Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including pp and p+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb−1 of p+Pb and 3.6 pb−1 of pp collisions at 5.02 TeV. The yields of charged hadrons with pchT>0.5 GeV near and opposite in azimuth to jets with pjetT>30 or 60 GeV, and the ratios of these yields between p+Pb and pp collisions, IpPb, are reported. The collision centrality of p+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The IpPb values are consistent with unity within a few percent for hadrons with pchT>4 GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central p+Pb collisions.

Strong constraints on jet quenching in centrality-dependent p+Pb collisions at 5.02 TeV from ATLAS / Betti, A.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Bini, C.; Luci, C.; Morodei, F.; Lacava, F.; Safai Tehrani, F.; Artoni, G.; Santi, L.; Martinelli, L.; Maiani, L; Bauce, M.; Gauzzi, P.; Gentile, S.; Falciano, S.; Giagu, S.; Ippolito, V.; Padovano, G.. - In: PHYSICAL REVIEW LETTERS. - ISSN 1079-7114. - 131:7(2023), pp. 1-30. [10.1103/PhysRevLett.131.072301]

Strong constraints on jet quenching in centrality-dependent p+Pb collisions at 5.02 TeV from ATLAS

Betti A.;De Salvo A.;Di Domenico A.;Dionisi C.;Bini C.;Luci C.;Morodei F.;Lacava F.;Safai Tehrani F.;Artoni G.;Santi L.;Martinelli L.;Maiani L;Bauce M.;Gauzzi P.;Gentile S.;Falciano S.;Giagu S.;Ippolito V.;Padovano G.
2023

Abstract

Jet quenching is the process of color-charged partons losing energy via interactions with quark-gluon plasma droplets created in heavy-ion collisions. The collective expansion of such droplets is well described by viscous hydrodynamics. Similar evidence of collectivity is consistently observed in smaller collision systems, including pp and p+Pb collisions. In contrast, while jet quenching is observed in Pb+Pb collisions, no evidence has been found in these small systems to date, raising fundamental questions about the nature of the system created in these collisions. The ATLAS experiment at the Large Hadron Collider has measured the yield of charged hadrons correlated with reconstructed jets in 0.36 nb−1 of p+Pb and 3.6 pb−1 of pp collisions at 5.02 TeV. The yields of charged hadrons with pchT>0.5 GeV near and opposite in azimuth to jets with pjetT>30 or 60 GeV, and the ratios of these yields between p+Pb and pp collisions, IpPb, are reported. The collision centrality of p+Pb events is categorized by the energy deposited by forward neutrons from the struck nucleus. The IpPb values are consistent with unity within a few percent for hadrons with pchT>4 GeV at all centralities. These data provide new, strong constraints which preclude almost any parton energy loss in central p+Pb collisions.
2023
ATLAS; LHC; gluon
01 Pubblicazione su rivista::01a Articolo in rivista
Strong constraints on jet quenching in centrality-dependent p+Pb collisions at 5.02 TeV from ATLAS / Betti, A.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Bini, C.; Luci, C.; Morodei, F.; Lacava, F.; Safai Tehrani, F.; Artoni, G.; Santi, L.; Martinelli, L.; Maiani, L; Bauce, M.; Gauzzi, P.; Gentile, S.; Falciano, S.; Giagu, S.; Ippolito, V.; Padovano, G.. - In: PHYSICAL REVIEW LETTERS. - ISSN 1079-7114. - 131:7(2023), pp. 1-30. [10.1103/PhysRevLett.131.072301]
File allegati a questo prodotto
File Dimensione Formato  
Aad_Strong-constraints_2023.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1694092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact