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Abstract

A configurable calorimeter simulation for AI (CoCoA) applications is presented, based on the
Geant4 toolkit and interfaced with the Pythia event generator. This open-source project is aimed to
support the development of machine learning algorithms in high energy physics that rely on
realistic particle shower descriptions, such as reconstruction, fast simulation, and low-level
analysis. Specifications such as the granularity and material of its nearly hermetic geometry are
user-configurable. The tool is supplemented with simple event processing including topological
clustering, jet algorithms, and a nearest-neighbors graph construction. Formatting is also provided
to visualise events using the Phoenix event display software.

1. Introduction

Algorithms incorporating machine learning (ML) methods are a new paradigm in reconstruction,
calibration, identification, simulation and analysis of high energy physics (HEP) experimental data. In recent
years, various ML architectures have been deployed to optimize low-level tasks such as clustering,
reconstruction, fast simulation, pileup suppression and object identification [1, 2]. For example, ML-based
fast calorimeter simulation relies on accurate target data to train a fast conditional generative model p(D|T),
where T denotes the true set of stable final state particles produced in the collision and D is the set of
resulting detector hits. In particle reconstruction, on the other hand, the inverse process D — T is modelled
by predicting a set of particles R(D) to approximate T as accurately as possible. The development of such
algorithms requires a realistic, highly-granular simulation of particle detector response going beyond
parameterized detector models frequently used in studies of particle physics phenomenology such as
DELPHES [3]. In particular due to the complexity of particle showers in calorimeters, a detailed,
microscopic simulation of interactions between particles and detector material is needed in order to develop
low-level ML algorithms exploiting such features.

Recent research efforts to study calorimeter shower properties using ML [4—6] made use of the
GEaNT4 [7] simulation toolkit for simple detector geometries. However, an open source detector simulation
with a realistic cylindrical geometry and hermetic coverage is yet to be adopted by the HEP community for
ML studies and beyond. Aiming to bridge this gap, the COnfigurable Calorimeter simulatiOn for Ai
(CoCoA) was developed, which uses GEANT4 [7] to implement detailed shower simulation for particles in a
full-coverage, highly-segmented sensitive volume comparable to that of multipurpose detectors at the LHC.
CoCoA offers research teams a common, curated benchmark tool for the benefits of straightforward detector

© 2023 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Visualization of a photon (dashed line) with energy 50 GeV converting to two electrons (green lines) producing three
distinct clusters in the CoCoA central electromagnetic calorimeter. The cluster shown in red contains an additional cell in the first
layer of the hadronic calorimeter due to a noise fluctuation. Cells are shown with an opacity proportional to energy over noise
ratio divided by 4.6, the threshold for topoclustering seeds.

configuration and comparability of research results. The program source code [8] is linked together with a
technical documentation on the project website!’. The emphasis of this software package is on realistic
calorimeter simulation. No realistic digitization and electronic readouts are implemented and energy loss
due to these processes are neglected in this package. For the same reason, simplified tracking is included in
CoCoA to model particle deflection in a magnetic field and energy depositions upstream of the calorimeter.
A sophisticated open source toolkit suitable for tracking studies based on silicon hits is provided by [9].

Usability for ML-based studies is a core motivation in the design of the CoCoA code. Datasets generated
by CoCoA have featured in two recent applications of ML to particle reconstruction and fast simulation [10,
11]. To this end, the main parameters of the calorimeters are largely configurable, including their material,
granularity, depth and the amount of readout noise. Similarly the inclusion of material interactions in the
tracking region is optional. For comparisons with benchmark reconstruction approaches, output data from
CoCoA are conveniently interfaced to standard topological clustering and jet clustering algorithms. The
output includes a record of energy contributions to each cell by truth particles for supervising cell-level
predictions and edge lists for connecting cells and tracks in a graph to support geometric deep learning
models. Finally, the default geometry has been formatted for rendering in the Phoenix event display software
[12], along with a script to export event output files for visualization. An example is shown in figure 1.

The sophisticated CoCoA calorimeter simulation and its data post-processing provides users easy access
to datasets suitable to train models for current collider experiments or for more general algorithms
development and benchmarking. In addition, the open-source nature of the package and its visualization
support have the potential for use cases in education and science communication in HEP.

2. Detector design

The major components of CoCoA are an inner tracking system (ITS) surrounded by an electromagnetic
calorimeter (ECAL) and finally a hadronic calorimeter (HCAL). These subsystems are arranged
concentrically and are symmetric in azimuthal angle —7 < ¢ < 7 as shown in figure 2. No muon
spectrometer is considered in this design and muons are reconstructed as tracks with the ITS. The goal of this
design is to accurately model the relevant outputs of a multipurpose detector at the LHC while being
simplified by the exclusion of detailed components like readout electronics, cabling, and support structures.
The detector design is largely configurable, with its default parameter values chosen to achieve response
characteristics comparable to that of the current ATLAS detector. Following is a detailed description of each
subsystem.

The ITS consists of hollow cylinders in the central detector part and disks at both of its ends, each of
which are centered around the beamline. Each of these components consists of a silicon layer of 150 m
thickness in case of the disks and the five innermost cylinders and 320 um in case of the 4 outermost
cylinders. Each silicon layer is accompanied by an iron layer of 350 pm thickness in order to provide a
simulation for support material. The ITS only serves the purpose of simulating the interaction of particles
with matter upstream of the calorimeter. The resulting detector hits are not used for tracking purposes. The
default value of the magnetic flux density present in the ITS amounts to 3.8 T. Finally, two layers of iron
totaling 4.4 cm in depth are added to represent support or cryostat material in front of the calorimeter.

10 https://cocoa-hep.readthedocs.io/en/latest/index.html.
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Figure 2. Positive quadrant scheme of CoCoA. We use a right-handed orthogonal coordinate system x-y-z, where z-axis is the
principal axis of the detector and a constant z refers to a circular cross-section of the detector. (a) yz-projection showing the
CoCoA ITS, subsequent iron layers, calorimeter system in the barrel and end-cap region, overlaid on lines marking constant
pseudorapidity 7. (b) xy-projection shows the barrel region of the same subsystems at z=0.
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Figure 3. (left) Cumulative amounts of material, in units of radiation length X, and as a function of 7, in front of and within the
electromagnetic calorimeter system. (right) Cumulative amounts of material, in units of interaction length A and as a function
of m, in front of and within the hadronic calorimeter system.
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The inner surface of the calorimeter system is a cylinder with a radius of 150 cm and a length of
6387.8 mm immediately enclosing the iron layers and the ITS. The calorimeters are separated into a central
barrel region covering the pseudorapidity range || < 1.5 and two end-cap regions extending the coverage up
to 77 = 3 by default. Both the ECAL and the HCAL are divided into 3 concentric layers, with each layer being
further segmented into cells with edges of constant 7 and ¢. The cell granularity for each layer is configurable
by setting the number of equal divisions in 7 and (separately) ¢. The depth of the cells in every layer is
designed to be nearly constant in 7 to ensure that the fraction of a particle’s energy deposited in each layer
does not depend on the incident angle. This design, leading to layer shapes of the form 1/ cosh#), provides a
uniform calorimeter thickness as a function of pseudo-rapidity. CoCoA will thus have a more uniform
response than a pure circular cylindrical shape.

The CoCoA calorimeter material is a compound using an equivalent molecule approximation, mixing an
absorber and an active material with a constant proportion. Both the materials and their proportion can be
configured for the ECAL and the HCAL individually. By default, the ECAL is made of a mixture of lead and
liquid argon, corresponding to the ATLAS ECAL materials. The volume proportion amounts to 1:3.83,
resulting in a radiation length of Xy = 2.5 cm. The ECAL and HCAL are separated by an iron layer with a
default thickness of 80 mm. The HCAL is made of a mixture of iron and polyvinyl toluene plastic material
with a volume proportion of 1.1 : 1.0, resulting in a nuclear interaction length of Aiy; = 26.6 cm. The
integrated radiation and interaction length measured from the interaction point (IP) at the center to the end
of the HCAL is shown as a function of the pseudorapidity in figure 3.

3
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Table 1. Calorimeter default design values regarding layer depths in terms of radiation lengths X (ECAL) and hadronic interaction
lengths Aine (HCAL), granularity and energy noise levels.

Std. dev. noise per

Layer Depth Segmentation (1 X ¢) cell per event (MeV)
ECAL 1 4 Xo 256 X 256 13
ECAL 2 16 Xo 256 X 256 34
ECAL 3 2 Xo 128 x 128 41
HCAL 1 1.5 Aint 64 X 64 75
HCAL 2 4.1 Nint 64 X 64 50
HCAL 3 1.8 Aint 32 x 32 25

While this calorimeter design represents a homogeneous detector, a spread in the resolution of
reconstructed energies in accordance with a sampling calorimeter design is emulated by means of
configurable sampling fraction parameters for the ECAL and the HCAL individually. In lieu of a complete
simulation of active and passive material, the sampling is emulated by accounting only for a fraction of the
GEANT4 energy deposition steps for all particles in the calorimeter showers. The steps to be removed are
chosen randomly. The sum of the total deposited energy by those steps is computed and the total energy
released is estimated by inverse scaling of the total deposited energy by the corresponding fraction.

Noise, as for example from electronics, is simulated by the addition of random amounts of energy
following a Gaussian distribution centered around zero. The noise is independently added to each cell.
Negative energies are allowed as is typically the case as a result from the subtraction of pedestals. If such
downward fluctuations are significant in size, those negative energy cells can be clustered into topoclusters.
The implementation of pile-up collision events from additional proton interactions is left for future
development. The default choices of materials and smearing parameters provided in table 1 are chosen in
order to approximate single-particle responses of the ATLAS calorimeter system [13, 14].

3. Data processing

Every event is processed according to the workflow presented in figure 4. First, primary particles are
generated at the IP by means of the PyTH1A8 Monte Carlo event generator [15]. A broad range of primary
physics processes is available to the user, ranging from the generation of single particles as well as single jets
up to more complicated final states with large multiplicities of jets and leptons in the final state.

The set of final state, stable particles is stored in the output file and passed on to the detector simulation
described in the previous section, where the propagation of these particles and their interactions with the
detector material is simulated in GEaNT4 [7]. The model of hadronic interactions is chosen in accordance
with the ATLAS and CMS detector simulations. The sum of the energies deposited in each calorimeter cell is
stored. Electronic noise is simulated by the addition of random energy offsets to each cell for which table 1
provides the default values of standard deviation for each layer.

For the purpose of particle reconstruction, the origin of energy deposits in each cell is stored via a list of
parent particle indices which contributed energy into the cell and a list of weights recording their relative
contribution to the total cell energy. Cells which received their dominant contribution from electronic noise
are assigned an index of —1.

In order to limit the number of calorimeter cells stored in the output file to a reasonable level, low-energy
cells dominated by noise contributions are suppressed using a topological clustering algorithm [16]. Only
cells contained in the resulting ‘topoclusters’ are stored in the output file. Topoclusters are seeded by single
cells which are required to contain a deposited energy well above the noise level, where the threshold of this
signal-to-noise ratio (SNR) is 4.6 for CoCoA by default, while a value of 4.0 is used for the ATLAS
experiment. This difference is chosen in order to achieve a better agreement between ATLAS and CoCoA in
terms of the topocluster multiplicity distribution for single charged and neutral pions as well as pure noise
events (figure 5). Starting with the seeding cells, all neighboring cells are added to the cluster if their SNR is
above another threshold, where the default value is set to 2. Finally, all further neighboring cells above a third
threshold are added, which by default is set to 0. Cells with negative energy can be included, based on their
absolute value, or excluded entirely (default configuration). Topocluster candidates containing multiple local
maxima in ECAL cell energy each surpassing 400 MeV are split into separate topoclusters.

In order to support particle reconstruction studies which include high energy primary photons,
electron—positron pairs from photon conversions taking place in the ITS upstream its two outermost iron
layers are stored in the CoCoA output file as well. Tracks emanating from photon conversions and also

4
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Figure 4. CoCoA workflow. Primary particles generated with the PyTHIA library are introduced to CoCoA. Their interactions with
the detector material is simulated by means of the GEANT4 toolkit. Calorimeter cells identified by a topological clustering
algorithm are stored in the output ROOT file together with true particles, emulated tracks, and particle trajectories extrapolated
from the IP through the calorimeter according to the equations of motion. A nearest-neighbors-based graph is constructed and
stored via edge lists connecting source and destination nodes amongst the output cells and tracks. Jets made of true particles as
well as topoclusters are stored in the output file as well. Events in the output file can be parsed for visualization in PHOENIX.
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Figure 5. Number (a) and average energy (b) of reconstructed clusters in CoCoA for events with a single charged pion, electron,
or photon shot at = 0. Results are also shown for clusters reconstructed in empty events due to electronic noise. The default
topological calorimeter cell clustering settings are used.

primary electron tracks are used to construct groups of topoclusters denoted as ‘superclusters’ associated
with electron and photon showers. The superclustering procedure in CoCoA follows the criteria described in
[17], designed to improve electron energy reconstruction by incorporating nearby energy deposits from
bremsstrahlung. It also includes criteria for grouping multiple clusters that are related by a pair of nearby
tracks to a photon conversion vertex, thus improving reconstructed photon energy. In the photon conversion
shown in figure 1, for example, the CoCoA output contains a supercluster which combines the three
topoclusters shown. Due to the simplified tracking, the criteria on number of track hits are not applied. The
CoCoA implementation does not focus on electron and photon identification; rather, superclusters are only
formed using tracks linked to primary or conversion electrons.

While the event simulation based on the GEanT4 [7] toolkit determines particle trajectories according to
their equations of motion and their interactions with detector material, CoCoA implements a particle
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Table 2. Default k (number of nearest-neighbors) and maximum AR separation used to define edges in the fixed graph creation. Edges
between cells are denoted ‘c—c’ while edges between tracks and cells are denoted ‘t—c’.

ECAL layer HCAL layer
1 2 3 1 2 3
k (c—c) inter-layer 1 2 2 2 2 1
k (c—c) same layer 8 8 8 6 6
k (t—) 4 4 4 3 3 3
AR™ (c—c) 0.05 0.07 0.14 0.30 0.30 0.60
AR™™ (t—c) 0.15 0.15 0.40 1.10 1.10 2.00

tracking based only on the equations of motion for the benefit of downstream tasks. These tracks are
extrapolated to the entry surface as well as each layer of the calorimeter and the resulting 77 and ¢ coordinates
are stored in the output file.

For user convenience, an interface to the FastJet [18] library is provided that clusters primary particles as
well as topological calorimeter cell clusters into jets. The user can choose the specific jet clustering algorithm
accordingly, with the anti-kr algorithm set as default.

For each event in the output data a fixed heterogeneous graph containing cells and tracks is provided by
means of two lists storing the indices of source and destination nodes for each edge. The edges are created
based on k nearest neighbors in angular distance with k being user-configurable per calorimeter layer and
edge type. Three edge types are defined: track-to-cell, cell-to-cell inter-layer, and cell-to-cell across
neighboring calorimeter layers (tracks are not directly connected). The user can configure for each of these
types both how many edges to construct in a AR-ordered neighborhood and also with a maximum AR
(where AR?* = An? + A¢?). The default values are given in table 2.

The final output file produced by CoCoA stores an array of features for each event which are associated
with the following sets: cells that participated in topoclusters, tracks, topoclusters, truth particles and decay
record, graph edges, and jets. The output file format is ROOT but can be converted to hdf5 format using a
script provided in the repository.

4. Detector performance

In the following, the performance of CoCoA is investigated by means of single particles which are generated
at the IP. For each particle type and momentum under investigation, the event generation is repeated in
order to gather a statistically significant amount of events.

The correct reconstruction of particle energies is demonstrated in figure 5, which compares the
distributions of multiplicities (figure 5(a)) and energy sums (figure 5(b)) of topoclusters for charged pions,
photons, electrons and events containing only noise contributions, denoted as empty events. In most of the
empty events, the cell energies do not pass the noise threshold of the clustering algorithm. For those events in
which this threshold is passed, the average cluster energy sum amounts to 36 MeV in line with the low noise
levels provided in table 1. The photons and electrons mostly result in one cluster, while their energy is
reconstructed with only a small variation. In comparison, the charged pion events result in larger variations
of the cluster multiplicity and energy sum distributions due to the higher degree of variations in deposited
energies for the hadronic showers. The average cluster energy sum is below the initial charged pion energy
due to the involved nuclear interactions of the shower particles with the detector material, which are not
counted as detectable energy. A hadronic calibration procedure is not performed within CoCoA but left for
downstream tasks.

Patterns of energy depositions across the calorimeter are demonstrated in figure 6 in terms of fractions of
deposited energy per calorimeter layer for electrons, photons and charged pions. As a consequence of the
material budget presented above in figure 3, the electrons and photons deposit most of their energy in the
ECAL, in particular in the second calorimeter layer, while the charged pions reach the HCAL layers where
they deposit most of their energy, in line with energy deposition patterns at collider-detector experiments.

Figure 7 shows distributions of the reconstructed energies for central electrons, photons and charged
pions with different initial energies. The energy resolution provided by the calorimeter response improves as
the initial particle energy increases. It is larger for charged pions compared to electrons and photons, as
expected because of the existence of large sampling fluctuations for hadronic showers compared to
electromagnetic showers.

Figure 8 shows the reconstructed energies of a single electron emitted at different initial 7). The average
reconstructed energy is always lower than the initial particle energies, with the difference growing with the
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Figure 6. Energy deposited by electrons, photons and charged pions for each calorimeter layer. The electron and photon showers
are limited to the electromagnetic calorimeter (layers 1-3) while the charged pion showers reach deep into the hadronic
calorimeter (layers 4-6).
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Figure 7. Reconstruction energies for central electrons (a), photons (b) and charged pions (c). The average reconstructed energies
follow the initial particle energies while the energy resolution improves as the initial particle energy increases.

particle 7. This is due to the energy depositions in the iron contained in the ITS upstream the calorimeter, in
accordance with the material map presented in figure 3.

Figure 9 quantifies the energy resolution as a function of true particle energy, comparing electrons with
charged pions. For each particle type, the relative energy resolution depending on the particle energy is fitted
using least-squares to the following common form of the resolution function:

0 (Ereco) __a o b
Etruth V Etruth Etruth

where the best-fit parameters are provided within the figure. Here a, b and ¢ refers to the stochastic,
electronic noise and constant terms, respectively. The larger fitted coefficient of the sampling term for
hadronic shower compared to electromagnetic is related to the larger value of sampling fraction f configured
for the ECAL and HCAL separately (0.07 and 0.025, respectively). The values of the parameters, appearing in
equation (1), are individually evaluated for photon as a = (0.16 +-0.01) GeV, b = (0.30 - 0.02 ) v/GeV and
¢ = 0.006 % 0.003. The same numbers for charged pions are found to be a = (0.50 £ 0.12) GeV,
b=(0.32+0.06)+/GeV and ¢ = 0.086 £ 0.002. The noise term is compatible with the input noise values,
the sampling term is as expected from the sampling emulation.

The performance of the simulated detector has been so far probed using single particles. To illustrate the
detector performance in a more realistic event environment, proton collision producing an on-shell W
boson, decaying to an electron and neutrino, i.e. pp — W — e+ v were simulated. The electron is
reconstructed using the superclustering algorithm described in section 3, and its energy is calibrated in order
to compensate for the loss due to scattering in the ITS and iron layers upstream the ECAL. The missing
transverse momentum (MET) is calculated from the rescaled clusters, as the opposite the vector sum over
visible transverse momenta in the whole event. Finally the transverse W mass, m}’, is computed from the
reconstructed W four-momentum and compared with the corresponding truth level distribution in
figure 10.

Dc (1)
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Figure 10. The transverse W mass m} distribution is plotted for leptonically decaying W events. The black curve shows the truth

distribution whereas the red curve is obtained from the vector sum of reconstructed lepton momentum and the MET in the event.
The peak location of the two distributions are well aligned, demonstrating that the event-level reconstructed MET is trustworthy

within the CoCoA framework.

5. Event display

Visualization of detector geometry and examples of hits for individual events is important for
communicating results, and interpreting downstream tasks such as reconstruction and event selection. The
default geometry of the CoCoA detector was ported into the open-source framework Phoenix, chosen for its
versatility and user support. An example event display is shown in figure 11.
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(b)

Figure 11. Phoenix event displays configured using the CoCoA detector geometry, showing the charged particle tracks and
calorimeter hits generated by (a) pp — tfand (b) pp — W — ev events simulated with PYTHIA8. In (a), a cutaway of the CoCoA
calorimeter volumes is shown along with the clustered cells, while in (b) only the cells are shown. The electron from the W decay
in (b) is indicated by a green line. Both displays are shown in perspective view, such that nearer objects appear larger. Different
shades of green and blue represent the different layers of ECAL and HCAL, respectively, while cell opacity is determined by cell
SNR.




10P Publishing

Mach. Learn.: Sci. Technol. 4 (2023) 035042 A Charkin-Gorbulin et al

6. Conclusion

The growing interest in ML approaches to low-level analysis tasks such as event or jet reconstruction in a
realistic detector underscores the importance of leveraging the rich feature space of calorimeter showers for
improving these tasks. Providing an open, configurable, and realistic calorimeter simulation, CoCoA will
facilitate the development of such algorithms and ultimately expand the physics reach of current and
next-generation collider experiments. The thorough treatment of particle interactions in GEANT4 and the
full-coverage, highly-granular design of CoCoA calorimeter system enable an accurate representation of the
complex data environment present in the ATLAS and CMS experiments at the LHC. To quantify this
resemblance, an investigation of the single-particle response characteristics, in terms of topological clustering
performance and energy resolution for electromagnetic and hadronic showers, has been carried out. Finally,
additional aides including data post-processing, event visualization, and documentation for CoCoA has been
provided to further encourage use.

In future, we foresee inclusion of pileup, direct interface to MadGraph [19] output file and include
python binding for CoCoA.
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