a root of R2,
defined as

G(w, x) = lim
t→w

t − w

R2(t, x)
=

(
2

(
γ (w) − x

) · γ ′(w)
)−1

. (17)

With these definitions, we are ready to state the error estimates from [1], for both the
trapezoidal rule and the Gauss-Legendre quadrature rule.

Error estimate 1 (Trapezoidal rule) Consider the integral in (15) for an evaluation
point x ∈ R

d , with 2p ∈ Z
+, where γ (E) is the parametrization of a smooth closed

curve in R
d where d = 2 or 3. The integrand is assumed to be periodic in t over

the integration interval E = [0, 2π). The error in approximating the integral with the
n-point trapezoidal rule can in the limit n → ∞ be estimated as

∣∣En[
p](x)
∣∣ ≈ 4πn p−1

�(p)

∣∣ f (t0)
∣∣∣∣G(t0, x)

∣∣p e−n|�t0|. (18)

Here, �(p) the gamma function, and the geometry factor G is defined in (17). The
squared distance function is defined in (14), and

{
t0, t0

}
is the pair of complex conju-

gate roots of this R2(t, x) closest to the integration interval E .

Error estimate 2 (Gauss-Legendre rule) Consider the integral in (15) for an evaluation
point x ∈ R

d , with 2p ∈ Z
+, where γ (E) is the parametrization of a smooth closed

curve in R
d d = 2 or 3, with E = [−1, 1]. The error in approximating the integral

with the n-point Gauss-Legendre rule can in the limit n → ∞ be estimated as

∣∣En[
p](x)
∣∣ ≈ 4π

�(p)
(2n + 1)p−1

∣∣ f (t0)
∣∣∣∣G(t0, x)

∣∣p

∣∣∣
∣

√
t20 − 1

∣∣∣
∣

1−p

∣
∣∣∣t0 +

√
t20 − 1

∣
∣∣∣

2n+1 , (19)

where
√
z2 − 1 is defined as

√
z + 1

√
z − 1 with −π < arg(z ± 1) ≤ π . Here, �(p)

the gamma function, the geometry factor G is defined in (17), the squared distance
function is defined in (14), and

{
t0, t0

}
is the pair of complex conjugate roots of this

R2(t, x) closest to the integration interval E .

In paper [1], each estimate was written as two different estimates, one for positive
integers p, and one for positive half-integers p. The derivation of the two estimates
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follows a different path, using residue calculus and branch cuts, respectively. However,
using (p− 1)! = �(p) for integer p the two estimates can both be written in the form
given above.

4 Quadrature errors near two-dimensional surfaces inR
3

Let us now consider the three-dimensional case, and the prototype layer potential
(6). Here, S ⊂ R

3 is a two-dimensional surface parametrized by γ : E → R
3,

E = {E1 × E2} ⊂ R
2. As introduced in (8), we will specifically consider γ (t, ϕ)

where t ∈ E1 = [−1, 1] and ϕ ∈ E2 = [0, 2π).
In analogy to the squared distance function to a curve, as introduced in (14), we now

introduce the squared distance function between the surface γ (t, ϕ) and the evaluation
point x = (x, y, z),

R2(t, ϕ, x) :=∥∥γ (t, ϕ) − x
∥∥2

= (γ1(t, ϕ) − x)2 + (γ2(t, ϕ) − y)2 + (γ3(t, ϕ) − z)2.
(20)

Note that we will later evaluate R2 also for complex arguments using the right most
expression, in which case it is no longer a norm. With this, the integrand of (6) can be
written


p(t, ϕ, x) = f (t, ϕ)
(
R2(t, ϕ, x)

)p . (21)

The operators I[g], Qn[g] and En[g] were introduced in the beginning of Sect. 3,
with En[g] = I[g]− Qn[g]. Here, we use them with a subindex indicating if they are
applied in the t or the ϕ direction, where it should be understood that Gauss-Legendre
quadrature rule is applied in the t-direction and the trapezoidal rule in the ϕ direction.
For ease of notation, we will skip the brackets above, such that ItIϕ
p means an
integration of
p first in the ϕ and then in the t direction. We can then write the tensor
product quadrature as

Qt,nt Qϕ,nϕ

p = (It − Et,nt

) (
Iϕ − Eϕ,nϕ

)

p, (22)

and from here

E2
nt ,nϕ


p :=
(
ItIϕ − Qt,nt Qϕ,nϕ

)

p

=
(
It Eϕ,nϕ +Et,nt Iϕ − Et,nt Eϕ,nϕ

)

p

≈
(
It Eϕ,nϕ +Iϕ Et,nt

)

p. (23)

In this last step, we have neglected the quadratic error term and used that Et,nt Iϕ =
Iϕ Et,nt . This last fact follows from Et,nt Iϕ = (It −Qt,nt )Iϕ combined with ItIϕ =
IϕIt and Qt,nt Iϕ = Iϕ Qt,nt . For a more detailed discussion, see [17]. For some
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basic integrals, Elliott et al. [18] have shown that the quadratic error term that we here
neglect can have an important contribution. As it is a higher-order contribution, this is
only true when the quadrature error is large, and we will derive our estimates without
it, as was also done in [1].

Explicitly writing out the first term in the right-hand side of (23), we have

It Eϕ,nϕ 
p =
ˆ
E1

⎡

⎣
ˆ
E2

f (t, ϕ)dϕ
∥∥γ (t, ϕ) − x

∥∥2p
−

nϕ∑

l=1

f (t, ϕl)wT Z
l∥∥γ (t, ϕl) − x
∥∥2p

⎤

⎦ dt, (24)

where ϕl = 2π(l − 1)/nϕ , l = 1, . . . , nϕ and wT Z
l = 2π/nϕ , ∀l. The term in the

brackets (i.e., Eϕ,nϕ ) represents the quadrature error of the trapezoidal rule on the line
Lt that for a given t is defined as

Lt := {
γ (t, ϕ) | ϕ ∈ E2

}
, t ∈ E1. (25)

For short, we will denote this curve γ (t, ·). For a fixed t , this is the quadrature error
for the trapezoidal rule, for which an estimate is given in Error estimate 1. The term
Iϕ Et,nt 
p can be written analogously to (24), simply swapping t and ϕ, introducing
the Gauss-Legendre quadrature nodes and weights. The error estimate that needs to
be integrated in this term is given in Error estimate 2.

To be able to distinguish if the geometry factor in the error estimate corresponds to
γ (t, ·) or γ (·, ϕ), we extend the definition of the geometry factor in (17) and denote

Gγ ,1(t, ϕ) =
(
2

(
γ (t, ϕ) − x

) · γ t (t, ϕ)
)−1 =

(
∂

∂t
R2(t, ϕ, x)

)−1

, (26)

Gγ ,2(t, ϕ) =
(
2

(
γ (t, ϕ) − x

) · γ ϕ(t, ϕ)
)−1 =

(
∂

∂ϕ
R2(t, ϕ, x)

)−1

. (27)

We need to work with the absolute value of the error, and we will use the estimate

∣
∣∣E2

nt ,nϕ

p

∣
∣∣ ≈

∣
∣∣∣
(
It Eϕ,nϕ +Iϕ Et,nt

)

p

∣
∣∣∣ ≤ It

∣
∣∣Eϕ,nϕ 
p

∣
∣∣ + Iϕ

∣∣Et,nt 
p
∣∣ . (28)

Expanding back from this shorthand notation, this can be formulated as follows.

Error estimate 3 (Surface in R
3) Given an evaluation point x ∈ R

3, consider the
integral in (6) with 2p ∈ Z

+, where S ⊂ R
3 is a two-dimensional smooth closed

surface parametrized by γ : E → R
3, E = {E1 × E2} = [−1, 1] × [0, 2π) ⊂ R

2.
The integrand is assumed to be periodic inϕ over the integration interval E2 = [0, 2π).

The error in approximating the integral with the nt point Gauss-Legendre rule in
the t-direction and the nϕ-point trapezoidal rule in the ϕ direction is defined as

EQ
γ ( f , p, nt , nϕ, x) =

∣∣
∣∣
∣∣

ˆ
E1

ˆ
E2

f (t, ϕ)
∥
∥γ (t, ϕ) − x

∥
∥2p

dϕdt −
nϕ∑

l=1

nt∑

k=1

f (tk , ϕl )wT Z
l wGL

k∥
∥γ (tk , ϕl ) − x

∥
∥2p

∣∣
∣∣
∣∣

(29)
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where {tk, wGL
k }ntk=1 and {ϕl , wT Z

l }nϕ

l=1 are the Gauss-Legendre and trapezoidal rule
quadrature nodes and weights.

Assume that ϕ0(t, x) and t0(ϕ, x) as defined below exist for t ∈ [−1, 1] and
ϕ ∈ [0, 2π), respectively. Then, EQ

γ can be estimated as

EQ
γ ( f , p, nt , nϕ, x) ≈ EEST

γ ( f , p, nt , nϕ, x) = ET Z
γ ( f , p, nϕ, x) + EGL

γ ( f , p, nt , x), (30)

where

ET Z
γ ( f , p, nϕ, x) =

ˆ
E1

∣∣∣ f
(
t, ϕ0(t, x)

)
Gγ ,2

(
t, ϕ0(t, x), x

)p
∣∣∣ estT Z (ϕ0(t, x), nϕ, p)dt, (31)

EGL
γ ( f , p, nt , x) =

ˆ
E2

∣∣∣ f
(
t0(ϕ, x), ϕ

)
Gγ ,1

(
t0(ϕ, x), ϕ, x

)p
∣∣∣ estGL (t0(ϕ, x), nt , p)dϕ, (32)

and

estT Z (ϕ0, n, p) = 4π

�(p)
n p−1e−n|�ϕ0|, (33)

estGL(t0, n, p) = 4π

�(p)

∣∣∣∣
∣∣∣

2n + 1
√
t20 − 1

∣∣∣∣
∣∣∣

p−1
∣∣∣
∣t0 +

√
t20 − 1

∣∣∣
∣

−(2n+1)

, (34)

where
√
z2 − 1 is defined as

√
z + 1

√
z − 1 with −π < arg(z ± 1) ≤ π .

Here, �(p) is the gamma function, and the geometry factors Gγ ,1 and Gγ ,2 are
defined in (26)- (27). Given the evaluation point x ∈ R

3 and t , {ϕ0(t, x), ϕ0(t, x)}
is the pair of complex conjugate roots of R2(t, ϕ, x) =∥∥γ (t, ϕ) − x

∥∥2 closest to the
integration interval E2, and similarly for t0(ϕ, x) for given x and ϕ.

Remark 1 For this error estimate to be useful, it should give a good approximation of
the error already for moderate values of nt and nϕ . In practice, we find this to be true
as long as nt and nϕ are large enough for the surface to be well resolved. This will be
discussed in the numerical results section.

Remark 2 Given x ∈ R
3, it is not guaranteed that a root ϕ0(t, x) exists for all t ∈

[−1, 1], nor that t0(ϕ, x) exists for all ϕ ∈ [0, 2π). For example, for surfaces of
spherical topology with a global parametrization as defined in Eq. (8), the squared
distance function R2(t, ϕ, x) is independent of ϕ for t = −1, 1, and hence no root
ϕ0 exists. For axisymmetric surfaces, no root ϕ0 exists for evaluation points along the
axis of symmetry, interior or exterior to the surface.

The exposition in this section has followed what was done in [1], however, combin-
ing integration by the Gauss-Legendre rule in one direction, and the trapezoidal rule in
the other. In [1] discretizations of surfaces of genus 1 with either a global trapezoidal
rule in both directions or a panel-based Gauss-Legendre rule were considered. When
a panel-based discretization is used, the error estimates for the panels closest to the
evaluation point are added together. We cannot theoretically guarantee that the roots
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that we need for evaluation of the error estimate always exist, and there are in general
no analytical formulas for the roots. In [1], the root finding is done numerically, and
approximations to the integrals in (31) and (32) are made, using the fact that the error
contribution is strongly localized to the region on the surface closest to the evaluation
point. For each evaluation point x, only one root t0(ϕ∗, x) and one root ϕ0(t∗, x) are
needed, where γ (t∗, ϕ∗) is the grid point (quadrature node) on the surface closest to
the evaluation point x. This approach works well apart from the rare occasions where
the root finding algorithm fails for evaluation points quite far from the surface.

To understand how we can evaluate error estimates for surfaces of genus 0 with
a global parametrization, we will first analytically consider the simpler case of an
axisymmetric surface, at times further simplified to a sphere. We will then in Sect. 6
discuss the practical evaluation of the estimate, including how to approximate the
remaining integrals and determine the roots as needed.

5 Analytical derivations for axisymmetric and spherical surfaces

In this section, we will consider an axisymmetric surface, as parametrized by

γ ◦,A(θ, ϕ) = (
a(θ) sin(θ) cos(ϕ), a(θ) sin(θ) sin(ϕ), b(θ) cos(θ)

)
, (35)

with a(θ), b(θ) > 0. Here, γ ◦,A : U → R
3, where U = {

(θ, ϕ) ∈ [0, π ] × [0, 2π)
}
.

For some results, we will simplify further and set a(θ) = b(θ) = a and consider a
sphere of radius a.

The parametrization γ (t, ϕ) relates to this parametrization through a mapping θ =
θ(t) as given in Eq. (8), with γ ◦ = γ ◦,A. Themap θ(t)will change the parametrization
of the surface in t and hence yield different locations of theGauss-Legendre quadrature
nodes on the surface. In this section,wewill keep this choice open to the extent possible,
and state most results in θ and ϕ.

Note that the axis of symmetry for γ ◦,A(θ, ϕ) is the z-axis. For a surface of a
different shift and orientation, the evaluation point x can be translated and rotated into
a local coordinate system of the particle, and the results stated below will apply.

Generally, the roots of R2 cannot be found analytically, and we need to compute
them using a root-finding procedure. For the axisymmetric case, we can, however,
analytically find the roots ϕ0 given θ , and for a sphere, we can furthermore find the
roots θ0 given ϕ.

We will see that the estimate for the error incurred by the trapezoidal rule cannot
be evaluated for an evaluation point at the symmetry axis, as the integrand in Eq. (31)
becomes undefined. Using the analytical expressions for the roots, we can study appro-
priate limits as the evaluation point approaches the symmetry axis. We will also use
these analytical results to derive a simplified error estimate for the sphere.
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5.1 Analytical roots to the squared distance function

Wewill start by finding the roots to the squared distance function defined with respect
to a circle in the xy plane, and then extend this result.

Lemma 1 (Root of R2 for circle in plane) Let a circle of radius a > 0 in the xy-plane
be parametrized by (γ1(α), γ2(α), γ3(α)) = a(cosα, sin α, 0), 0 ≤ α < 2π . Given a
point x = (x, y, z) ∈ R

3, not on the curve, define

R2(α, x) = (γ1(α) − x)2 + (γ2(α) − y)2 + z2.

Then, R2(α, x) = 0 for α = α0 with

α0 = atan2(y, x) ± i ln
(
λ +

√
λ2 − 1

)
, λ = 1

2a

a2 + x2 + y2 + z2
√
x2 + y2

. (36)

Here, λ > 1 and atan2(η, ξ) is the argument of the complex number ξ + iη,
−π < atan2(η, ξ) ≤ π .

Remark 3 Note that if α0 is a root to R2(α, x), so is α0 +2π p for any p ∈ Z. Further,
notice that we have

α0 = atan2(y, x) ± i ln
(
λ +

√
λ2 − 1

)
= atan2(y, x) ∓ i ln

(
λ −

√
λ2 − 1

)
.

Proof (Lemma 1) Introduce ρ2 = x2 + y2 and d2 = a2 +ρ2 + z2. With this notation,
we have

R2(α, x) = (a cos(α) − x)2 + (a sin(α) − y)2 + z2 = d2 − 2a(x cos(α) + y sin(α)) (37)

= d2 − 2aρ
(
cos(θ̄

)
cos(α) + sin(θ̄) sin(α))

where x = ρ cos(θ̄), y = ρ sin(θ̄) with θ̄ = atan2(y, x) have been introduced in the
last step.

To determine the roots of R2, we replace α = θ̄ + iη, and rewrite the four trigono-
metric terms similarly to cos(θ̄ + iη) = 1

2 (e
i θ̄e−η +e−i θ̄eη). After simplification, this

yields

0 = d2 − 2aρ

[
1

2
(e−η + eη)

]
= d2 − aρ(β−1 + β), (38)

where we have replaced η = ln(β). Introducing λ = 1
2
d2
aρ
, we are left to solve

β2 − 2λβ + 1 = 0 which yields β = λ ± √
λ2 − 1.

We have α0 = θ̄ + i ln β, for the two values of β. Using that λ − √
λ2 − 1 =

(λ + √
λ2 − 1)−1 and hence ln(λ − √

λ2 − 1) = − ln(λ + √
λ2 − 1), we can write

α0 = atan2(y, x) ± i ln(λ +
√

λ2 − 1) = atan2(y, x) ∓ i ln
(
λ −

√
λ2 − 1

)
. (39)
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To see thatλ > 1, introduceρ = √
x2 + y2, andwriteλ = (a/ρ+ρ/a)/2+z2/(2aρ).

Here, (a/ρ +ρ/a)/2 ≥ 1 with equality only when ρ = a. Since x is not on the curve,
we cannot have z = 0 in this case, and hence λ > 1. ��
Lemma 2 (Root of R2 in ϕ given θ ) Let the axisymmetric surface γ ◦,A(θ, ϕ) be
parametrized as in Eq. (35). Given an evaluation point x = (x, y, z) ∈ R

3 not on
γ ◦,A, define

R2(θ, ϕ, x) = (γ
◦,A
1 (θ, ϕ) − x)2 + (γ

◦,A
2 (θ, ϕ) − y)2 + (γ

◦,A
3 (θ, ϕ) − z)2.

Assume x2 + y2 > 0. Given θ = θ̄ ∈ (0, π), R2(θ̄ , ϕ, x) = 0 for ϕ = ϕ0 with

ϕ0 = atan2(y, x) ± i ln
(
λ +

√
λ2 − 1

)
, λ = 1

2ã

ã2 + x2 + y2 + (b̃ − z)2
√
x2 + y2

, (40)

where ã = a(θ̄) sin θ̄ and b̃ = b(θ̄) cos θ̄ . Here, λ > 1, and atan2(η, ξ) is the argument
of the complex number ξ + iη, −π < atan2(η, ξ) ≤ π .

Remark 4 Note that the root (in Lemma 2) is not defined if x2 + y2 = 0. In this case
R2(θ̄ , ϕ, x) = ã2 + (b̃ − z)2, which is independent of ϕ and always positive, so no
root can be found. Similarly, if θ̄ = 0 or π , R2(θ̄ , ϕ, x) is again independent of ϕ, and
no root can be found.

Proof (Lemma 2) Fix θ = θ̄ , define ã = a(θ̄) sin(θ̄), b̃ = b(θ̄) cos(θ̄), and rewrite
Eq. (35) as

γ ◦,A(θ, ϕ) =
(
ã cos(ϕ), ã sin(ϕ), b̃

)
. (41)

Now
R2(θ̄ , ϕ, x) = (ã cos(ϕ) − x)2 + (ã sin(ϕ) − y)2 + (b̃ − z)2. (42)

Equation (41) describes a circle of radius ã in the xy plane at z = b̃, and so we can

proceed similarly as we did for Lemma 1. In this case, we get λ = ã2+(b̃−z)2+ρ2

2ãρ
,

where ρ2 = x2 + y2. With this λ, the expression of the analytical root for ϕ0(θ̄) is of
the same form as in Eq. (36), as given in Eq. (40).

To see that λ > 1, the argument is similar to that in the proof of Lemma 1. Rewrite
λ as λ = (ã/ρ + ρ/ã)/2 + (b̃ − z)2/(2ãρ). Here, (ã/ρ + ρ/ã)/2 ≥ 1 with equality
when ρ = ã. Since x is not on the surface, we cannot have z = b̃ in this case, and
hence λ > 1. ��
Lemma 3 (Root of R2 in θ given ϕ) Let the sphere γ ◦,A(θ, ϕ) be parametrized as in
Eq. (35) with a(θ) = b(θ) = a. Given an evaluation point x = (x, y, z) ∈ R

3 not on
γ ◦,A, define

R2(θ, ϕ, x) = (γ
◦,A
1 (θ, ϕ) − x)2 + (γ

◦,A
2 (θ, ϕ) − y)2 + (γ

◦,A
3 (θ, ϕ) − z)2.
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Given ϕ = ϕ̄ ∈ [0, 2π), assume that if z = 0, then ϕ̄ − atan2(y, x) �= π/2 + pπ ,
p ∈ Z. Then, R2(θ, ϕ̄, x) = 0 for θ = θ0 with

θ0 = atan2(x cos ϕ̄ + y sin ϕ̄, z) ± i ln
(
λ +

√
λ2 − 1

)
, (43)

λ = 1

2a

a2 + x2 + y2 + z2
√

(x cos ϕ̄ + y sin ϕ̄)2 + z2
. (44)

Here, λ > 1 and atan2(η, ξ) is the argument of the complex number ξ + iη, −π <

atan2(η, ξ) ≤ π .

Remark 5 Note that the root in Lemma 3 is not defined for the case when z = 0 and
ϕ̄ − atan2(y, x) = π/2+ pπ , p ∈ Z. In this case, R2(θ, ϕ̄, x) = a2 + x2 + y2, which
is independent of θ and always positive, so no root can be found.

Proof (Lemma 3) We fix the angle ϕ = ϕ̄ ∈ [0, 2π) and want to determine the root
θ0 of:

R2(θ, ϕ̄, x) = (a sin(θ) cos(ϕ̄)−x)2+(a sin(θ) sin(ϕ̄)−y)2+(a cos(θ)−z)2. (45)

After a rotation of the evaluation point by ϕ̄ in clockwise direction around the z-
axis, we get (x̃, ỹ, z̃) = (x cos(ϕ̄) + y sin(ϕ̄),−x sin(ϕ̄) + y cos(ϕ̄), z). In this new
coordinate system Eq. (35) becomes γ̃ ◦(θ, ϕ̄) = (

a sin(θ), 0, a cos(θ)
)
. This is as in

Lemma 1, but here with z instead of x , x instead of y, y instead of z. Also, θ ∈ [0, π ],
so we are considering a half circle. Now introduce ρ̃ = √

z̃2 + x̃2. Using Lemma 1,
we get

λ = a2 + ρ̃2 + ỹ2

2aρ̃
= a2 + x̃2 + ỹ2 + z̃2

2aρ̃
, (46)

and
θ0 = atan2(x̃, z̃) ± i ln(λ +

√
λ2 − 1). (47)

Using the relations between (x̃, ỹ, z̃) and x, y, z, yields Eqs. (43) and (44).
To see that λ > 1, rewrite λ as λ = (a/ρ̃ + ρ̃/a)/2 + ỹ2/(2aρ̃). Here, (a/ρ̃ +

ρ̃/a)/2 ≥ 1 with equality when ρ̃ = a. Since x is not on the surface, we cannot have
ỹ = 0 in this case, and hence λ > 1. ��
Corollary 1 Under the assumptions of Lemma 3, with the evaluation point at the z-axis
inside or outside of the sphere, x = (0, 0, z) ∈ R

3,|z| �= a, it holds

θ0 = ±i ln(|z| /a),

independent of ϕ̄.

Proof (Corollary 1) From Eqs. (43) and (44), we have
√

λ2 − 1 =
∣∣
∣a2 − z2

∣∣
∣ /(2a|z|),

and λ+√
λ2 − 1 evaluates as|z| /a for|z| > a and a/|z| for|z| < a. The result follows

since ln(|z| /a) = − ln(a/|z|). ��

123



Estimation of quadrature errors for layer... Page 15 of 37    87 

5.2 Error estimates for evaluation points close to and on the symmetry axis

With γ (t, ϕ) = γ ◦,A(θ(t), ϕ), ET Z (γ , f , p, nϕ, x) from Error estimate 3 can be
written as

ET Z
γ ( f , p, nϕ, x) = 4π

�(p)
n p−1

ˆ
E1

∣∣∣ f
(
t, ϕ0(θ(t), x)

)∣∣∣ ET Z
f ac(x, θ(t))dt, (48)

where
ET Z

f ac(x, θ) =
∣∣∣G◦

γ ,2

(
θ, ϕ0(θ), x

)∣∣∣
p
e−nϕ|�ϕ0(θ,x)|. (49)

Here ϕ0(θ, x) is the root associated with γ ◦,A(θ, ϕ). Similarly, G◦
γ ,2

(
θ, ϕ, x

)
is the

second geometry factor associatedwith γ ◦,A(θ, ϕ), as will be explicitly defined below.
Note that the differentiation in Eq. (27) is with respect to ϕ and hence the mapping of
the t-coordinate yields no extra factor.

Aswas commented on inRemark 4, the rootϕ0(θ, x) is not defined for x = (0, 0, z),
z �= a. Furthermore, the geometry factor in ET Z

f ac((0, 0, z), θ), z �= a is infinite. To

proceed, we will derive the expression for the general ET Z
f ac(x, θ), where x is not

on the z-axis, and then consider the appropriate limit to understand the behavior for
evaluation points along the z-axis.

Theorem 1 Let the axisymmetric surface γ ◦,A(θ, ϕ) be parametrized as in Eq. (35).
Given an evaluation point x = (x, y, z) ∈ R

3, not on γ ◦,A, let R2(θ, ϕ, x) and
ϕ0(θ, x), the root of R2, be defined as in Lemma 2, and define G◦

γ ,2

(
θ, ϕ, x

) =
(

∂
∂ϕ

R2(θ, ϕ, x)
)−1

.

Let ET Z
f ac(x, θ) be as in Eq. (49) with 2p ∈ Z

+, nϕ ∈ Z
+, and assume that

ρ2 = x2 + y2 > 0. Then, for θ ∈ (0, π) it holds

ET Z
f ac(x, θ) =

∣∣
∣G◦

γ ,2

(
θ, ϕ0(θ, x), x

)∣∣
∣
p
e−nϕ|�ϕ0(θ,x)|

= 1

(ã2 + ρ2 + (b̃ − z)2)p

(
λ√

λ2 − 1

)p (
1

λ + √
λ2 − 1

)nϕ

, (50)

where ã = a(θ) sin(θ), b̃ = b(θ) cos(θ) and λ is as defined in Eq. (40) in Lemma 2.
We have that λ > 1 since x = (x, y, z) ∈ R

3 is not on γ ◦,A.
For λ > λ0 > 1, it holds

ET Z
f ac(x, θ) ≤ C

(ã2 + ρ2 + (b̃ − z)2)p

(
1

2λ

)nϕ

, (51)

where C = (λ0/(λ0 − 1))p(2λ0/(2λ0 − 1))nϕ . For large λ0, C ≈ 1.

Proof (Theorem 1) Introduce the angle ν = atan2(y, x) in the xy-plane, such that
x = ρ cos ν, y = ρ sin ν. With this, we can write ∂R2(θ, ϕ, x)/∂ϕ = ãρμ(ϕ) where
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μ(ϕ) = 2(− cos ν sin ϕ + sin ν cosϕ). Hence

G◦
γ ,2(θ, ϕ0, x) = (ãρμ(ϕ0(θ, x)))−1.

Note that dependence on θ is hidden in ã = a(θ) sin(θ) and ρ = √
x2 + y2.

Now, we first pick the root with the positive imaginary part and write ϕ0(θ, x) =
ν + iη, where η = ln β = ln

(
λ + √

λ2 − 1
)
. We have λ > 1 and hence β > 1 and

η > 0. With this, we have

μ(ϕ0) = 2(− cos ν sin(ν + iη) + sin ν cos(ν + iη)) = 1

i

(
eη − e−η

)
.

For the root with the negative imaginary part, we get μ(ϕ0) = (
e−η − eη

)
/i . Since

the absolute value will be taken, this will yield the same result in the end. We can
evaluate

ET Z
f ac(x, θ) =

∣∣∣∣G
◦
γ ,2

(
θ, ϕ0(θ, x), x

)p (
e−|�ϕ0(θ,x)|)nϕ

∣∣∣∣

=
(
e−η

)nϕ

(
ãρ

(
eη − e−η

))p = 1
(
ãρ

)p
1

(
β − 1/β

)p
1

βnϕ
. (52)

Replacing β = λ + √
λ2 − 1 and noting that β − 1/β = 2

√
λ2 − 1, we obtain

ET Z
f ac(x, θ) = 1

(
2ãρ

)p
1

(√
λ2 − 1

)p
1

(
λ + √

λ2 − 1
)nϕ

, (53)

which can be rewritten as Eq. (50).
We have λ > 1, and

λ√
λ2 − 1

<
λ√

λ2 − 2λ + 1
= λ

√
(λ − 1)2

= λ

λ − 1
<

λ0

λ0 − 1
, (54)

where the last step holds true for λ > λ0 as this quantity approaches 1 from above as
λ increases. Similarly

1

λ + √
λ2 − 1

<
1

λ + √
(λ − 1)2

= 1

2λ − 1
<

2λ0
2λ0 − 1

1

2λ
. (55)

Using these inequalities in Eq. (50), the result follows. ��
Remark 6 ET Z

f ac(x, θ) uses the root ϕ0(θ, x), and is hence not defined for ρ2 = x2 +
y2 = 0 or θ = {0, π} (see the remark following Lemma 2). In the next theorem,
we bound the maximum value of ET Z

f ac for a spherical surface as the evaluation point
approaches the z-axis.
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Theorem 2 Let the sphere γ ◦,A(θ, ϕ) be parametrized as in Eq. (35) with a(θ) =
b(θ) = a, and let all else be defined as in Theorem 1. Given an evaluation point
x = (x, y, z) ∈ R

3 not on γ ◦,A, set m = ‖x‖/a, α = atan2(
√
x2 + y2, z) and

β = atan2(y, x) such that

x = x(α) = ma
(
sin(α) cos(β), sin(α) sin(β), cos(α)

)
. (56)

It then follows

max
θ

ET Z
f ac(x(α), θ) = ET Z

f ac(x(α), α) ≤ C
mnϕ

a2p

(
1

1 − m

)2nϕ (
sin2 α

)nϕ

,

where the constant C is the same as in Eq. (51). Note that the value of β does not
affect the result due to the axisymmetry.

Proof (Theorem 2) The point on the surface of the sphere closest to x(α) is the point
with θ = α at the same azimuthal angle (ϕ = β). Differentiating ET Z

f ac(x(α), θ) as
given in Eq. (50) with respect to θ , one can show that θ = α yields the maximum, as
one would expect (the formulas do, however, get very long).

Starting with the formula in Eq. (51), we can evaluate the expression in the first
denominator using Eq. (56) and θ = α,

ã2+ρ2+(b̃−z)2 = a2(1+m2) sin2 α+a2(1−m)2 cos2 α = a2(1−m)2+2a2 m sin2 α,

and with ãρ = a2m sin2 α,

λ = ã2 + ρ2 + (b̃ − z)2

2ãρ
= (1 − m)2

2m

1

sin2 α
+ 1.

Using that ã2 +ρ2 + (b̃− z)2 ≥ a2(1−m)2 and λ > (1−m)2/(2m sin2 α), the result
follows. ��

Corollary 2 Let all be as in Theorem 2, and specifically let the evaluation point x(α)

be as in Eq. (56) with m �= 1. As the evaluation point x approaches the z − axis the
trapezoidal rule error ET Z

γ ( f , p, nϕ, x) in Eq. (48) vanishes, i.e.,

lim
α→{0,π}E

T Z
γ ( f , p, nϕ, x(α)) = 0.
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Fig. 1 Illustration of results related to Theorem 2 for a sphere of radius a = 1 with p = 1/2. a Plot of
ET Z
f ac(x(α), θ) versus θ/π for several values of α with nϕ = 20 andm = 1.05. Each curve peaks at θ = α,

marked with a red vertical dashed line, and decays rapidly away from θ = α. b Plot of ET Z
f ac(x(α), α)

versus α/π for (A): nϕ = 20, m = 1.01, (B): nϕ = 20, m = 1.05, (C): nϕ = 40, m = 1.01, (D): nϕ = 40,
m = 1.05. c Same as (b) but with log scale over small values of α. The two dashed red lines indicate the
slopes α2nϕ for nϕ = 20 and 40, respectively

Proof (Corollary 2) Using the definition in Eq. (48),

ET Z
γ ( f , p, nϕ, x) = 4π

�(p)
n p−1

ˆ
E1

∣∣∣ f
(
t, ϕ0(θ(t), x)

)∣∣∣ ET Z
f ac(x, θ(t))dt

≤ max
θ

ET Z
f ac(x, θ)

4π

�(p)
n p−1

ˆ
E1

∣∣∣ f
(
t, ϕ0(θ(t), x)

)∣∣∣ dt .

Hence with C = 4π
�(p)n

p−1
´
E1

∣∣∣ f
(
t, ϕ0(θ(t), x)

)∣∣∣ dt , it follows

ET Z
γ ( f , p, nϕ, x(α)) ≤ CET Z

f ac(x(α), α).

From Theorem 2 it follows that limα→{0,π} ET Z
f ac(x(α), α) = 0, and the result follows.

��
To the left in Fig. 1, we plot ET Z

f ac(x(α), θ) versus θ/π for several values of α for a

sphere of radius 1, with p = 1/2. ET Z
f ac(x(α), θ) peaks at θ = α, and decays rapidly

away from θ = α. The closer the evaluation point is to the surface (i.e., the closer m
is to 1), the larger the maximummagnitude for a fixed number of discretization points
nϕ . For a fixed m, the maximum magnitude decreases rapidly with nϕ . In the middle
figure, we plot ET Z

f ac(x(α), α) versus α/π for the combinations of nϕ = 20 and 40
andm = 1.01 and 1.05. In the rightmost plot, we zoom in to see the behavior for small
values of α. As sin α ≈ α for small α, we expect to see a decay proportional to α2nϕ ,
and we indicate these slopes in the plot for the two values of nϕ .

From Corollary 2, we have the result that the trapezoidal rule error ET Z
γ is bounded

by a constant times ET Z
f ac(x(α), α), and in the plots, we can see the fast decay of

ET Z
f ac(x(α), α) with decreasing α.
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Let us now consider the Gauss-Legendre rule error. Write EGL
γ from Error estimate

3 (Eq. (32)) as

EGL
γ ( f , p, nt , x) = 4π

�(p)
(2nt + 1)p−1

ˆ
E2

∣
∣∣ f

(
t0(ϕ, x), ϕ

)∣∣∣ EGL
f ac(x, ϕ)dϕ, (57)

where

EGL
f ac(x, ϕ) =

∣∣∣Gγ ,1
(
t0(ϕ), ϕ, x

)∣∣∣
p

∣
∣∣
√
t0(ϕ)2 − 1

∣
∣∣
1−p

∣∣∣t0(ϕ) + √
t0(ϕ)2 − 1

∣∣∣
2n+1 . (58)

This term can be directly evaluated for points on the symmetry axis. For an evalu-
ation point x = (0, 0, z), we find that for a sphere of radius a,

EGL
f ac(x, ϕ) = 1

2a|z|
1

∣∣z2 − a2
∣∣p−1

(
1

δ

)2nt+1

(59)

where δ =|z| /a if |z| > a and δ = a/|z| if |z| < a. We use the result in Corollary 1
for this derivation. For details, see Sect. . This result is independent of ϕ, and hence
we have

EGL
γ ( f , p, nt , x) = 4π

�(p)

1

2a|z|
(2nt + 1)p−1

∣∣z2 − a2
∣∣p−1

(
1

δ

)2nt+1 ˆ
E2

∣∣∣ f
(
t0(ϕ, x), ϕ

)∣∣∣ dϕ.

(60)
This means that the Gauss-Legendre error EGL will strongly dominate over the trape-
zoidal rule error ET Z for evaluation points close to the symmetry axis, and the
trapezoidal rule error can hence safely be ignored.

For a general axisymmetric surface, we cannot follow the same approach as for the
sphere, were we could identify the two parametrization angles for the closest point
on the surface, and furthermore show that ET Z

f ac(x, θ) attains its maximum value for
that value of the polar angle θ . As an evaluation point sufficiently close to a general
axisymmetric surface approaches the z-axis, the closest point on the surface will,
however, be the north or the south pole. Hence, it is interesting to investigate this
limit.

Theorem 3 Let ET Z
f ac(x, θ) be defined as in Theorem 1, and assume z of the evaluation

point x = (x, y, z) ∈ R
3 such that (b(θ) cos(θ) − z)2 = (b̃ − z)2 > 0 for θ ∈

{[0, β] ∪ [π − β, π ]}, for some β > 0. Then, for this range of θ it holds

ET Z
f ac(x) ≤ C

(b̃ − z)2(p+nϕ)
(ρa(θ) sin θ)nϕ . (61)

In the limit as ρ → 0 or ã = a(θ̄) sin(θ̄) → 0, or both, we have ET Z
f ac(x) → 0.
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Proof (Theorem 3) We start with Eq. (51) and rewrite λ as λ = (ã/ρ +ρ/ã)/2+ (b̃−
z)2/(2ãρ). As it is assumed (b̃ − z)2 > 0, we can use the simple estimate

λ ≥ 1 + (b̃ − z)2

2ãρ
>

(b̃ − z)2

2ãρ
,

and hence

ET Z
f ac(x, θ) <

C

(ã2 + ρ2 + (b̃ − z)2)p

(
ãρ

(b̃ − z)2

)nϕ

<
C

(b̃ − z)2(p+n)

(
ãρ

)nϕ ,

(62)
which is the desired result.

For general axisymmetric surfaces, we have not been able to prove that the trape-
zoidal error vanishes as the evaluation point approaches the z-axis, as we have done for
the sphere in Corollary 2. From the theorem above, we have the result that ET Z

f ac(x, θ)

vanishes as x approaches the z-axis for some range of θ , under some assumption on
the z-coordinate. We have, however, not proven for which value of θ the maximum of
ET Z

f ac(x, θ) is attained. We do conjecture that this θ → {0, π} as the evaluation point
approaches the z-axis for z < 0 and z > 0, respectively, as this θ is the parameter for
the point on the surface closest to the evaluation point.

Numerically, we note that the trapezoidal error contribution to the total error esti-
mate decays rapidly as the evaluation point approaches the z-axis also for general
axisymmetric surfaces.

5.3 Simplified error estimate for a spherical surface

In this section, we will present a simplified error estimate for a spherical surface, and
then discuss the derivation of it, starting from Error estimate 3.

Error estimate 4 Let γ (t, ϕ) = γ ◦,A(θ(t), ϕ), where γ ◦,A is the sphere parametrized
as in Eq. (35) with a(θ) = b(θ) = a, and θ(t) = π − cos−1(t). Consider the integral
in Eq. (6) with k ≡ 1 and σ ≡ 1 such that f (t, ϕ) =∥∥∂γ /∂t × ∂γ /∂ϕ

∥∥ = a2, with
the evaluation point x = (x, y, z) ∈ R

3 not on γ .
Introduce ζ = ‖x‖ = √

x2 + y2 + z2 and an even integer n. The error in approx-
imating the integral with the nt = n/2 point Gauss-Legendre rule in the t-direction
and the nϕ = n-point trapezoidal rule in the ϕ direction can be estimated as

Esphere(ζ, a, p, n) = 8π

�(p)
n p−1 n!!

(n + 1)!!
a2

∣∣ζ 2 − a2
∣∣p

(
1

δ

)n

, (63)

where δ = ζ/a if ζ > a and δ = a/ζ if ζ < a.

Remark 7 Note that this error estimate only depends on the evaluation point through
ζ = ‖x‖. This means that the error is estimated to decay equally in all directions as
we move away from the sphere. This is only a good approximation under the map
t = − cos(θ), and not under the linear map, as will be discussed in Sect. 7.1.
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To derive the simplified estimate, we will use the assumption that the error only
depends on the distance to the sphere (as noticed from numerical experiments, see,
e.g., Figure2b), and will pick an evaluation point that yields the simplest expressions
to work with. We will start by considering the trapezoidal rule error at a point x =
(x, y, 0); in this case, ζ corresponds to the distance from the z-axis that was previously
denoted by ρ, so we will continue with this notation, assuming ρ2 = x2+ y2 �= a. The
expression for ET Z

f ac(x, θ) is given in Eq. (50), but we will start with the equivalent
expression in Eq.53. For this case, we obtain λ = (ρ/a + a/ρ)/(2 sin θ) = (δ +
1/δ)/(2 sin θ) where we let δ = ρ/a if ρ > a and δ = a/ρ if ρ < a, such that δ > 1.
With this, we have

λ2 − 1 =
(

1

2 sin θ

(
δ − 1

δ

))2

+ cos2 θ

sin2 θ
. (64)

From Theorem 2, we know that ET Z
f ac(x, θ)will attain its maximum at θ = π/2 for the

chosen evaluation point. At this value of θ , the last term vanishes. Ignoring that term
we get λ+√

λ2 − 1 ≈ δ/ sin θ with equality at θ = π/2. If we use this approximation,
and evaluate the part of ET Z

f ac that is taken to the power of p at θ = π/2, we obtain

ET Z
f ac(x, θ) ≈ 1

∣∣ρ2 − a2
∣∣p

(
sin θ

δ

)n

.

Now, under the map t = − cos(θ) an approximation to the trapezoidal rule error will
be

ET Z
γ (a2, p, n, x) ≈ 4π

�(p)
n p−1 1

∣∣ρ2 − a2
∣∣p

ˆ 1

−1

(
sin θ(t)

δ

)n

dt (65)

= 4π

�(p)
n p−1 1

∣∣ρ2 − a2
∣∣p

(
1

δ

)n ˆ 1

−1

(√
1 − t2

)n
dt . (66)

Under the coordinate transformation t = sin β, the integral can be written as

ˆ π/2

−π/2
(cosβ)n+1 dβ. (67)

Using that for q > 1,

ˆ π/2

−π/2
(cosβ)q dβ = q − 1

q

ˆ π/2

−π/2
(cosβ)q−2 dβ,

we obtain ˆ 1

−1

(
1 − t2

)n/2
dt = 2

n(n − 2) · · · 2
(n + 1)(n − 1) · · · 3 = 2n!!

(n + 1)!
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and in total we get

ET Z
γ (a2, p, n, x) ≈ 8π

�(p)
n p−1 n!!

(n + 1)!
a2

∣∣ρ2 − a2
∣∣p

(
1

δ

)n

. (68)

We will now continue by estimating the size of the Gauss-Legendre rule error. We
write EGL

γ from Error estimate 3 as in Eq. (57), with EGL
f ac(x, ϕ) defined in Eq. (58).

Again, by picking an evaluation point at the equator, we can derive the approxima-
tion

EGL
γ (a2, p, n, x) ≈ 8π

�(p)
(n + 1)p−1 n!!

(n + 1)!
a2(ρ/a + a/ρ)

∣∣ρ2 − a2
∣∣p

(
1

δ

)n+1

, (69)

where ρ = ‖x‖. The details of this derivation are given in Sect. .
Comparing Eq. (68) (n = nϕ) and Eq. (69) (n = 2nt ), the expressions are very

similar. The ratio is EGL
γ /ET Z

γ = ((n + 1)/n)p−1(1 + 1/δ2).
This means that the contributions of the two errors are of about equal size for

evaluation points in the xy-plane at z = 0, as opposed to the case of evaluation points
at the z-axis, where the contribution for the trapezoidal rule ET Z

γ vanishes. The total
error is, however, approximately equal for the same ζ = ‖x‖. Since there is some
overestimation of the errors, we have chosen to estimate the full error as a function of
ζ by the derived expression for the trapezoidal rule error at the equator, as is given in
(63) in Error estimate 4. The accuracy of this estimate will be numerically evaluated
in Sect. 7.1.

6 Numerical evaluation of the error estimate

An estimate EEST
γ for the quadrature error EQ

γ in the evaluation of a layer potential

was given in Error estimate 3. The integrals in (31)-(32) adding up to EEST
γ can,

however, not be evaluated analytically, and we need to introduce an approximation
that is sufficiently precise and computationally cheap to evaluate. For general surfaces,
we do not have access to analytical expressions for the roots appearing in the estimate.
Hence, they must be computed using a numerical root-finding procedure, and it will
be of interest to minimize the number of root evaluations.

The integrand in (31) is not well defined for evaluation points along the symmetry
axis for an axisymmetric surface, as was discussed in Sect. 5.2. We proved that the
contribution from the trapezoidal error (31) vanishes in the limit of the target point
approaching the symmetry axis of a sphere (Corollary 2). For a general axisymmetric
surface, we were able to prove only a weaker result but we quantified the contribution
of the trapezoidal error (31) compared to the contribution of the Gauss-Legendre error
(32) by numerical experiments. Also, here we find that the first quantity decays very
rapidly as the evaluation point approaches the z-axis, depending also on the distance of
the evaluation point from the surface. To bemore precise, the problematic target points
lie in the region where ρ → 0 or/and a(θ) sin(θ) → 0 (see Theorem 3) geometrically
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represented by the cones with apices at the poles and increasing width inside or outside
the surface respectively for the interior or exterior problem. To see why, consider a
number of target points placed in the normal direction starting from a grid point
γ (t∗, ϕ∗); it is clear that they will all refer to the same closest grid point, but ρ (the
distance from the z-axis) will increase together with the distance from the surface. In
practical applications, we will safely ignore the trapezoidal rule contribution for the
evaluation points x such that

ρ

A
<

Kcπ

nt
min
(t,ϕ)

∥
∥γ (t, ϕ) − x

∥
∥ , (70)

where Kc is a fixed constant, ρ the distance to the z-axis and A a representative
radius/length scale. This procedure is not very sensitive to the choice of A and Kc, as
there is a rather wide range where the trapezoidal rule error contribution is negligible
but it is still numerically stable to compute the error estimate. Practically, to evaluate
the distance between the target point and the surface it is sufficient to approximate the
minimum in (70) by the minimum over the surface grid points only.

When considering non-axisymmetric surfaces, the situation ismuch less predictable
and we need a different strategy. This is based on using a local approximation of the
surface centered away from the poles; in this way, all the quantities needed for the
estimate evaluation are locally well-defined, and the singularities mentioned above
are eluded. How to numerically compute such an approximation will be further dis-
cussed in the next subsections, where we describe how to practically evaluate the
two error contributions (31) and (32), that add up to the total error. We start with the
approximation of the integrals before we discuss the root finding.

6.1 Approximation of integrals in the error estimate

In this section, we discuss how to approximate the integrals in (31)-(32), to be able to
efficiently compute a sufficiently precise estimate EEST

γ for the quadrature error EQ
γ

as defined in Error estimate 3.
Given an evaluation point x ∈ R

3, we start by identifying x∗ ∈ R
3, the closest

discrete point on the surface γ , and the parameters t∗, ϕ∗ such that γ (t∗, ϕ∗) = x∗.
This means that t∗ will be one of the nt Gauss-Legendre quadrature nodes, and ϕ∗ will
be one of the nϕ (equidistant) trapezoidal rule quadrature nodes. Loosely speaking,
the contribution to the quadrature error will have a peak around x∗. What this means
is that estT Z (ϕ0(t, x), nϕ, p) in the integral over t in (31) will have a peak close to
t = t∗, and decay rapidly away from t∗ due to the variation in ϕ0(t, x). Similarly
estGL(t0(ϕ, x), nt , p) will have a peak close to ϕ = ϕ∗, decaying rapidly away from
ϕ∗ due to the variation in t0(ϕ, x). Let us here remind that the roots t0(ϕ, x) and
ϕ0(t, x) are roots to R2(t, ϕ, x) with one variable kept fixed, as defined in Error
estimate 3, and further denote

t∗0 = t0(ϕ
∗, x), ϕ∗

0 = ϕ0(t
∗, x). (71)
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We now assume that estT Z is the most rapidly varying factor in the integrand in
(31), and similarly for estGL in (32), and approximate

ET Z
γ ( f , p, nϕ, x) ≈

∣∣∣ f
(
t∗, ϕ∗

0

)
Gγ ,2

(
t∗, ϕ∗

0 , x
)p∣∣∣

ˆ
E1

estT Z (ϕ0(t, x), nϕ, p)dt,

(72)

EGL
γ ( f , p, nt , x) ≈

∣∣∣ f
(
t∗0 , ϕ∗)Gγ ,1

(
t∗0 , ϕ∗, x

)p∣∣∣
ˆ
E2

estGL(t0(ϕ, x), nt , p)dϕ.

(73)

This is typically a good approximation unless the surface grid is very stretched such
that the grid resolutions on the surface in the two directions are very different, in which
case the geometry factors can vary rapidly as well.

Now, we want to find a simple expression for how t0(ϕ, x) varies with ϕ around
ϕ = ϕ∗. If we replace γ with its bivariate linear approximation around (t∗, ϕ∗) in the
definition of the squared distance function (20), we get a quadratic equation that we
can solve to find the root. From here, we find the approximation

t L0 (ϕ) = t∗ − b

2c
± i

√
4ac − b2

2c
, (74)

where, with �ϕ = ϕ − ϕ∗, and r = x∗ − x = γ (t∗, ϕ∗) − x,

a = a(�ϕ) =‖r‖2 + 2
(
r · ∂ϕγ (t∗, ϕ∗)

)
�ϕ +∥∥∂ϕγ (t∗, ϕ∗)

∥∥2 �ϕ2,

b = b(�ϕ) = 2
(
r · ∂tγ (t∗, ϕ∗)

) + 2
(
∂ϕγ (t∗, ϕ∗) · ∂tγ (t∗, ϕ∗)

)
�ϕ,

c = c(�ϕ) =∥
∥∂tγ (t∗, ϕ∗)

∥
∥2 .

The root t∗0 is by definition the root at ϕ = ϕ∗, and in practice, as will be dis-
cussed in the next subsection, at least an accurate approximation to it, while t L0 (ϕ∗)
is a simpler approximation. In order to better capture the magnitude of the peak of
estGL(t0(ϕ, x), nt , p), we want to use this more accurate value, but we also want to
use the simple dependence on ϕ. This leads us to define

t̃0(ϕ) = t∗0 − t L0 (ϕ∗) + t L0 (ϕ). (75)

See [1] for more details and a discussion regarding the effect of making these approx-
imations.

The same approximations can naturally be made to define ϕ̃0(t), an approxi-
mation to ϕ0(t, x). Away from t = t∗, we have

∣∣Im ϕ̃0(t)
∣∣ ∼ k

∣∣t − t∗
∣∣, where

k =∥∥∂tγ (t∗, ϕ∗)
∥∥ /

∥∥∂ϕγ (t∗, ϕ∗)
∥∥, and hence

∣∣Im t̃0(ϕ)
∣∣ ∼ k−1

∣∣ϕ − ϕ∗∣∣. This means
that estT Z (ϕ̃0(t), nϕ, p) decays as

e−nϕ|Im ϕ̃0(t)| ∼ e−nϕk |t−t∗|. (76)
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Given this decay, it is a reasonable approximation to expand the interval of integration
in (72) from [−1, 1] to [−∞,∞], as the tails will be negligible, and we approximate
the integral in (72) by

ˆ ∞

0
estT Z (

ϕ̃0(t
∗ − s), nϕ, p

)
ds +

ˆ ∞

0
estT Z (

ϕ̃0(t
∗ + s), nϕ, p

)
ds. (77)

With the variable transformation x = nϕks, we can write

ˆ ∞

0
estT Z (

ϕ̃0(t
∗ ± s)

)
ds = 1

nϕk

ˆ ∞

0
hT Z± (x)e−xdx, (78)

where hT Z± (x) = estT Z
(
ϕ̃0(t∗ ± x/(nϕk))

)
ex . Gauss-Laguerre quadrature is a Gaus-

sian quadrature for integrals of this type [19, §3.5(v)], and we find that is sufficiently
accurate to evaluate each of the integrals of hT Z+ (x) and hT Z− (x) with 8 quadrature
nodes.

For the Gauss-Legendre estimate, we have the bound [12]

estGL(t0, n, p) = 4π

�(p)

∣∣∣
∣∣∣∣

2n + 1
√
t20 − 1

∣∣∣
∣∣∣∣

p−1
∣
∣∣∣t0 +

√
t20 − 1

∣
∣∣∣

−(2n+1)

≤ 4π

�(p)
(2n)p−1e−2n|�t0|. (79)

Hence, with t0(ϕ, x) approximated with t̃0(ϕ), we have an estimated decay e−2nt k−1 |ϕ−ϕ∗|.
Based on this decay, we use the variable transformation x = 2ntk−1s, and write the
approximation of the integral in (73) as

k

2nt

[ˆ ∞

0
hGL− (x)e−xdx +

ˆ ∞

0
hGL+ (x)e−xdx

]
, (80)

where hGL± (x) = estGL
(
t̃0(ϕ∗ ± xk/(2nt )), nt , p

)
ex . Again, each of these integrals

is approximated with an 8-point Gauss-Laguerre quadrature rule.
In [1], we used this strategy for the global trapezoidal rule discretization and a

different strategy for the panel-based Gauss-Legendre quadrature. Here, we have a
mix of the two quadrature rules, but both are used globally on the surface, and we
have extended this approach to be used for both contributions to the error estimate. It
remains now to discuss the root finding, and the evaluation of the factors in front of
the integrals in (72)-(73).

6.2 Root finding

To evaluate the error estimate as described in the previous subsection, we need to
determine t∗0 = t0(ϕ∗, x) and ϕ∗

0 = ϕ0(t∗, x) as defined in (71). For spherical topolo-
gies, these roots are not always well defined, as introduced in 5.2 for axisymmetric
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geometries (where ϕ0(θ, x) is not defined for evaluation points on the symmetry axis)
and further discussed at the beginning of Sect. 6 for general surfaces. For axisymmetric
geometries, we identified the problematic region in the cone defined by Eq. (70): for
these evaluation points, we can ignore the trapezoidal error contribution and then we
do not need to compute the roots ϕ0(θ, x). We will then not consider these points in
the following discussion. For a general surface, it is not so easy the determine a similar
set, and we will proceed with a discrete approach as later discussed.

We will consider the (θ, ϕ) coordinate system, as also used in (7) in the definition
of a generic surface γ ◦(θ, ϕ). In (8), we define γ (t, ϕ) = γ ◦(θ(t), ϕ). Hence, once a
root θ0 has been determined, t0 can be found using the inverse map from θ to t .

In Sect. 5, we derived analytical expressions for the roots of the squared distance
function for special geometries: we have analytical expressions for θ0 only for a spher-
ical surface, and for ϕ0 for any axisymmetric surface. Hence, in general, we need a
numerical procedure to determine the roots, and we will define this procedure in the
(θ, ϕ) coordinate system. Given an evaluation point x = (x, y, z), we define

R2(θ, ϕ, x) = (γ 0
1 (θ, ϕ) − x)2 + (γ 0

2 (θ, ϕ) − y)2 + (γ 0
3 (θ, ϕ) − z)2. (81)

Given a parametrization γ ◦(θ, ϕ), it is easy to solve R2(θ, ϕ, x) = 0 using a one
dimensional Newton’s method to find a root ϕ0 given θ , or similarly, to find a root
θ0 given ϕ. Specifically, in our setting, we need to determine θ∗

0 = θ0(ϕ
∗, x) and

ϕ∗
0 = ϕ0(θ

∗, x), where θ∗ = θ(t∗). We typically use an initial guess of θ∗ + i/10
for θ∗

0 , and correspondingly for ϕ∗
0 . The iterations then usually converge with a strict

tolerance in less than five iterations. However, in rare cases, usually for evaluation
points far away from the surface, it may happen that the iterations fail to converge, but
most of the time it is sufficient to increase the magnitude of the imaginary part of the
initial guess for the iterations to converge well.

If no parametrization is available andweknowonly the quadrature node values ofγ ◦
at the nt×nϕ nodes, we need to define an approximation γ̃ ◦(θ, ϕ) that can be evaluated
at different arguments of θ and ϕ, and that allows for differentiation to formulate
Newton’s method. One way is to compute the spherical harmonics coefficients using
a discrete transform [20]. Evaluating the spherical harmonics expansion is, however,
a global procedure with O(nt nϕ) cost for arbitrary arguments, and this would need
to be done at each step in the Newton iteration.

We can, however, use a local approach. In the Newton iteration, one of the variables,
θ or ϕ will be fixed. Assume that ϕ = ϕ∗ and introduce a qth order Taylor expansion
in θ , around θ = θ∗,

γ̃ ◦(θ, ϕ∗) =
q∑

j=0

(
θ − θ∗) j

j !
∂ jγ ◦

∂θ j
(θ∗, ϕ∗). (82)

This approximation can be used in Newton’s method to determine an approximation
to the root θ∗

0 = θ0(ϕ
∗, x). Similarly, a Taylor expansion in ϕ can be introduced to

obtain an approximation to ϕ∗
0 = ϕ0(θ

∗, x). This is a solid strategy that eludes the
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pole singularities for any kind of geometry. Indeed, since the discretization is based on
Gauss-Legendre nodes in the polar angle, the closest grid point where the expansion
(82) is centered, will never be a pole, avoiding the above mentioned problems.

For this reason, we will use this approach for non-axisymmetric surfaces, even if
we have a parametrization of γ ◦ available. In this case, the analytical expression for
γ ◦ can, however, be used to determine the q first partial derivatives of γ ◦. When this is
not the case, the derivatives both with respect to θ and φ, can be evaluated e.g from a
spherical harmonics expansion. The advantage compared to using a global expansion
is that we can evaluate these derivatives at all grid points in one sweep [4, 21], and
then use different local expansions when estimating the quadrature error for different
evaluation points.

Once the roots have been determined, these Taylor expansions can also be used to
evaluate the geometry factors in (72)-(73) as defined in (26)-(27). The roots t∗0 and ϕ∗

0
are also needed to evaluate f in (72)-(73). We recall that f depends on the density
σ , which may not be known analytically but be available at the grid points only (e.g.,
if σ is a solution to a discretized integral equation). In this case, again, f can either
be approximated locally by a Taylor expansion, or globally by a spherical harmonics
expansion.

7 Numerical experiments

In this section, we will compare the quadrature error estimate EEST
γ defined in (30),

and evaluated as discussed in the previous section, to themeasured error EQ
γ as defined

in (29) for some different examples. Themeasured error EQ
γ will be computed by using

a reference solution on an upsampled grid with upsampling rate set to five (i.e., a factor
of five in each direction, meaning 25 times more points on the surface).

As outlined in Remark 1, we will see that the estimate provides a good approxi-
mation of the error also for moderate values of nt and nϕ as long as the geometry and
the layer density are well resolved. We choose nt and nϕ so that this is true for all
the following numerical examples. For the rootfinding procedure, we follow the strat-
egy presented in the previous section: the analytical expression for γ ◦ is used when
dealing with axisymmetric surfaces (excluding the trapezoidal error contribution for
target points defined in (70)), and γ ◦ is locally approximated with a Taylor expansion
for other geometries. In the first case, the parameters defining the cone in (70) will be
kept fixed to A = 1 and KC = 10. In the latter case, the order of the Taylor expansion
will be fixed as q = 4 (see Eq. (82)), which is accurate enough for our purposes; an
analysis of how the choice of q can affect the accuracy of the roots can be found in
[1]. In all the presented numerical tests, we will use the analytical expression for the
density.
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Fig. 2 Error EQ
γ (log 10 scale) in computing the harmonic single layer potential with unit density on a plane

at y = 0 cutting a sphere of radius 1 discretized by using a the linear mapping, b the cosine mapping. In
both cases, nt = 30 and nϕ = 60

7.1 A sphere

In the first example, we consider the harmonic single-layer potential

u(x) =
ˆ
S

σ( y)
∥∥ y − x

∥∥dS( y), (83)

evaluated near a sphere of radius a = 1 with unit density, σ(x) = 1. We want to
compare the estimated error EEST

γ to the actual measured error EQ
γ , using the full

error estimate in (30), approximated as described in the previous section, and, for the
cosine map, also the simplified error estimate Eq.4, derived in Sect. 5.3. For this case,
referring to Eq. (30), p = 1/2 and f simplifies to

f (t, ϕ) =
∥
∥∥∥
∂γ

∂t
× ∂γ

∂ϕ

∥
∥∥∥ =

{
π
2 sin((t + 1)π

2 ), if using the linear mapping Eq. 9

1, if using the cosine mapping Eq. 10.

Figure2 shows the resulting surface grids and the different behavior of the quadra-
ture error exterior to the sphere with discretizations using the linear and non-linear
mapping θ(t) as given in (9)-(10), with nt = 30 and nϕ = 60 points.

The linearmap clusters the grid pointsmore towards the poles, and at a fixeddistance
from the sphere, the error is smaller in these regions, while the cosine mapping yields
a more even error. In both cases, we see oscillations in the error on a length scale of
the grid size.

In Fig. 3, the full error estimate EEST
γ from Error estimate 3, approximated as

described in the previous section, is compared to the measured errors EQ
γ . The mea-

sured errors (log 10 scale) are shown in one selected plane as colored fields, with the
contours of the estimates drawn in black.
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This is done for evaluation points both interior and exterior to the sphere, and the
error estimates can be seen to work well. The contours of the estimate are smoothly
enclosing the oscillatory error, with an over-estimation that is larger further out exterior
to the sphere. Note, however, that the last contour is at an error level of 10−14, which
is a very low level.

In Error estimate 4, we derived a simplified error estimate applicable to this case
(when using the cosine map) that depends only on the radius a, the distance from the
surface, the number of discretization points and the half-integer p, where p = 1/2
for the integral in (83). In Fig. 4, we compare the error measured in a set of evaluation
points to the simplified error estimate, both versus the distance to the surface (here a
negative distance d is used for interior point) for a fixed grid resolution, and versus
the grid resolution for points at a fixed distance to the sphere.

The discrete points are set using the parametrization for a spherewith radius (1+d),
over the full range of the polar angle 0 ≤ θ ≤ π , but only over an angle sector in the
azimuthal angle, 0 ≤ ϕ ≤ π/nϕ . The actual errors do not depend on ϕ, more than
that there is an oscillation determined by the grid size, and this range is sufficient to
cover the range of errors. Under the cosine-map, the error is much less dependent on
θ compared to the linear mapping, but there is a variation, and we include the full
range here. From the discrete dots, each representing a different evaluation point, we
can see the range of errors for evaluation points at the same distance to the sphere.
The simplified error estimate works better than we could expect and gives a rather
tight upper bound of the error. We explore the behavior of the quadrature errors in this
simplest case further in Appendix B.

Fig. 3 Error EQ
γ (colors) and estimates EEST

γ (black lines) plotted in log 10 scale when computing the
harmonic single layer potential with unit density over a sphere of radius 1 discretized by using a the linear
mapping, b the cosine mapping. The results are shown for evaluation points in the xz-plane for y = 0, both
inside and outside of the sphere that is indicated with a dashed white line
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Fig. 4 Measured quadrature errors EQ
γ in evaluating (83) (using the cosine map) at a set of discrete

evaluation points x ∈ R
3 (blue dots) and the simplified estimate (red lines); a varying distance to the sphere

(negative values for interior) and fixed nt = 30 and b varying nt at the fixed distance d = 0.1. Note that
n = nϕ = 2nt in the simplified estimate

7.2 A prolate spheroid

In the second example, we consider an axisymmetric ellipsoid, a prolate spheroid, with
ratio 3–1 between the long and short semi axes. Here the density function is given by

σ(θ, ϕ) = 1 + sin(6ϕ + θ) sin2(θ). (84)

and is in Fig. 5a visualized on the surface by the black and white colormap. We can
see how the varying density breaks the geometric symmetry of the problem. We first
consider the quadrature error for evaluation points on a verticalwall placed at y = 1.02,
Figs. 5a and 6a, and then we place random evaluation points around the spheroid
(Fig. 5b), and plot the error vs the estimate in Fig. 6b. The latter is a simple way to
indicate if the estimate over or underestimates the actual error. The red line indicates
where error and estimate are equal, while the black lines indicate where they differ by
factors 10 and 1/10, respectively.

In Figs. 5a and 6a, we are evaluating the harmonic single layer potential, Eq. (83).

In this case p = 1/2 and f (t, ϕ) = σ(t, ϕ)

∥∥∥∥
∂γ

∂t
× ∂γ

∂ϕ

∥∥∥∥, where σ(t, ϕ) is obtained by

mapping Eq. (84) with the cosine map. In Figs. 5b and 6b, we consider the harmonic
double layer potential

u(x) =
ˆ
S

ny · ( y − x)σ ( y)
∥∥ y − x

∥∥3
dS( y), (85)

for which p = 3/2 and f (t, ϕ) = nγ (t, ϕ) · (γ (t, ϕ) − x)σ (t, ϕ)

∥∥∥∥
∂γ

∂t
× ∂γ

∂ϕ

∥∥∥∥.

In the first case nt = 40, in the second case nt = 60, and for both, we set nϕ = 2nt .
In both cases, the estimates can predict very well the actual error. Moreover, it is clear
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that the density has an effect on the error, but still, the simplification made in (72)-(73)
is good enough to capture the behavior of the overall error.

7.3 Non-axisymmetric geometry

In the last example, we consider a non-axisymmetric geometry given by

γ ◦(θ, ϕ) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ(θ, ϕ) cos(ϕ) sin(θ)

ρ(θ, ϕ) sin(ϕ) sin(θ)

ρ(θ, ϕ) cos(θ)

(86)

with ρ(θ, ϕ) = 0.8 + 0.2e−3Re(Y 2
3 (θ,ϕ)) and Y 2

3 (θ, ϕ) = 1
4

√
105
2π e2iϕ sin2(θ) cos(θ).

The surface is enclosed in a spherical shell of radius a = 1.46, as shown in Fig. 7.
Here, we consider the modified Helmholtz equation (�−ω2)u = 0, and compute the
corresponding single layer potential:

u(x) =
ˆ
S

e−ω‖ y−x‖σ( y)
∥∥ y − x

∥∥ dS( y). (87)

Fig. 5 Target points considered when computing the harmonic single (a) and the double (b) layer potentials
evaluated near a prolate spheroid. The black and white colormap represents the density given by Eq. (84).
The red and blue colormap represents the actual error evaluated on the target wall
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Fig. 6 a Error EQ
γ (colors) and estimates EEST

γ (black lines) plotted in log 10 scale when computing the
harmonic single layer potential near the ellipsoid on a plane at y = 1.02, shown in Fig. 5a. b Estimates vs
error in computing the harmonic double layer potential at random evaluation points shown in Fig. 5b. The
three lines from top to bottom indicate where the estimate of EEST

γ is a factor of 10, 1, and 1/10 times the

measured value of EQ
γ . If the estimate was never underestimating the error, no dot would fall below the red

line

Fig. 7 Half of the spherical shell enclosing the non axisymmetric shape defined in Eq. (86). The black and
white colormap represents the density given by Eq.84

We use the cosine mapping and define γ (t, ϕ) = γ ◦(cos−1(−t), ϕ). For this case,

referring to Eq. (30), p = 1/2 and f (t, ϕ) = e−ω‖γ (t,ϕ)−x‖σ(t, ϕ)

∥
∥∥∥
∂γ

∂t
× ∂γ

∂ϕ

∥
∥∥∥. We

consider the case ω = 3 and the density function σ given by Eq. (84). In Fig. 8a, we
show the error and the estimates computed on the whole spherical shell, plotted here
with the horizontal axis being the azimuthal angle and the vertical axis being the polar
angle. In Fig. 8b, we zoom in on the white rectangle highlighted in Fig. 8a, to better
show the agreement between estimate and error.
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8 Conclusions

In this paper, we studied the error incurred by numerically approximating layer
potentials over surfaces of spherical topology. We have derived error estimates for
discretizations with the trapezoidal rule in the azimuthal angle, and a Gauss-Legendre
rule in a variable that maps to the polar angle. The framework for the derivation of the
error estimates, and the practical evaluation thereof, were introduced in [1] for surfaces
of genus 1, discretized by either a global trapezoidal rule in both directions or a panel-
based Gauss-Legendre rule. Here, we extended this approach with special attention to
the global parametrization. There is one component of the error estimate that cannot
be directly evaluated for evaluation points on the symmetry axis of an axisymmetric
surface. Starting by deriving analytical expressions for the roots of a squared distance
function for a sphere, we were able to prove that this contribution vanishes at these
points. We could also derive a simplified error estimate for the sphere, that shows the
decay in error with the distance of the evaluation point to the sphere with a simple
formula. Some analytical results were also extended to the more general case of an
axisymmetric surface, and we devised a strategy for evaluating the error estimate for
general surfaces, avoiding the difficulties associated with the discretization around the
poles.

The error estimate does not have any unknown coefficients, but for each evaluation
point for a general surface, two complex roots to the squared distance function must
be computed using one-dimensional root finding. In numerical experiments, we have
shown that the error estimate indeed estimates the actual error quite well, also for
moderate numbers of discretization points. This is true for different layer potentials,
various surfaces, and with a variable layer density. The simplified error estimate for
the sphere is shown to give a tight upper bound for the error at a given distance from
the spherical surface.

Fig. 8 Error EQ
γ (colors) and estimate EEST

γ (black lines) in computing the modified Helmholtz potential
with ω = 3 on the shell enclosing the non axisymmetric geometry Eq. (86). The levels for the estimates
contours are 10−2, 10−4, 10−6, 10−8, 10−10, 10−12, 10−14. In b, we zoom in on the white rectangle
drawn in a
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Appendix A Derivations for the Gauss-Legendre error

We consider a sphere of radius a and the associated Gauss-Legendre error as defined in
Eq. (57) with EGL

f ac(x, ϕ) defined in Eq. (58). Under the map t = − cos θ , the squared
distance function evaluates as

R2(t, ϕ, x) = a2 − 2a(
√
1 − t2(x cosϕ + y sin ϕ) + t z) + x2 + y2 + z2.

and Gγ ,1
(
t, ϕ, x

) = (∂R2/∂t)−1. The root θ0(ϕ, x) is given in Eq. (44), and
t0(ϕ, x) = − cos(θ0(ϕ, x)).

We start by considering an evaluation point at the symmetry axis, i.e., x = (0, 0, z),
z �= a. For this case we get θ0 = ±i ln(|z| /a) as given in Corollary 1. We get
t0 = (δ +1/δ)/2, where we let δ = a/|z| if|z| > a, and δ =|z| /a if|z| < a, such that

δ > 1. Hence,

∣∣∣∣

√
t20 − 1

∣∣∣∣ = (δ − 1/δ)/2, and

∣∣∣∣t0 +
√
t20 − 1

∣∣∣∣ = δ. Finally, we have

Gγ ,1
(
t, ϕ, x

) = 1/(2a|z|), and combined this yields the expression for EGL
f ac(x, ϕ)

given in Eq. (59).
Now, we instead consider an evaluation point at the equator, x = (0, y, 0). We

could, however, equally well pick x = (x, 0, 0), or x = (x, y, 0) and would obtain
the same final result with ‖x‖= ρ. With x = (0, y, 0) we get

EGL
f ac(x, ϕ) = 1

(2a
∣∣y

∣∣∣∣sin ϕ
∣∣)p

∣∣∣
√
t0(ϕ)2 − 1

∣∣∣
∣∣t0(ϕ)

∣∣p

∣
∣∣∣∣

1

t0(ϕ) + √
t0(ϕ)2 − 1

∣
∣∣∣∣
. (A1)

The root t0(ϕ) = − cos(θ0(ϕ)) where θ0(ϕ) is defined in Lemma 3, in Eq. (43).
With x = (0, y, 0), λ in that expression simplifies to λ = (

∣∣y
∣∣ /a+a/

∣∣y
∣∣)/(2

∣∣sin ϕ
∣∣ =

(δ + 1/δ)/(2
∣∣sin ϕ

∣∣) where we let δ = ∣∣y
∣∣ /a if

∣∣y
∣∣ > a and δ = a/

∣∣y
∣∣ if

∣∣y
∣∣ < a,

such that δ > 1. The expression for λ2 − 1 then becomes the same as in Eq. (64), but
with ϕ instead of θ . The peak of the error is at the closest point to x = (0, y, 0), i.e.,
at ϕ = π/2, and also here, we ignore the last term in the expression for λ2 − 1. With
this we get that λ + √

λ2 − 1 ≈ δ/
∣∣sin ϕ

∣∣. Introducing δ̃ = δ/
∣∣sin ϕ

∣∣, and noting that
the square roots are evaluated at points away from the branch cut, we have

t0 = i(δ̃ − 1/δ̃)/2
√
t20 − 1 = i(δ̃ + 1/δ̃)/2 t0 +

√
t20 − 1 = i δ̃.

Similarly to the derivation based on the trapezoidal error, we evaluate all terms in Eq.
(A1) except the last term at ϕ = π/2. We then have

EGL
f ac(x, ϕ) ≈ 1

2

1

(a
∣∣y

∣∣)p

∣
∣δ + 1/δ

∣
∣

∣∣δ − 1/δ
∣∣p

∣
∣sin ϕ

∣
∣2n+1

δ2n+1 . (A2)

Inserting into Eq. 57 and using
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ˆ 2π

0

∣∣sin ϕ
∣∣2nt+1dϕ =

ˆ 2π

0

∣∣cosϕ
∣∣2nt+1dϕ = 2

ˆ π/2

−π/2
(cosϕ)2nt+1dϕ

we can identify the integral in Eq. (67). With f = a2 the total result becomes
EGL(γ , a2, p, 2nt , x) as given in Eq. (69).

Appendix B Further reflections on the quadrature error behavior

In Error estimate 4, we derived a simplified estimate for the quadrature error for the
integral,

u(x) =
ˆ
S

σ( y)
∥∥ y − x

∥∥2p
dS( y), (B3)

with σ ≡ 1, where S is a sphere of radius a, discretized with the nt = n/2 Gauss-
Legendre rule in the t-direction (under the cosine map), and the nϕ = n-point
trapezoidal rule in the ϕ direction. The evaluation point x = (x, y, z) ∈ R

3 can
be close to, but not on S.

We have in Section 7.1 verified that the simplified error estimate is very accurate
for p = 1/2 (see Fig. 4b), and similar results are found for p = 3/2. Hence, we are in
a position to explore this estimate a bit more, trying to extrapolate some simple rule
to understand at which (rescaled) distance special quadrature techniques are needed.

Now let h = 2πa/n, this is the grid size in the ϕ direction at the equator, and let
the evaluation point x be such that ‖x‖ = a + qh, q > 0. Then, the simplified error
estimate in Eq. (63) yields

Esphere(‖x‖, a, p, n) = a2(1−p)E(p, q, n) (B4)

where

E(p, q, n) = 8π

(4π)p�(p)
n2p−1 n!!

(n + 1)!!
1

q p

1

(1 + πq/n)p

1

(1 + 2πq/n)n
. (B5)

Assume now that for each n, we want to know the value of q needed to achieve
E(p, q, n) = T OL , for different tolerances T OL and choices of p. That means, how
far from the surface, expressed in the multiples of the grid size, must the evaluation
point be to reach this tolerance. Since we have an explicit formula, we can find the
solution numerically, using, e.g., Newton’s method, and the results are shown in Fig. 9
for p = 1/2 and 3/2.

From this figure, we can deduce that we can not formulate any simple rule for what
q should be to achieve a certain accuracy, as the curves we get are not flat lines. We
could say that to achieve an error smaller than a2(1−p) · 10−4, q = 2 would suffice
for p = 1/2 and q = 2.5 for p = 3/2, as long as n is at least 20. For more strict
error levels, these statements become less useful, as the needed q changes more with
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Fig. 9 Plot of q versus n, with q such that the error in (B5) is equal to T OL at evaluation points with
‖x‖ = a + qh = a + 2πa/n

n. The estimate we have considered is for the simplest case of a sphere with density
σ ≡ 1, and it is even more difficult to construct a simple rule for a different surface
shape and a variable density.
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