: One of today's main challenges in molecular radiation therapy is to assess an individual dosimetry that allows treatment to be tailored to the specific patient, in accordance with the current paradigm of 'personalized medicine'. The evaluation of the absorbed doses for tumor and organs at risk in molecular radiotherapy is typically based on MIRD schema acquiring few experimental points for the assessement of biokinetic parameters. WIDMApp, the wearable individual dose monitoring apparatus, is an innovative approach for internal dosimetry based on a wearable radiation detecting system for individual biokinetics sampling, a Monte Carlo simulation for particle interaction, and an unfolding algorithm for data analysis and integrated activity determination at organ level. A prototype of a WIDMApp detector element was used to record the photon emissions in a body phantom containing 3 spheres with liquid sources (18F,64Cu and99mTc) to simulate organs having different washout. Modelling the phantom geometry on the basis of a CT scan imaging, the Monte Carlo simulation computed the contribution of each emitting sphere to the signal detected in 3 positions on the phantoms surface. Combining the simulated results with the data acquired for 120 h, the unfolding algorithm deconvolved the detected signal and assessed the decay half-life (T1/2) and initial activity values (A(0)) that best reproduces the observed exponential decays. A 3%-18% level of agreement is found between the actualA(0) andT1/2values and those obtained by means of the minimization procedure based on the Monte Carlo simulation. That resulted in an estimation of the cumulated activity <15%. Moreover, WIDMApp data redundancy has been used to mitigate some experimental occurrences that happened during data taking. A first experimental test of the WIDMApp approach to internal radiation dosimetry is presented. Studies with patients are foreseen to validate the technique in a real environment.

Experimental validation of an innovative approach in biokinetics study for personalised dosimetry of molecular radiation therapy treatments / Mancini-Terracciano, C; Ambrosino, A; Campana, L; Cassano, B; Collamati, F; Faccini, R; Iaccarino, G; Mirabelli, R; Morganti, S; Nicolanti, F; Pacilio, M; Soriani, A; Solfaroli Camillocci, E. - In: PHYSICS IN MEDICINE & BIOLOGY. - ISSN 1361-6560. - 68:19(2023). [10.1088/1361-6560/acf910]

Experimental validation of an innovative approach in biokinetics study for personalised dosimetry of molecular radiation therapy treatments

Mancini-Terracciano, C;Ambrosino, A;Campana, L;Collamati, F;Faccini, R;Mirabelli, R
;
Nicolanti, F;Pacilio, M;Solfaroli Camillocci, E
2023

Abstract

: One of today's main challenges in molecular radiation therapy is to assess an individual dosimetry that allows treatment to be tailored to the specific patient, in accordance with the current paradigm of 'personalized medicine'. The evaluation of the absorbed doses for tumor and organs at risk in molecular radiotherapy is typically based on MIRD schema acquiring few experimental points for the assessement of biokinetic parameters. WIDMApp, the wearable individual dose monitoring apparatus, is an innovative approach for internal dosimetry based on a wearable radiation detecting system for individual biokinetics sampling, a Monte Carlo simulation for particle interaction, and an unfolding algorithm for data analysis and integrated activity determination at organ level. A prototype of a WIDMApp detector element was used to record the photon emissions in a body phantom containing 3 spheres with liquid sources (18F,64Cu and99mTc) to simulate organs having different washout. Modelling the phantom geometry on the basis of a CT scan imaging, the Monte Carlo simulation computed the contribution of each emitting sphere to the signal detected in 3 positions on the phantoms surface. Combining the simulated results with the data acquired for 120 h, the unfolding algorithm deconvolved the detected signal and assessed the decay half-life (T1/2) and initial activity values (A(0)) that best reproduces the observed exponential decays. A 3%-18% level of agreement is found between the actualA(0) andT1/2values and those obtained by means of the minimization procedure based on the Monte Carlo simulation. That resulted in an estimation of the cumulated activity <15%. Moreover, WIDMApp data redundancy has been used to mitigate some experimental occurrences that happened during data taking. A first experimental test of the WIDMApp approach to internal radiation dosimetry is presented. Studies with patients are foreseen to validate the technique in a real environment.
2023
in vivo dosimetry; individualized treatment planning; molecular radiotherapy
01 Pubblicazione su rivista::01a Articolo in rivista
Experimental validation of an innovative approach in biokinetics study for personalised dosimetry of molecular radiation therapy treatments / Mancini-Terracciano, C; Ambrosino, A; Campana, L; Cassano, B; Collamati, F; Faccini, R; Iaccarino, G; Mirabelli, R; Morganti, S; Nicolanti, F; Pacilio, M; Soriani, A; Solfaroli Camillocci, E. - In: PHYSICS IN MEDICINE & BIOLOGY. - ISSN 1361-6560. - 68:19(2023). [10.1088/1361-6560/acf910]
File allegati a questo prodotto
File Dimensione Formato  
2023_Phys._Med._Biol._68_19NT02.pdf

accesso aperto

Note: Mancini-Terracciano_Experimental validation_2023
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1695855
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact