In this paper we deal with the following boundary value problem \begin{equation*} \begin{cases} -\Delta_{p}u + g(u) | \nabla u|^{p} = h(u)f & \text{in $\Omega$,} \\ u\geq 0 & \text{in $\Omega$,} \\ u=0 & \text{on $\partial \Omega$,} \ \end{cases} \end{equation*} in a domain $\Omega \subset \mathbb{R}^{N}$ $(N \geq 2)$, where $1\leq p

Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L^1 terms / Balducci, Francesco; Oliva, Francescantonio; Petitta, Francesco. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 391:(2024), pp. 334-369. [10.1016/j.jde.2024.02.002]

Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L^1 terms

Francesco Balducci;Francescantonio Oliva;Francesco Petitta
2024

Abstract

In this paper we deal with the following boundary value problem \begin{equation*} \begin{cases} -\Delta_{p}u + g(u) | \nabla u|^{p} = h(u)f & \text{in $\Omega$,} \\ u\geq 0 & \text{in $\Omega$,} \\ u=0 & \text{on $\partial \Omega$,} \ \end{cases} \end{equation*} in a domain $\Omega \subset \mathbb{R}^{N}$ $(N \geq 2)$, where $1\leq p
2024
1-laplacian, p-laplacian, natural growth gradient terms, regularizing effects, L^1 data, singular problems
01 Pubblicazione su rivista::01a Articolo in rivista
Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L^1 terms / Balducci, Francesco; Oliva, Francescantonio; Petitta, Francesco. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 391:(2024), pp. 334-369. [10.1016/j.jde.2024.02.002]
File allegati a questo prodotto
File Dimensione Formato  
Balducci_Finite-energy_2024.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 479.79 kB
Formato Adobe PDF
479.79 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1692721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact