In this paper we deal with the following boundary value problem \begin{equation*} \begin{cases} -\Delta_{p}u + g(u) | \nabla u|^{p} = h(u)f & \text{in $\Omega$,} \\ u\geq 0 & \text{in $\Omega$,} \\ u=0 & \text{on $\partial \Omega$,} \ \end{cases} \end{equation*} in a domain $\Omega \subset \mathbb{R}^{N}$ $(N \geq 2)$, where $1\leq p
Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L^1 terms / Balducci, Francesco; Oliva, Francescantonio; Petitta, Francesco. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 391:(2024), pp. 334-369. [10.1016/j.jde.2024.02.002]
Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L^1 terms
Francesco Balducci;Francescantonio Oliva;Francesco Petitta
2024
Abstract
In this paper we deal with the following boundary value problem \begin{equation*} \begin{cases} -\Delta_{p}u + g(u) | \nabla u|^{p} = h(u)f & \text{in $\Omega$,} \\ u\geq 0 & \text{in $\Omega$,} \\ u=0 & \text{on $\partial \Omega$,} \ \end{cases} \end{equation*} in a domain $\Omega \subset \mathbb{R}^{N}$ $(N \geq 2)$, where $1\leq pFile | Dimensione | Formato | |
---|---|---|---|
Balducci_Finite-energy_2024.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
479.79 kB
Formato
Adobe PDF
|
479.79 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.