A configurable calorimeter simulation for AI (CoCoA) applications is presented, based on the Geant4 toolkit and interfaced with the Pythia event generator. This open-source project is aimed to support the development of machine learning algorithms in high energy physics that rely on realistic particle shower descriptions, such as reconstruction, fast simulation, and low-level analysis. Specifications such as the granularity and material of its nearly hermetic geometry are user-configurable. The tool is supplemented with simple event processing including topological clustering, jet algorithms, and a nearest-neighbors graph construction. Formatting is also provided to visualise events using the Phoenix event display software.

Configurable calorimeter simulation for AI applications / Charkin-Gorbulin, A.; Cranmer, K.; Di Bello, F. A.; Dreyer, E.; Ganguly, S.; Gross, E.; Heinrich, L.; Kado, M.; Kakati, N.; Rieck, P.; Santi, L.; Tusoni, M.. - In: MACHINE LEARNING: SCIENCE AND TECHNOLOGY. - ISSN 2632-2153. - 4:3(2023), pp. 1-11. [10.1088/2632-2153/acf186]

Configurable calorimeter simulation for AI applications

Di Bello F. A.;Kado M.;Santi L.;Tusoni M.
2023

Abstract

A configurable calorimeter simulation for AI (CoCoA) applications is presented, based on the Geant4 toolkit and interfaced with the Pythia event generator. This open-source project is aimed to support the development of machine learning algorithms in high energy physics that rely on realistic particle shower descriptions, such as reconstruction, fast simulation, and low-level analysis. Specifications such as the granularity and material of its nearly hermetic geometry are user-configurable. The tool is supplemented with simple event processing including topological clustering, jet algorithms, and a nearest-neighbors graph construction. Formatting is also provided to visualise events using the Phoenix event display software.
2023
calorimetry; editor; inserted; machine learning; manuscript; OPEN DATA
01 Pubblicazione su rivista::01a Articolo in rivista
Configurable calorimeter simulation for AI applications / Charkin-Gorbulin, A.; Cranmer, K.; Di Bello, F. A.; Dreyer, E.; Ganguly, S.; Gross, E.; Heinrich, L.; Kado, M.; Kakati, N.; Rieck, P.; Santi, L.; Tusoni, M.. - In: MACHINE LEARNING: SCIENCE AND TECHNOLOGY. - ISSN 2632-2153. - 4:3(2023), pp. 1-11. [10.1088/2632-2153/acf186]
File allegati a questo prodotto
File Dimensione Formato  
CharkinGorbulin_Configurable-calorimeter-simulation_2023.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1694165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact