We consider the eigenvalues of the magnetic Laplacian on a bounded domain Ω of R2 with uniform magnetic field β>0 and magnetic Neumann boundary conditions. We find upper and lower bounds for the ground state energy λ1 and we provide semiclassical estimates in the spirit of Kröger for the first Riesz mean of the eigenvalues. We also discuss upper bounds for the first eigenvalue for non-constant magnetic fields β=β(x) on a simply connected domain in a Riemannian surface. In particular: we prove the upper bound λ1

Geometric bounds for the magnetic Neumann eigenvalues in the plane / Colbois, B.; Lena, C.; Provenzano, L.; Savo, A.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 179:(2023), pp. 454-497. [10.1016/j.matpur.2023.09.014]

Geometric bounds for the magnetic Neumann eigenvalues in the plane

Provenzano L.
;
Savo A.
2023

Abstract

We consider the eigenvalues of the magnetic Laplacian on a bounded domain Ω of R2 with uniform magnetic field β>0 and magnetic Neumann boundary conditions. We find upper and lower bounds for the ground state energy λ1 and we provide semiclassical estimates in the spirit of Kröger for the first Riesz mean of the eigenvalues. We also discuss upper bounds for the first eigenvalue for non-constant magnetic fields β=β(x) on a simply connected domain in a Riemannian surface. In particular: we prove the upper bound λ1
2023
Constant field; Magnetic Laplacian; Neumann eigenvalues; Semiclassical estimates; Upper and lower bounds
01 Pubblicazione su rivista::01a Articolo in rivista
Geometric bounds for the magnetic Neumann eigenvalues in the plane / Colbois, B.; Lena, C.; Provenzano, L.; Savo, A.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - 179:(2023), pp. 454-497. [10.1016/j.matpur.2023.09.014]
File allegati a questo prodotto
File Dimensione Formato  
Colbois_Geometric_2023.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1693596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact