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Abstract

In this paper we deal with the following boundary value problem

⎧⎪⎨
⎪⎩

−�pu + g(u)|∇u|p = h(u)f in �,

u ≥ 0 in �,

u = 0 on ∂�,

in a domain � ⊂ RN (N ≥ 2), where 1 ≤ p < N , g is a positive and continuous function on [0, ∞), and 
h is a continuous function on [0, ∞) (possibly blowing up at the origin). We show how the presence of 
regularizing terms h and g allows to prove existence of finite energy solutions for nonnegative data f only 
belonging to L1(�).
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1. Introduction

The aim of this work is the study of the following boundary value problem⎧⎪⎨
⎪⎩

−�pu + g(u)|∇u|p = h(u)f in �,

u ≥ 0 in �,

u = 0 on ∂�,

(1.1)

where 1 ≤ p < N . Here � ⊂ RN , with N ≥ 2, is an open and bounded set with Lipschitz 
boundary, �pu := div(|∇u|p−2∇u) is the usual p−laplacian, and g is a positive and contin-
uous function on [0, ∞). Finally h is a continuous function on [0, ∞) that is allowed to blow-up 
at the origin and is bounded at infinity. In particular, the case of continuous, bounded and non-
monotone functions g, h is covered by the above assumptions.

Our goal is the study of existence of finite energy solutions to (1.1); by a finite energy solution 
we mean a function lying in the natural space in which such problems are naturally built-in in 
case of smooth nonlinear terms and data, i.e. u ∈ W1,p

0 (�) if p > 1 and u ∈ BV(�) if p = 1.
We are interested to deeply explore the interplay between the first order absorption term 

involving g and the zero order and possibly singular nonlinearity h in presence of a merely inte-
grable datum f . In particular we deal with the regularizing effect, in terms of Sobolev regularity, 
provided by the lower order terms to the solutions of problems as (1.1).

These kinds of regularizing effects given by the gradient terms with natural growth in elliptic 
problems with rough data are nowadays quite classical. If h ≡ 1 it is well known that, see for 
instance [8,28], quadratic gradient terms satisfying a sign condition (i.e. g(s)s ≥ 0) in problems 
as (1.1) gives finite energy solutions if f is a merely integrable function (or even a measure). Let 
also stress that it is well known that solutions have, in general, infinite energy if g ≡ 0 (see [7]).
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On the other hand problems as (1.1) with g ≡ 0 and in presence of possibly singular non-
linearities has reached great attention in the last decades starting from the pioneering papers 
[13,24,29]; if p = 2, h(s) = s−γ (γ > 0), and f is smooth, existence of classical solutions in 
C2(�) ∩ C0(�) follows by suitable approximation with desingularized problems. Only later, in 
[10], the authors prove existence of a distributional solution in case of a Lebesgue datum f and 
remarked the regularizing effect given by the right-hand of (1.1) when, once again, p = 2 and 
h(s) = s−γ (γ > 0): namely the solution, compared to the case γ = 0, always lies in a smaller 
Sobolev space when 0 < γ ≤ 1. Moreover if γ = 1 the solution is always in H 1

0 (�) even if f is 
just an L1−function as one can formally deduce by taking u itself as test function in (1.1) while if 
γ > 1 the solution belongs only locally to H 1(�) and the boundary datum is meant as a suitable 
power of the solution having zero Sobolev trace. It is also worth to mention that, in general, one 
can not expect finite energy solutions for γ ≥ 3 − 2

m
if f ∈ Lm(�), m > 1 ([24,25]).

Similar results, again in the case g ≡ 0, were then extended to the case p ≥ 1; i.e. let us 
consider nonnegative finite energy solutions for⎧⎨

⎩−�pu = f

uγ
in �,

u = 0 on ∂�.

It was shown in [15] that, if p > 1, then finite energy solutions exist either, for smooth datum f , 
up to γ < 2 + 1

p−1 or if γ ≤ 1 with f ∈ Lm(�) for some m ≥ 1. As observed in [16], the formal 
case of p → 1+ is also included as finite energy BV solutions are expected to exist either for any 
γ > 0 in case of smooth f , or for γ ≤ 1 in the general case of f ∈ Lm(�) for some m ≥ 1.

Problems as {
−�1u + g(u)|Du| = f in �,

u = 0 on ∂�,

have also been recently considered as a model for the level set formulation proposed in [20]
for the inverse mean curvature flow (see also [26]) in order to prove the well-known Penrose 
inequality in the case of a single black hole.

From the purely mathematical point of view, regularizing effect of the presence of gradient 
terms (also in case of a nonlinearity g with a generic sign) and f ∈ LN(�) was recently investi-
gated (see [5,26,22,18]). Among the others let only stress that solutions to these problems are, in 
general, BV functions with no jump part in its gradient.

The main goal of our study concerns problems as{
−�1u + g(u)|Du| = h(u)f in �,

u = 0 on ∂�,
(1.2)

where g is a positive and bounded continuous function on [0, ∞), h is a continuous function 
on [0, ∞) (possibly blowing up at the origin) and bounded at infinity, and f is a nonnegative 
function in L1(�). In particular we will focus on the interplay between the data g, h and f in 
order to get nontrivial solutions in BV (�), the space of functions in L1(�) whose derivatives 
have finite total bounded variation over �. We stress again that this goal is forbidden in presence 
of merely integrable data whenever g ≡ 0 (see [21]). It is also worth mentioning that, if this is the 
case, existence of solutions is expected for more regular data, but only under a suitable smallness 
condition on the norm ([17,16]), which here is not requested.
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As a further feature of these types of problems with gradient type absorption terms one has 
that solutions u of (1.2) are in fact “zero” HN−1 a.e. on ∂� in contrast with the case of reaction 
terms ([22,18]) or no reaction at all ([16]) in which constant solutions are allowed.

We also stress that a standard approach to deal with 1-Laplace type problems as (1.2) consists 
in approximate them with p-Laplace ones where p > 1. Our method will follow this line but let 
us emphasize that the case p > 1 is interesting and new as well; so that, in Section 3 we set, as 
a preparatory tool but in full generality, the theory of existence and weak regularity of solutions 
for problems as in (1.1).

The plan of the paper is the following: in Section 2 we provide some preliminaries tools and 
notation. In Section 3 we study the Dirichlet problem in presence of a principal operator modeled 
by the p-Laplacian with p > 1; apart from being interesting itself, it is the preparatory study for 
the main Section 4, in which the limit case p = 1 is investigated. Finally in Section 5, we give 
some further insights on how to extend the result in various directions as the case of merely 
nonnegative data and the case of a nonlinearity g possibly blowing-up at infinity.

2. Notation and preparatory tools

For the entire paper � denotes an open bounded subset of RN , for N ≥ 2, with Lipschitz 
boundary. We stress that for the results of Section 3 the Lipschitz regularity is not needed. By 
HN−1(E) we mean the (N − 1)-dimensional Hausdorff measure of a set E while |E| stands for 
its N -dimensional Lebesgue measure. The space M(�) is the usual one of Radon measures with 
finite total variation over �. Its local counterpart Mloc(�) is the space of Radon measures which 
are locally finite in �.

For a fixed k > 0, we use the truncation functions Tk :R →R and Gk : R→R defined by

Tk(s) :=max(−k,min(s, k)) and Gk(s) := s − Tk(s). (2.1)

Moreover we define

Vδ(s) :=

⎧⎪⎪⎨
⎪⎪⎩

1 0 ≤ s ≤ δ,
2δ − s

δ
δ < s < 2δ,

0 s ≥ 2δ.

(2.2)

Finally, for a Banach space X we denote by C0
b(X) the space of bounded and continuous real 

functions on X.
If no otherwise specified, we denote by C several positive constants whose value may change 

from line to line and, sometimes, on the same line. These values will only depend on the data 
but they will never depend on the indexes of the sequences we will gradually introduce. Let us 
explicitly mention that we will not relabel an extracted compact subsequence.

For simplicity’s sake, and if there is no ambiguity, we will often use the following notation:

∫
f :=

∫
f (x) dx.
� �
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2.1. Basics on BV spaces

The Banach space of bounded variation functions on � is defined as:

BV (�) := {u ∈ L1(�) : Du ∈M(�)N } ,

endowed with the norm

||u||BV (�) =
∫
∂�

|u|dHN−1 +
∫
�

|Du| ,

where |Du| denotes the total variation of the measure Du. With Lu we mean the set of Lebesgue 
points of a function u, with Su := � \Lu and with Ju the jump set. Let recall that any function u ∈
BV (�) can be identified with its precise representative u∗ which is the Lebesgue representative 
in Lu while u∗ = u++u−

2 in Ju where u+, u− denote the approximate limits of u. Moreover it 
can be shown that HN−1(Su \ Ju) = 0 and that u∗ is well defined HN−1-a.e.

Let us highlight that, once saying that Dju = 0, we understand that HN−1(Ju) = 0, or, in 
other terms, that Du = D̃u where D̃u is the absolutely continuous part of Du with respect to the 
Lebesgue measure. In this case we will also denote by u instead of u∗ the precise representative of 
u as no ambiguity is possible when integrating against a measure which is absolutely continuous 
with respect to HN−1.

2.2. The Anzellotti-Chen-Frid theory

In order to be self-contained we summarize the L∞-divergence-measure vector fields theory 
due to [6] and [12]. We denote by

DM∞(�) := {z ∈ L∞(�)N : div z ∈M(�)},

and by DM∞
loc(�) its local version, namely the space of bounded vector field z with div z ∈

Mloc(�). We first recall that if z ∈ DM∞(�) then div z is an absolutely continuous measure 
with respect to HN−1.
In [6] the following distribution (z, Dv) : C1

c (�) → R is introduced:

〈(z,Dv),ϕ〉 := −
∫
�

v∗ϕ div z −
∫
�

vz · ∇ϕ, ϕ ∈ C1
c (�), (2.3)

in order to define a generalized pairing between vector fields in DM∞(�) and derivatives of BV

functions. In [27] and [11], in fact, the authors prove that (z, Dv) is well defined if z ∈ DM∞(�)

and v ∈ BV (�) ∩ L∞(�) since one can show that v∗ ∈ L∞(�, div z). Moreover in [17] the 
authors show that (2.3) is well posed if z ∈ DM∞

loc(�) and v ∈ BVloc(�) ∩ L1
loc(�, div z) and it 

holds that

|〈(z,Dv),ϕ〉| ≤ ||ϕ||L∞(U)||z||L∞(U)N

∫
|Dv| ,
U
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for all open sets U ⊂⊂ � and for all ϕ ∈ C1
c (U). Moreover one has

∣∣∣∣∣∣
∫
B

(z,Dv)

∣∣∣∣∣∣ ≤
∫
B

|(z,Dv)| ≤ ||z||L∞(U)N

∫
B

|Dv| , (2.4)

for all Borel sets B and for all open sets U such that B ⊂ U ⊂ �.
Observe that, if z ∈ DM∞

loc(�) and w ∈ BVloc(�) ∩ L∞(�), then

div(wz) = (z,Dw) + w∗ div z , (2.5)

so that wz ∈DM∞
loc(�).

We recall that in [6] it is proved that every z ∈ DM∞(�) possesses a weak trace on ∂� of 
its normal component which is denoted by [z, ν], where ν(x) is the outward normal unit vector 
defined for HN−1-almost every x ∈ ∂�. Moreover, it holds that

||[z, ν]||L∞(∂�) ≤ ||z||L∞(�)N , (2.6)

and also that, if z ∈DM∞(�) and v ∈ BV (�) ∩ L∞(�), then

v[z, ν] = [vz, ν],

(see [11]).
Finally the following Green formula holds (see [17]).

Lemma 2.1. Let z ∈ DM∞
loc(�) and set μ = div z. Let v ∈ BV (�) ∩ L∞(�) be such that v∗ ∈

L1(�, μ). Then vz ∈DM∞(�) and the following holds:

∫
�

v∗ dμ +
∫
�

(z,Dv) =
∫
∂�

[vz, ν] dHN−1 . (2.7)

Analogously to (2.6), it can be proved (see [17, Proposition 2.7]) that, for z ∈ DM∞
loc(�) such 

that the product vz ∈DM∞(�) for some v ∈ BV (�) ∩ L∞(�),

|[vz, ν]| ≤ |v ∂�| ‖z‖L∞(�)N HN−1-a.e. on ∂�. (2.8)

When dealing with compositions with nonlinear functions it is sometimes useful to define a 
slightly “different” pairing measure as follows (see for instance [26]): let β :R → R be a locally 
Lipschitz function and v ∈ BVloc(�), then we define

β(v)# :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

v+ − v−

v+∫
v−

β(s) ds if x ∈ Jv,

β(v) otherwise.
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Observe that β(v)# turns out to coincide with β(v)∗ on the jump set if and only if β(s) = s. 
As for (2.3), if z ∈ DM∞

loc(�) and v ∈ BVloc(�) is such that β(v) ∈ BVloc(�) ∩ L∞
loc(�), it is 

possible to define the measure (z, Dβ(v)#) by

〈(z,Dβ(v)#), ϕ〉 := −
∫
�

β(v)#ϕ div z −
∫
�

β(v)z · ∇ϕ, ϕ ∈ C1
c (�). (2.9)

By [26, Lemma 2.5], this new pairing (z, Dβ(v)#) is a well defined measure absolutely con-
tinuous with respect to HN−1, and moreover

∣∣∣∣∣∣
∫
B

(z,Dβ(v)#)

∣∣∣∣∣∣ ≤
∫
B

∣∣(z,Dβ(v)#)
∣∣ ≤ ||z||L∞(U)N

∫
B

|Dβ(v)|, (2.10)

for all Borel sets B and for all open sets U such that B ⊂ U ⊂ �.
In what follows we will use the classical chain rule formula for functions in BV ([2, Theorem 

3.99]).

Lemma 2.2. Let u ∈ BV (�) and let 
 : R → R be a Lipschitz function. Then v = 
(u) ∈
BV (�) and

Dv = 
′(u)#Du. (2.11)

In particular, if Dju = 0, then D̃v = 
′(u)D̃u.

2.3. A general result on the jump part of a BV function

We show a general result showing that a function w ∈ BVloc(�) satisfying an inequality in-
volving its gradient has no jump part. The proof is a suitable re-adaptation of an idea in [19].

Lemma 2.3. Let α and β be two locally Lipschitz increasing functions on R. Let z ∈DM∞
loc(�)

such that ‖z‖L∞(�)N ≤ 1, w, α(w) ∈ BVloc(�), β(w) ∈ BVloc(�) ∩ L∞
loc(�), and λ ∈ L1

loc(�). 
Moreover assume that

−div z + |Dα(w)| ≤ λ (2.12)

and

(z,Dβ(w)#) = |Dβ(w)| , (2.13)

as measures. Then Djw = 0.

Proof. Since β(w) ∈ BVloc(�), by [2, Theorem 3.78], Sβ(w) is a (locally) countably HN−1−rec-
tifiable set and then there exist regular hypersurfaces ξi such that HN−1

(
Sβ(w) \ ⋃∞

i=1 ξi

) = 0.
By monotonicity of β , the proof follows once we prove that |Dβ(w)|(ξi) = 0 for any i ∈N .
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First observe that by [1, Proposition 3.4] one has that

div z = [z, ν]+ − [z, ν]− on ξi, (2.14)

where [z, ν]+ and [z, ν]− are the traces of the normal components of z over ξi defined as in [1, 
Definition 3.3].

Hence, using [14, Corollary 3.2], one has that

(z,Dβ(w)#) = −β(w)# div z + div(β(w)z)

= [z, ν]+(β(w)+ − β(w)#) + [z, ν]−(β(w)# − β(w)−)

≤ |β(w)+ − β(w)−| on ξi,

(2.15)

with the equality sign if and only if [z, ν]+ = [z, ν]− = sgn(β(w)+ − β(w)−).
Now, as

|Dβ(w)| = |β(w)+ − β(w)−| on ξi,

from (2.13) we then get the equality sign in (2.15); so that

[z, ν]+ = [z, ν]− = sgn(β(w)+ − β(w)−) on ξi . (2.16)

Observe that both α(w) and β(w) share the same jump set so that we gather together (2.12), 
(2.14) and (2.16) to obtain that

|α(w)+ − α(w)−| = |Dα(w)| = 0 on ξi,

which allows us to conclude that

|Dα(w)| = 0 on ξi,

and, as α is strictly monotone, that finally Djw = 0. �
3. The case p > 1 for general monotone operators

As we mentioned, in this section we set, not only as a preparatory tool, the theory of existence 
and weak regularity of solutions for problems as in (1.1) for Leray-Lions nonlinear operators as 
leading terms.

Let � ⊂ RN (N ≥ 2) be an open and bounded set (no further regularity is needed here), 
and let a : � ×R ×RN → RN be a Carathéodory function satisfying the classical Leray-Lions 
assumptions, i.e. there exist α, β > 0 and 1 < p < N such that, for almost every x ∈ �, for every 
s ∈R and every ξ, ξ ′ ∈ RN :

a(x, s, ξ) · ξ ≥ α|ξ |p, (3.1)

|a(x, s, ξ)| ≤ β
(
b(x) + |s|p−1 + |ξ |p−1

)
, (3.2)(

a(x, s, ξ) − a(x, s, ξ ′)
) · (ξ − ξ ′) > 0; (3.3)
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let us recall that, by (3.1), one has a(x, s, 0) = 0, for any s ∈R and a.e. x ∈ �.
Consider the following boundary value problem

⎧⎪⎨
⎪⎩

−div(a(x,u,∇u)) + g(u)|∇u|p = h(u)f in �,

u ≥ 0 in �,

u = 0 on ∂�,

(3.4)

where g : [0, ∞) → [0, ∞) is a continuous function such that

lim inf
s→∞ g(s) > 0. (3.5)

Moreover h : [0, ∞) → [0, ∞] is a continuous function such that h(0) > 0,

∃ 0 ≤ γ ≤ 1, c1, s1 > 0 : h(s) ≤ c1

sγ
for all s ≤ s1, (3.6)

and

h ∈ C0
b([δ,∞)) ∀δ > 0. (3.7)

Let us stress that the classical case g, h ≡ 1 is covered by the above assumptions as γ could 
be zero and g does not necessarily satisfy g(0) = 0.

As for the datum, we assume that f ∈ L1(�) is nonnegative.
Let us introduce the notion of distributional solution for problem (3.4).

Definition 3.1. Let 1 < p < N then a nonnegative u ∈ W
1,p
0 (�) is a distributional solution to 

(3.4) if a(x, u, ∇u) ∈ L1
loc(�)N , g(u)|∇u|p, h(u)f ∈ L1

loc(�) and if it holds

∫
�

a(x,u,∇u) · ∇ϕ +
∫
�

g(u)|∇u|pϕ =
∫
�

h(u)f ϕ, ∀ϕ ∈ C1
c (�). (3.8)

Remark 3.2. It is worth mentioning that all the terms appearing in the weak formulation of 
Definition 3.1 are well defined. In particular, as the vector field a satisfies (3.1)-(3.3), then 
a(x, u, ∇u) ∈ Lp′

(�)N since u ∈ W
1,p
0 (�), where p′ = p

p−1 is the standard Hölder conjugate 
exponent of p.

Now we are ready to state the main result of this section.

Theorem 3.3. Let a satisfy (3.1)-(3.3) with 1 < p < N . Let g satisfy (3.5) and let h satisfy 
(3.6)-(3.7). Finally let f ∈ L1(�) be nonnegative. Then there exists a solution u to (3.4) in the 
sense of Definition 3.1 such that g(u)|∇u|p ∈ L1(�).
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3.1. Approximation scheme

In order to prove Theorem 3.3 we work by approximation. We will show the existence of a 
nonnegative solution for the following

{
−div(a(x,un,∇un)) + gn(un)|∇un|p = hn(un)fn in �,

un = 0 on ∂�,
(3.9)

where

gn(s) :=
{

min{n,g(0)} if s ≤ 0,

Tn(g(s)) if s > 0,

fn := Tn(f ) and hn := Tn(h) with n > 0 (Tn(s) is defined in (2.1)).
The proof is standard and it is based on an application of the Schauder fixed point. We will 

sketch it for the sake of completeness.

Lemma 3.4. Let a satisfy (3.1)-(3.3) with 1 < p < N , then there exists a nonnegative un ∈
W

1,p
0 (�) ∩ L∞(�) which satisfies

∫
�

a(x,un,∇un) · ∇ϕ +
∫
�

gn(un)|∇un|pϕ =
∫
�

hn(un)fnϕ, ∀ϕ ∈ W
1,p

0 (�) ∩ L∞(�).

Proof. We set

S : Lp(�) → Lp(�),

as the map that, for any v ∈ Lp(�), gives the weak solution w to

{
−div(a(x,w,∇w)) + gn(w)|∇w|p = hn(|v|)fn in �,

w = 0 on ∂�,
(3.10)

whose existence is guaranteed from [9, Theorem 1]. In particular w ∈ W
1,p

0 (�) ∩L∞(�) satisfies

∫
�

a(x,w,∇w) · ∇ϕ +
∫
�

gn(w)|∇w|pϕ =
∫
�

hn(|v|)fnϕ, ∀ϕ ∈ W
1,p

0 (�) ∩ L∞(�). (3.11)

We claim that w is nonnegative; indeed, one can fix in (3.11) ϕ = −w−e−tw , for some t > 0
to be chosen later, and, here, w− ≥ 0 denotes the negative part of w. This yields to

−
∫
�

a(x,w,∇w) · ∇w−e−tw +
∫
�

ta(x,w,∇w) · ∇ww−e−tw −
∫
�

gn(w)|∇w|pw−e−tw

= −
∫

hn(|v|)fnw
−e−tw ≤ 0,
�
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which, recalling (3.1), implies

α

∫
�

|∇w−|pe−tw +
∫
�

|∇w|pw−e−tw(αt − gn(w)) ≤ 0.

Hence it is sufficient requiring t > n
α

in order to deduce that w ≥ 0 almost everywhere in �.
Now we show that the map S has an invariant ball, it is continuous and relatively compact in 

Lp(�), so that the Schauder fixed point Theorem can be applied.
Let us fix ϕ = w in (3.11) yielding to

α

∫
�

|∇w|p (3.1)≤
∫
�

a(x,w,∇w) · ∇w +
∫
�

gn(w)|∇w|pw

=
∫
�

hn(|v|)fnw ≤ n2|�| 1
p′ ‖w‖Lp(�),

(3.12)

after an application of the Hölder inequality on the right-hand. Using the Poincaré inequality on 
the left-hand, one deduces

‖w‖Lp(�) ≤
(

cp(p,�)n2

α

) 1
p−1

|�| 1
p ,

where c(p, �) is the Poincaré constant; observe that these estimates are independent of v. Thus, 

we can affirm that the ball of radius 
(

cp(p,�)n2

α

) 1
p−1 |�| 1

p is invariant for S.

Moreover from (3.12) one deduces that

‖w‖
W

1,p
0 (�)

≤ C, (3.13)

where C is independent of v. This is sufficient to deduce that S(Lp(�)) is relatively compact in 
Lp(�) by Rellich-Kondrachov Theorem.

It is left to show that S is continuous in Lp(�). Let consider vk ∈ Lp(�) converging to 
v ∈ Lp(�) as k → ∞.

If we denote by wk = S(vk) then wk is bounded in W 1,p
0 (�) with respect to k thanks to (3.13). 

Moreover, exists w ∈ W
1,p

0 (�) to which wk , up to subsequences, converges weakly in W 1,p

0 (�). 
Now, as hn(|vk|)fn ≤ n2 by the classical Stampacchia’s argument (see for instance [9, Lemma 
2]), one has that wk ≤ C almost everywhere in � where C is independent of k, i.e. w ∈ L∞(�).

Now we need to show that w = S(v); i.e. we need to pass to the limit with respect to k in the 
following formulation

∫
�

a(x,wk,∇wk) · ∇φ +
∫
�

gn(wk)|∇wk |pφ =
∫
�

hn(|vk |)fnφ, ∀φ ∈ W
1,p
0 (�) ∩ L∞(�). (3.14)

For the right-hand of (3.14) one can apply the Lebesgue Theorem since hn(|vk|)fnϕ ≤ n2ϕ ∈
L1(�). Now observe that, once one proves that wk converges strongly to w as k → ∞ in 
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W
1,p

0 (�), one can safely pass to the limit on the left-hand of (3.14). Indeed it will be sufficient 
recall that gn is bounded and that a satisfies (3.2).

The proof of the strong convergence in W 1,p

0 (�) of wk is also quite classical under the above 
assumptions. Anyway, for the sake of completeness, we will sketch it.

Let consider ϕρ(s) := seρs2
(ρ > 0) which satisfies

ηϕ′
ρ(s) − μ|ϕρ(s)| ≥ η

2
, ∀s ∈R, ∀η,μ > 0, ∀ρ ≥ μ2

4η2 . (3.15)

We fix φ = ϕρ(uk) in (3.14) where uk := wk − w ∈ W
1,p

0 (�) ∩ L∞(�), then we have

∫
�

a(x,wk,∇wk) · ∇ukϕ
′
ρ(uk) +

∫
�

gn(wk)|∇wk|pϕρ(uk) =
∫
�

hn(|vk|)fnϕρ(uk). (3.16)

By (3.1) we find

−
∫
�

gn(wk)|∇wk|pϕρ(uk) ≤ n

∫
�

|∇wk|p|ϕρ(uk)| ≤ n

α

∫
�

a(x,wk,∇wk) · ∇wk|ϕρ(uk)|,

which gives

−
∫
�

gn(wk)|∇wk|pϕρ(uk) ≤ n

α

∫
�

a(x,wk,∇wk) · ∇uk|ϕρ(uk)|

+ n

α

∫
�

a(x,wk,∇wk) · ∇w|ϕρ(uk)|.
(3.17)

Observe now that, since a(x, wk, ∇wk) is bounded in Lp′
(�)N and since ∇w|ϕρ(uk)| strongly 

converges to zero in Lp(�)N as k → ∞, one has

lim
k→∞

∫
�

a(x,wk,∇wk) · ∇w|ϕρ(uk)| = 0. (3.18)

Moreover, an application of the Lebesgue Theorem gives that

lim
k→∞

∫
�

hn(|vk|)fnϕρ(uk) = 0. (3.19)

Gathering together (3.16), (3.17), (3.18), and (3.19) we have

∫
�

a(x,wk,∇wk) · ∇ukϕ
′
ρ(uk) ≤ n

α

∫
�

a(x,wk,∇wk) · ∇uk|ϕρ(uk)| + ωk,

where ωk denotes an infinitesimal quantity as k → ∞.
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Thus, using (3.15) fixing ρ = n2

4α2 , one has

∫
�

a(x,wk,∇wk) · ∇uk ≤ ωk,

which implies

∫
�

(a(x,wk,∇wk) − a(x,wk,∇w)) · ∇(wk − w) ≤ −
∫
�

a(x,wk,∇w) · ∇uk + ωk. (3.20)

It follows from (3.2) and from the fact that wk converges to w in Lp(�) as k → ∞ that 
a(x, wk, ∇w) strongly converges in Lp′

(�)N to a(x, w, ∇w) as k → ∞. Moreover, as uk weakly 
converges to 0 in W 1,p

0 (�) as k → ∞, from (3.20) and (3.3) one has that

lim
k→∞

∫
�

(a(x,wk,∇wk) − a(x,wk,∇w)) · ∇(wk − w) = 0,

which allows to apply Lemma 5 of [9] in order to deduce that

wk → w strongly in W
1,p

0 (�).

This is sufficient to conclude that w = S(v), i.e. S is continuous.
We finally apply the Schauder fixed point theorem to conclude that S has a nonnegative fixed 

point un ∈ W
1,p
0 (�) ∩ L∞(�) that is a solution to (3.10). �

3.2. A priori estimates

In this section we collect all the estimates from which one could derive the existence of a limit 
function for u of un.

Lemma 3.5. Let a satisfy (3.1)-(3.3) with 1 < p < N , let un be a nonnegative solution to problem 
(3.9). Then un is bounded in W 1,p

0 (�) with respect to n. Moreover gn(un)|∇un|p is bounded in 
L1(�) and hn(un)fn is bounded in L1

loc(�) with respect to n.

Proof. We start proving that un is bounded in W 1,p
0 (�). Let us first observe that, from (3.5), 

there exists k > 0 such that for all s ∈ [k, ∞) one has g(s) ≥ η > 0 for some η > 0. Then we 
choose Tk(un) as test function in the weak formulation of (3.9) in order to deduce that

∫
�

a(x,un,∇un) · ∇Tk(un) +
∫
�

gn(un)|∇un|pTk(un) =
∫
�

hn(un)fnTk(un),

which implies that
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∫
{un≤k}

a(x,un,∇un) · ∇un +
∫

{un≤k}
gn(un)|∇un|pun + k

∫
{un>k}

gn(un)|∇un|p

≤
∫

{un≤s1}
hn(un)fnun + k

∫
{un>s1}

hn(un)fn.

Without loosing generality let assume n ≥ η and, using that gn(un) > η on {un > k}, (3.1) and
(3.6), one yields to

α

∫
{un≤k}

|∇un|p + kη

∫
{un>k}

|∇un|p ≤ c1

∫
{un≤s1}

u
1−γ
n fn + k sup

s∈[s1,∞)

h(s)

∫
{un>s1}

fn.

From the previous it follows

min{α, kη}
∫
�

|∇un|p ≤
(

c1s
1−γ

1 + k sup
s∈[s1,∞)

h(s)

)
‖f ‖L1(�),

namely un is bounded in W 1,p
0 (�) with respect to n since γ ≤ 1 and thanks to (3.7).

Now we focus on proving the L1-estimate on gn(un)|∇un|p in n. Let us take T1(un) as test 
function in the weak formulation of (3.9), obtaining

∫
�

a(x,un,∇un) · ∇T1(un) +
∫
�

gn(un)|∇un|pT1(un) =
∫
�

hn(un)fnT1(un),

which, recalling (3.1) and (3.6), gives

∫
{un≥1}

gn(un)|∇un|p ≤ c1

∫
{un≤s1}

u
1−γ
n fn + sup

s∈[s1,∞)

h(s)

∫
{un>s1}

fn

≤
(

c1s
1−γ

1 + sup
s∈[s1,∞)

h(s)

)
‖f ‖L1(�).

(3.21)

Moreover one can observe that

∫
{un<1}

gn(un)|∇un|p ≤ max
s∈[0,1]g(s)

∫
�

|∇un|p ≤ C, (3.22)

where C does not depend on n since un is bounded in W 1,p

0 (�) with respect to n. Then it follows 
from (3.21) and (3.22) that gn(un)|∇un|p is bounded in L1(�) with respect to n.

We finally show that hn(un)fn is bounded in L1 (�) with respect to n.
loc
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Let consider 0 ≤ ϕ ∈ C1
c (�) as a test function in the weak formulation of (3.9), obtaining

∫
�

hn(un)fnϕ =
∫
�

a(x,un,∇un) · ∇ϕ +
∫
�

gn(un)|∇un|pϕ ≤ C,

where C does not depend on n. Indeed we have already proven that gn(un)|∇un|p is bounded 
in L1(�). Moreover, as un is bounded in W 1,p

0 (�) and thanks to (3.2), it is easy to check that 
a(x, un, ∇un) is bounded in Lp′

(�)N with respect to n. �
In the next lemma we show the existence of a limit function for un with respect to n and we 

show that any truncation of un strongly converges in W 1,p
0 (�) as n → ∞.

Lemma 3.6. Let a satisfy (3.1)-(3.3) with 1 < p < N , let un be a nonnegative solution to problem 
(3.9). Then there exists u ∈ W

1,p

0 (�) to which un, up to subsequences, converges as n → ∞
almost everywhere in �. Moreover Tk(un) converges, up to subsequences, strongly in W 1,p

0 (�)

to Tk(u) as n → ∞ for any k > 0. Finally g(u)|∇u|p ∈ L1(�) and h(u)f ∈ L1
loc(�).

Proof. The existence of a limit function u follows from a standard compactness argument once 
that Lemma 3.5 is in force. From the same lemma one also has that hn(un)fn is bounded in 
L1

loc(�) with respect to n; then an application of the Fatou Lemma as n → ∞ gives that h(u)f ∈
L1

loc(�).
To show the strong convergence of Tk(un) in n, we re-adapt a classical idea of [8].
We recall that the function ϕρ(s) := seρs2

(ρ > 0) satisfies (3.15) and we define for any k > 0

wn,k := Tk(un) − Tk(u) .

We take ϕρ(wn,k) as a test function in the weak formulation of (3.9); one has

∫
�

a(x,un,∇un) · ∇wn,kϕ
′
ρ(wn,k) +

∫
�

gn(un)|∇un|pϕρ(wn,k) =
∫
�

hn(un)fnϕρ(wn,k). (3.23)

We can write the first term on the left-hand of the previous as

∫
{un≤k}

a(x,un,∇un) · ∇wn,kϕ
′
ρ(wn,k) −

∫
{un>k}

a(x,un,∇un) · ∇Tk(u)ϕ′
ρ(wn,k)

≥
∫
�

a(x,Tk(un),∇Tk(un)) · ∇wn,kϕ
′
ρ(wn,k)

− β

∫
{un>k}

(
b(x) + |un|p−1 + |∇un|p−1

)
|∇Tk(u)||ϕ′

ρ(wn,k)| ,

where in the last step we used (3.2). Gathering the previous inequality into (3.23) one has
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∫
�

a(x,Tk(un),∇Tk(un)) · ∇(Tk(un) − Tk(u))ϕ′
ρ(wn,k) +

∫
�

gn(un)|∇un|pϕρ(wn,k)

≤
∫
�

hn(un)fnϕρ(wn,k) + β

∫
{un>k}

(
b(x) + |un|p−1 + |∇un|p−1

)
|∇Tk(u)||ϕ′

ρ(wn,k)|.

Since |∇Tk(u)|χ{un>k} → 0 strongly in Lp(�) as n → ∞ while β
(
b(x) + |un|p−1 + |∇un|p−1

)
|ϕ′

ρ(wn,k)| is bounded in Lp′
(�) since un is bounded in W 1,p

0 (�) with respect to n, then the last 
term in previous inequality tends to zero as n tends to infinity. Hence,

∫
�

a(x,Tk(un),∇Tk(un)) · ∇(Tk(un) − Tk(u))ϕ′
ρ(wn,k)

≤ −
∫
�

gn(un)|∇un|pϕρ(wn,k) +
∫
�

hn(un)fnϕρ(wn,k) + ωn,

(3.24)

where, again, ωn is a quantity that tends to 0 as n → ∞.
Now observe that for the first term on the right-hand of (3.24), one has

−
∫
�

gn(un)|∇un|pϕρ(wn,k) ≤
∫

{un≤k}
gn(un)|∇un|p|ϕρ(wn,k)|,

since ϕρ(wn,k) ≥ 0 on {un > k}. Furthermore, using (3.1), one deduces

−
∫
�

gn(un)|∇un|pϕρ(wn,k) ≤ maxs∈[0,k] g(s)

α

∫
�

a(x,Tk(un),∇Tk(un)) · ∇Tk(un)|ϕρ(wn,k)| .

Since a(x, Tk(un), ∇Tk(un)) is bounded in Lp′
(�)N while ∇Tk(u)|ϕρ(wn,k)| strongly converges 

to zero in Lp(�)N as n → ∞, one yields to

lim
n→∞

∫
�

a(x,Tk(un),∇Tk(un)) · ∇Tk(u)|ϕρ(wn,k)| = 0,

which implies

−
∫
�

gn(un)|∇un|pϕρ(wn,k)

≤ maxs∈[0,k] g(s)

α

∫
�

a(x,Tk(un),∇Tk(un)) · ∇(Tk(un) − Tk(u))|ϕρ(wn,k)| + ωn.

Then gathering the previous into (3.24) one has
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∫
�

a(x,Tk(un),∇Tk(un)) · ∇(Tk(un) − Tk(u))ϕ′
ρ(wn,k)

≤ maxs∈[0,k] g(s)

α

∫
�

a(x,Tk(un),∇Tk(un)) · ∇(Tk(un) − Tk(u))|ϕρ(wn,k)|

+
∫
�

hn(un)fnϕρ(wn,k) + ωn,

which, using (3.15) with ρ =
(

maxs∈[0,k] g(s)

2α

)2
, implies that

∫
�

a(x,Tk(un),∇Tk(un)) · ∇(Tk(un) − Tk(u)) ≤ 2
∫
�

hn(un)fnϕρ(wn,k) + ωn. (3.25)

Now observe that it follows from (3.2) and from having un weakly converging in W 1,p
0 (�) that

lim
n→∞

∫
�

a(x,Tk(un),∇Tk(u)) · ∇(Tk(un) − Tk(u)) = 0.

Then by adding and subtracting this quantity into (3.25), one has

∫
�

(a(x,Tk(un),∇Tk(un)) − a(x,Tk(un),∇Tk(u))) · ∇(Tk(un) − Tk(u))

≤ 2
∫
�

hn(un)fnϕρ(wn,k) + ωn.

We claim that the right-hand of the previous inequality converges to 0 as n → ∞, for every fixed 
k > 0. If h(0) < ∞ then this passage to the limit follows from the convergence in L1(�) of fn

coupled with the *-weak convergence of ϕρ(wn,k) to zero in L∞(�).
Hence, we assume h(0) = ∞. We fix 0 < δ < s1. Then, using (3.6) one yields to

∫
�

hn(un)fnϕρ(wn,k) ≤ c1

∫
{un≤δ}

fn

u
γ
n

ϕρ(wn,k) + sup
s∈[δ,∞)

h(s)

∫
{un>δ}

fnϕρ(wn,k). (3.26)

The second term on the right-hand of (3.26) converges to 0 as n → ∞ since fn converges in 
L1(�) while ϕρ(wn,k) converges *-weakly in L∞(�) to 0 as n → ∞. For the first term of (3.26)
one reason as

c1

∫
fn

u
γ
n

ϕρ(wn,k) ≤ 2c1

∫
δ1−γ f e

ρw2
n,k .
{un≤δ} {un≤δ}
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Applying the Lebesgue Theorem we can say that (here we may assume δ ≤ 1)

lim
n→∞ 2c1

∫
{un≤δ}

δ1−γ f e
ρw2

n,k = 2c1

∫
{u≤δ}

δ1−γ f ≤ 2c1

∫
{u≤δ}

f,

since γ ≤ 1. We have already shown that h(u)f ∈ L1
loc(�). This implies that {u = 0} ⊂ {f = 0}

up to a set of zero Lebesgue measure, which gives

lim
δ→0

∫
{u≤δ}

f =
∫

{u=0}
f = 0.

This allows to deduce that for every k > 0

lim
n→∞

∫
�

(a(x,Tk(un),∇Tk(un)) − a(x,Tk(un),∇Tk(u))) · (∇Tk(un) − ∇Tk(u)) = 0,

which is sufficient to apply [9, Lemma 5], deducing

Tk(un) → Tk(u) strongly in W
1,p

0 (�),

for every k > 0. This also implies that ∇un converges almost everywhere in � to ∇u as n → ∞. 
Moreover, as Lemma 3.6 guarantees that gn(un)|∇un|p is bounded in L1(�) with respect to 
n, an application of the Fatou Lemma in n gives that g(u)|∇u|p ∈ L1(�). This concludes the 
proof. �
Remark 3.7. In Lemma 3.6 we have shown Tk(un) converges, up to subsequences, strongly in 
W

1,p

0 (�) to Tk(u) as n → ∞ for any k > 0. From this fact we have that ∇un converges almost 
everywhere in � to ∇u as n → ∞. This can be used to deduce below that a(x, un, ∇un) strongly 
converges to a(x, u, ∇u) in Lp′

(�)N as n → ∞ thanks to (3.2).

3.3. Proof of the existence result

We are now ready to prove the main existence result of this section, i.e. Theorem 3.3.

Proof of Theorem 3.3. Let un be a solution to (3.9) whose existence is guaranteed by 
Lemma 3.4. Moreover it follows from Lemma 3.6 that there exists u ∈ W

1,p
0 (�) which is, up 

to subsequences, the almost everywhere limit in � of un as n → ∞. Moreover the same lemma 
gives that g(u)|∇u|p ∈ L1(�) and that h(u)f ∈ L1

loc(�).
To conclude the proof, it remains to show that u satisfies (3.8), namely that one can pass to 

the limit with respect to n:

∫
�

a(x,un,∇un) · ∇ϕ +
∫
�

gn(un)|∇un|pϕ =
∫
�

hn(un)fnϕ, (3.27)

where ϕ ∈ C1(�).
c
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It is a consequence of both (3.2) and Lemma 3.5 that a(x, un, ∇un) strongly converges to 
a(x, u, ∇u) in Lp′

(�)N as n → ∞. This is sufficient to take n → ∞ in the first term of (3.27)
(see also Remark 3.7).

For the second term we show the equi-integrability of the sequence gn(un)|∇un|p .
To this aim we introduce the following function:

Sη,k(s) :=

⎧⎪⎨
⎪⎩

0 s ≤ k,
s−k
η

k < s < k + η,

1 s ≥ k + η,

where k > 0 is a fixed parameter. Let us take Sη,k(un) with k > 0 as a test function in the weak 
formulation of (3.9), yielding to

∫
�

a(x,un,∇un) · ∇unS
′
η,k(un) +

∫
�

gn(un)|∇un|pSη,k(un) =
∫
�

hn(un)fnSη,k(un),

which, thanks to (3.1), implies

∫
�

gn(un)|∇un|pSη,k(un) ≤ sup
s∈[k,∞)

h(s)

∫
{un>k}

f.

We take η → 0 applying the Fatou Lemma, obtaining

∫
{un>k}

gn(un)|∇un|p ≤ sup
s∈[k,∞)

h(s)

∫
{un>k}

f.

Recalling that Tk(un) strongly converges in W 1,p
0 (�) with respect to n and that g is continuous, 

the former inequality gives the equi-integrability of the sequence gn(un)|∇un|p with respect to 
n. This fact, jointly with

gn(un)|∇un|p → g(u)|∇u|p a.e. in � as n → ∞,

and recalling that g(u)|∇u|p ∈ L1(�), allows to apply the Vitali Theorem to deduce that

gn(un)|∇un|p → g(u)|∇u|p strongly converges in L1(�) as n → ∞.

The proof is then concluded once we pass to the limit in the right-hand side of (3.27) for any 
0 ≤ ϕ ∈ C1

c (�), as the case of ϕ with general sign will easily follow. If h(0) < ∞ the passage to 
the limit is trivial. Hence, without loss of generality, we assume that h(0) = ∞.

We choose δ > 0 such that δ �∈ {η : |{u = η}| > 0} and we split (3.27) as follows

∫
a(x,un,∇un) · ∇ϕ +

∫
gn(un)|∇un|pϕ =

∫
hn(un)fnϕ +

∫
hn(un)fnϕ. (3.28)
� � {un≤δ} {un>δ}
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We first show that

lim
δ→0

lim sup
n→∞

∫
{un≤δ}

hn(un)fnϕ = 0. (3.29)

Let fix Vδ(un)ϕ (Vδ is defined in (2.2)) with 0 ≤ ϕ ∈ C1
c (�) as test function in the weak formu-

lation of (3.9), and we deduce

∫
�

a(x,un,∇un) · ∇ (Vδ(un)ϕ) +
∫
�

gn(un)|∇un|pVδ(un)ϕ =
∫
�

hn(un)fnVδ(un)ϕ.

Then one has∫
{un≤δ}

hn(un)fnϕ ≤
∫
�

hn(un)fnVδ(un)ϕ

≤
∫
�

a(x,un,∇un) · ∇ϕVδ(un) +
∫
�

gn(un)|∇un|pVδ(un)ϕ.

Now we can take the limsup as n → ∞ in the previous inequality; indeed for the first term 
on the right-hand one recalls Remark 3.7 and the fact that Vδ ≤ 1. For the second term on the 
right-hand we have already proven that gn(un)|∇un|p strongly converges in L1(�) to g(u)|∇u|p
as n → ∞. Then one has

lim sup
n→∞

∫
{un≤δ}

hn(un)fnϕ ≤
∫
�

a(x,u,∇u) · ∇ϕVδ(u) +
∫
�

g(u)|∇u|pVδ(u)ϕ. (3.30)

Now let δ → 0 in (3.30) applying the Lebesgue Theorem, deducing that

lim
δ→0

lim sup
n→∞

∫
{un≤δ}

hn(un)fnϕ ≤
∫

{u=0}
a(x,u,∇u) · ∇ϕ +

∫
{u=0}

g(u)|∇u|pϕ = 0,

since u ∈ W
1,p

0 (�) and a(x, 0, 0) = 0 for all x ∈ � (recall ∇u = 0 a.e. on {u = 0}).
Now we focus on the second term on the right-hand of (3.28). Observing that

hn(un)fnϕχ{un>δ} ≤ sup
s∈[δ,∞)

h(s)f ϕ ∈ L1(�)

then one can take n → ∞, yielding to

lim
n→∞

∫
{un>δ}

hn(un)fnϕ =
∫

{u>δ}
h(u)f ϕ,

since |{u = δ}| = 0.
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Moreover, as h(u)f ∈ L1
loc(�), one can take δ → 0

lim
δ→0

lim
n→∞

∫
{un>δ}

hn(un)fnϕ =
∫

{u>0}
h(u)f ϕ =

∫
�

h(u)f ϕ, (3.31)

where the last equality follows from the fact {u = 0} ⊂ {f = 0} up to a set of zero Lebesgue 
measure since h(u)f is locally integrable.

Finally observe that (3.29) and (3.31) allow us to pass to the limit as n → ∞, for fixed δ > 0, 
and then as δ → 0 in (3.28) and the proof is concluded. �
Remark 3.8. In Theorem 3.3 we found a distributional solution u ∈ W

1,p

0 (�) satisfying 
g(u)|∇u|p ∈ L1(�). Then it is worth mentioning that in this case we can extend the class of 
test function given in (3.8) to W 1,p

0 (�) ∩ L∞(�).

Indeed, for any 0 ≤ v ∈ W
1,p
0 (�) ∩ L∞(�), there exists ϕn ∈ C1

c (�) such that ϕn → v

strongly in W 1,p

0 (�) as n → ∞. Moreover let ρη be a standard mollifier. We note that ψn,η =
ρη ∗ min{v, ϕn} ∈ C1

c (�) for η > 0 small enough, hence it is an admissible test function for the 
problem (3.4), so we can write

∫
�

a(x,u,∇u) · ∇ψn,η +
∫
�

g(u)|∇u|pψn,η =
∫
�

h(u)f ψn,η. (3.32)

We recall that ψn,η → ψn = min{ϕn, v} as η → 0 strongly in W 1,p(�) and *-weak in L∞(�). 
Then, as a(x, u, ∇u) ∈ Lp′

(�)N , g(u)|∇u|p ∈ L1(�) and h(u)f ∈ L1
loc(�), one can take η → 0

in (3.32) obtaining

∫
�

a(x,u,∇u) · ∇ψn +
∫
�

g(u)|∇u|pψn =
∫
�

h(u)f ψn. (3.33)

Now note that ψn → v strongly in W 1,p(�) and *-weak in L∞(�) as n → ∞, so we can take 
n → ∞ in the first two terms of (3.33).

For the term on the right-hand of (3.33) one can reason as follows. Firstly observe that an 
application of the Fatou Lemma with respect to n gives that

∫
�

h(u)f v ≤ lim inf
n→∞

∫
�

h(u)f ψn =
∫
�

a(x,u,∇u) · ∇v +
∫
�

g(u)|∇u|pv,

whose right-hand is finite. Then, as h(u)f v ∈ L1(�), one can apply the Lebesgue Theorem to 
obtain

lim
n→∞

∫
�

h(u)f ψn =
∫
�

h(u)f v.

Therefore, as the case of a function v with generic sign easily follows, we have proven that the 
solution u to (3.4) found in Theorem 3.3 satisfies
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∫
�

a(x,u,∇u) · ∇v +
∫
�

g(u)|∇u|pv =
∫
�

h(u)f v,

for all v ∈ W
1,p

0 (�) ∩ L∞(�).

4. Main assumptions and existence result for p = 1

In this section we address the limit case p = 1. In particular we are interested in proving 
existence of nonnegative solutions to the following Dirichlet boundary value problem

{
−�1u + g(u)|Du| = h(u)f in �,

u = 0 on ∂�,
(4.1)

where f is a positive function in L1(�), g : [0, ∞) → [0, ∞) is a positive, bounded and con-
tinuous function such that (3.5) is in force. The function h : [0, ∞) → [0, ∞] is continuous and 
possibly singular with h(0) �= 0, it is finite outside the origin and such that (3.6) and (3.7) hold.

Here is how the notion of solution for problem (4.1) is intended.

Definition 4.1. Let 0 < f ∈ L1(�). A nonnegative u ∈ BV (�) is a solution of problem (4.1)
if Dju = 0, g(u) ∈ L1

loc(�, |Du|) and h(u)f ∈ L1
loc(�) and if there exists a vector field z ∈

DM∞
loc(�), with ‖z‖L∞(�)N ≤ 1 satisfying

−div z + g(u)|Du| = h(u)f in D′(�), (4.2)

(z,DTk(u)) = |DTk(u)| as measures in � for any k > 0, (4.3)

and

u(x) = 0 for HN−1-a.e. x ∈ ∂�. (4.4)

Remark 4.2. Let us spend a few words on Definition 4.1. Formula (4.3) is the weak way in 
which the vector field z plays the role of the singular quotient Du|Du|−1. Hence the (4.2) and 
(4.3) represent the weak way the first term in (4.1) is intended.

Furthermore, the boundary datum is given by (4.4) which is something strongly related to the 
presence of g. Indeed, it is classical nowadays that solutions to 1-Laplace Dirichlet problems 
do not attain, in general, the boundary datum pointwise when g ≡ 0, and in this case, a weaker 
condition involving [z, ν] is usually required (see for instance [3,4,16]).

Let us finally explicitly observe that if h(0) = ∞, as h(u)f ∈ L1
loc(�), then, again, {u = 0} ⊂

{f = 0}. So that in this case, as f > 0, then u > 0.

We define the following function which will be widely used in the sequel

�p(s) :=
s∫
g

1
p (σ ) dσ.
0
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Moreover, we denote by �(s) := �1(s). Let explicitly observe that, as g is bounded, �(s) is a 
Lipschitz function satisfying assumptions of Lemma 2.2. In Section 5.2 we briefly discuss the 
case of a g possibly unbounded at infinity.

A very similar reasoning to the one of [26, Remark 3.4] gives the following result.

Proposition 4.3. Let u be a solution of the problem (4.1) in the sense of Definition 4.1, then

−div(ze−�(u)) = h(u)f e−�(u) in D′(�). (4.5)

Proof. By (4.3) and [23, Proposition 3.3] we have that

θ(z,D(1 − e−�(u)), x) = 1 |D(1 − e−�(u))|−a.e. in �,

where θ(z, Dv, x) is the Radon–Nikodým derivative of (z, Dv) with respect to |Dv| provided 
v ∈ BV (�). Consequently, for all Borel sets B ⊂ �,

∫
B

(z,D(1 − e−�(u))) =
∫
B

θ(z,D(1 − e−�(u)), x) |D(1 − e−�(u))| =
∫
B

|D(1 − e−�(u))|.

Therefore

(z,D(1 − e−�(u))) = |D(1 − e−�(u))| as Radon measures in �. (4.6)

On the other hand, by (2.5), (4.6), (4.2) and Lemma 2.2, we have

−div(e−�(u)z) = div((1 − e−�(u))z) − div z = (z,D(1 − e−�(u))) + (1 − e−�(u))div z − div z

=|D(1 − e−�(u))| − (e−�(u))div z = (e−�(u))g(u)|Du| − (e−�(u))(−h(u)f + g(u)|Du|)
=e−�(u)h(u)f,

i.e. we obtain (4.5). �
Let us then state the main result of this section.

Theorem 4.4. Let g be positive, bounded and satisfying (3.5) and let h satisfy (3.6) and (3.7). 
Finally let 0 < f ∈ L1(�). Then there exists a solution to (4.1) in the sense of Definition 4.1.

4.1. Approximation scheme and existence of a limit function

The proof of Theorem 4.4 will be presented as an application of a series of lemmas. We 
introduce the following approximation scheme:

{
−�pup + g(up)|∇up|p = h(up)f in �,

up = 0 on ∂�,
(4.7)
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whose existence of up ∈ W
1,p

0 (�) in the sense of Definition 3.1 has been proven in Theo-
rem 3.3. Let us explicitly observe that, as long as we deal with the solution found in the 
mentioned theorem, Remark 3.8 is in force; this means that the set of test functions is enlarged 
to W 1,p

0 (�) ∩ L∞(�).
We firstly look for some uniform estimates on up for p > 1 small enough. Without loss of 

generality and for the sake of exposition, by uniformly bounded with respect to p we mean the 
existence of p0 > 1 with some estimate holding for any 1 < p ≤ p0.

Lemma 4.5. Let g be positive, bounded and satisfying (3.5), let h satisfy (3.6) and (3.7) and let 
0 < f ∈ L1(�). Let up be the solution to (4.7) obtained in Theorem 3.3. Then up and �p(up)

are uniformly bounded with respect to p in BV (�). Moreover there exists u ∈ BV (�) such that 
up converges to u (up to a subsequence) in Lq(�) for every q < N

N−1 and ∇up converges to Du

*-weakly as measures. Finally, �(u) ∈ BV (�) and h(u)f ∈ L1
loc(�).

Proof. We observe again that, as (3.5) is in force, there exists k > 0 such that for all s ∈ [k, ∞)

one has g(s) ≥ η > 0 for some η > 0.
We choose Tk(up) ∈ W

1,p
0 (�) ∩ L∞(�) as test function in the weak formulation of (4.7)

(recall Remark 3.8), so that

∫
�

|∇up|p−2∇up · ∇Tk(up) +
∫
�

g(up)|∇up|pTk(up) =
∫
�

h(up)f Tk(up),

from which

min{α, kη}
∫
�

|∇up|p ≤
(

c1s
1−γ

1 + sup
s∈[s1,∞)

h(s)k

)
‖f ‖L1(�). (4.8)

It follows from (4.8) and from an application of the Young inequality that

∫
�

|∇up| ≤ 1

p

∫
�

|∇up|p + 1

p′ |�| ≤ 1

p min{α, kη}

(
c1s

1−γ

1 + sup
s∈[s1,∞[

h(s)k

)
‖f ‖L1(�)+

1

p′ |�|,

which shows that up is bounded in BV (�) with respect to p since the right-hand of the previous 
is bounded with respect to p and up has zero trace on ∂�.

Then standard compactness result for BV functions assures that there exists u ∈ BV (�) such 
that, up to a subsequence, up converges in Lq(�) for any q < N

N−1 , almost everywhere in � and 
∇up converges to Du *-weakly as measures as p → 1+.

To show that �(up) is bounded in BV (�) it is sufficient to reason as for (3.21) and (3.22) in 
order to deduce ∫

�

g(up)|∇up|p ≤ C, (4.9)

where C is a constant independent of p, and to use the Young inequality to get
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∫
�

|∇�p(up)| =
∫
�

g(up)
1
p |∇up| ≤

∫
�

g(up)|∇up|p + |�| ≤ C + |�|; (4.10)

observe that, in particular, by weak lower semicontinuity one has that �(u) ∈ BV (�).
Now we focus on showing that h(u)f is locally integrable. We choose 0 ≤ ϕ ∈ C1

c (�) as a 
test function in the weak formulation of (4.7); this yields to

∫
�

h(up)f ϕ =
∫
�

|∇up|p−2∇up · ∇ϕ +
∫
�

g(up)|∇up|pϕ

≤ 1

p′

∫
�

|∇up|p + 1

p

∫
�

|∇ϕ|p +
∫
�

g(up)|∇up|pϕ.

(4.11)

As the right-hand of (4.11) is bounded with respect to p thanks to (4.8) and (4.9), one has that 
h(up)f is locally bounded in L1(�) with respect to p.

Finally an application of the Fatou Lemma as p → 1+ gives that h(u)f ∈ L1
loc(�). The proof 

is concluded. �
In the next Lemma we find a vector field z which is the weak limit of |∇up|p−2∇up as 

p → 1+.

Lemma 4.6. Let g be positive, bounded and satisfying (3.5), let h satisfy (3.6) and (3.7) and let 
0 < f ∈ L1(�). Moreover, let u be the function found in Lemma 4.5. Then there exists a vector 
field z ∈DM∞

loc(�) with ‖z‖L∞(�)N ≤ 1, such that

ze−�(u) ∈DM∞(�), (4.12)

−div(ze−�(u)) = h(u)f e−�(u) in D′(�), (4.13)

and

−div z + |D�(u)| ≤ h(u)f in D′(�). (4.14)

Proof. Let up be the solution to (4.7) obtained in Theorem 3.3. Then it follows from (4.8) and 
from an application of the Hölder inequality that, for 1 ≤ q < p′, it holds

∫
�

∣∣∣|∇up|p−2∇up

∣∣∣q =
∫
�

|∇up|q(p−1) ≤
⎛
⎝∫

�

|∇up|p
⎞
⎠

q(p−1)
p

|�|1− q(p−1)
p

≤ C
q(p−1)

p |�|1− q(p−1)
p .

(4.15)

Hence |∇up|p−2∇up is bounded in Lq(�)N with respect to p and there exists zq ∈ Lq(�)N

such that |∇up|p−2∇up ⇀ zq weakly in Lq(�)N , for all q < ∞. Moreover it follows from the 
lower semicontinuity in (4.15) with respect to p that
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‖z‖Lq(�)N ≤ |�| 1
q , ∀q < ∞,

and thus letting q → ∞ then z ∈ L∞(�)N with ‖z‖L∞(�)N ≤ 1.
Let us now show (4.13); let us take e−�(up)ϕ as a test function in the weak formulation of 

(4.7) where 0 ≤ ϕ ∈ C1
c (�), yielding to

∫
�

|∇up|p−2∇up · ∇ϕe−�(up) =
∫
�

h(up)f e−�(up)ϕ.

We can pass to the limit in the left-hand of the previous since e−�(up)|∇up|p−2∇up converges 
to e−�(u)z in Lq(�)N for any q < ∞ as p → 1+. This shows that

lim
p→1+

∫
�

|∇up|p−2∇up · ∇ϕe−�(up) =
∫
�

z · ∇ϕ e−�(u).

For the right-hand we distinguish two cases: if h is finite at the origin then the passage to the limit 
is trivial. Hence, without losing generality we assume that h(0) = ∞. We first split the integral 
as ∫

�

h(up)f e−�(up)ϕ =
∫

{up≤δ}
h(up)f e−�(up)ϕ +

∫
{up>δ}

h(up)f e−�(up)ϕ, (4.16)

where δ �∈ {η : |{u = η}| > 0} which is at most a countable set.
Observe that it follows from Lemma 4.5 that h(u)f is locally integrable. Since h(0) = ∞ and 

f > 0, then u > 0 almost everywhere in �. Moreover, since

χ{up>δ}h(up)f e−�(up)ϕ ≤ sup
s∈[δ,∞)

h(s)f ϕ ∈ L1(�),

and

χ{u>δ}h(u)f e−�(u)ϕ ≤ h(u)f ϕ ∈ L1(�),

one can apply twice the Lebesgue Theorem, deducing that

lim
δ→0

lim
p→1+

∫
{up>δ}

h(up)f e−�(up)ϕ = lim
δ→0

∫
{u>δ}

h(u)f e−�(u)ϕ
u>0=

∫
�

h(u)f e−�(u)ϕ. (4.17)

Now we analyze the first term on the right-hand of (4.16), we fix Vδ(up)e−�(up)ϕ (Vδ is 
defined in (2.2)) with 0 ≤ ϕ ∈ C1

c (�) as test function in the weak formulation of (4.7), obtaining

∫
|∇up|pV ′

δ (up)e−�(up)ϕ −
∫

g(up)|∇up|pVδ(up)e−�(up)
� �
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+
∫
�

|∇up|p−2∇up · ∇ϕVδ(up)e−�(up) +
∫
�

g(up)|∇up|pVδ(up)e−�(up)ϕ

=
∫
�

h(up)f Vδ(up)e−�(up)ϕ,

which implies

∫
{up≤δ}

h(up)f e−�(up)ϕ ≤
∫
�

h(up)f Vδ(up)e−�(up)ϕ ≤
∫
�

|∇up|p−2∇up · ∇ϕVδ(up)e−�(up).

Through the Lebesgue Theorem we deduce

lim
δ→0

lim sup
p→1+

∫
{up≤δ}

h(up)f e−�(up)ϕ ≤
∫

{u=0}
z · ∇ϕe−�(u) u>0= 0. (4.18)

From (4.17) and (4.18), one gets

lim
p→1+

∫
�

h(up)f e−�(up)ϕ =
∫
�

h(u)f e−�(u)ϕ. (4.19)

Hence we have shown (4.13).
Observe that as h(u)f e−�(u) ≥ 0 then, by [18, Lemma 2.3], ze−�(u) ∈ DM∞(�), namely 

(4.12).
Finally we show (4.14). Recalling (4.10) one has that, up to subsequences, �p(up) → �(u)

a.e. as p → 1+, and

∫
�

|D�(u)|ϕ ≤ lim inf
p→1+

∫
�

|∇�p(up)|pϕ ≤ C,

by weak lower semicontinuity (again we also used Young’s inequality as for (4.10)). Observe 
that C does not depend on p thanks to (4.8).

Hence this allows to take p → 1+ in (3.4) obtaining

∫
�

z · ∇ϕ +
∫
�

|D�(u)|ϕ ≤
∫
�

h(u)f ϕ, (4.20)

where for the right-hand we have reasoned analogously as to proven (4.19). Indeed, one has that 
(δ ≤ 1)

lim
δ→0

lim sup
p→1+

∫
{up≤δ}

h(up)f ϕ ≤ lim
δ→0

lim sup
p→1+

1

e−�(1)

∫
{up≤δ}

h(up)f e−�(up)ϕ = 0.

Let also note that (4.20) gives z ∈DM∞ (�). This concludes the proof. �
loc
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4.2. Identification of the vector field z and boundary datum

For the next two lemmas we need to define the following function

�̃p(s) :=
s∫

0

(Tk(σ )g(σ ))
1
p dσ, (4.21)

where �̃(s) := �̃1(s).
The next result clarifies the role of z.

Lemma 4.7. Let g be positive, bounded and satisfying (3.5), let h satisfy (3.6) and (3.7) and let 
0 < f ∈ L1(�). Moreover, let u be the function found in Lemma 4.5 and let z be the vector field 
found in Lemma 4.6. It holds both

−div z + g(u)|Du| = h(u)f in D′(�), (4.22)

and

−Tk(u)div z + Tk(u)|D�(u)| = h(u)f Tk(u) in D′(�) for any k > 0. (4.23)

Finally it also holds

Dju = 0, (4.24)

and

(z,DTk(u)) = |DTk(u)| as measures in � for any k > 0. (4.25)

Proof. We highlight that here we need to make use of the new pairing introduced in (2.9) applied 
to β(s) = −e−s and v = �(u).

One has

(e−�(u))#|D�(u)| (4.14)≤ (e−�(u))h(u)f + (e−�(u))# div z
(4.13)= −div(e−�(u)z) + (e−�(u))# div z

(2.9)=
(
z,D[(−e−�(u))#]

) (2.10)≤ |D(−e−�(u))| (2.11)= (e−�(u))#|D�(u)| ,
(4.26)

which implies that all the inequalities in (4.26) are actually equalities.
In particular, (

z,D[(−e−�(u))#]
)

= |D(−e−�(u))| .

Recalling (4.14), we observe that one can apply Lemma 2.3 with α(s) = s, β(s) = −e−s , and 
w = �(u) in order to deduce that |Dj�(u)| = 0 and, as � is increasing, that (4.24) holds.

Now we want to show the reverse inequality of (4.14) in order to get (4.22). For a fixed ε > 0
and for any k > 0 one has
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e−�(Tk(u))|D�(u)| (4.14)≤ e−�(Tk(u))(h(u)f + div z)

(4.13)= e−�(Tk(u))

e−�(u) + ε

(
−div(e−�(u)z) + (e−�(u))div z

)

+ εe−�(Tk(u))(h(u)f + div z)
(2.3)= e−�(Tk(u))

e−�(u) + ε

(
z,D[(−e−�(u))]

)
+ ηε

(2.4)≤ e−�(Tk(u))

e−�(u) + ε
|D(−e−�(u))| + ηε

(2.11)≤ e−�(Tk(u))|D�(u)| + ηε ,

(4.27)

where ηε = εe−�(Tk(u))(h(u)f + div z) is a sequence of measures that vanish as ε → 0. So that, 
letting ε go to zero in (4.27) one gets a chain of equalities between measures that in particular 
implies that for any k > 0

e−�(Tk(u))(−div z + |D�(u)|) = e−�(Tk(u))h(u)f in D′(�).

As e−�(Tk(u)) > 0 one in particular gets the reverse inequality of (4.14), so that

−div z + |D�(u)| = h(u)f in D′(�) , (4.28)

which, in turn, by applying Lemma 2.2 gives (4.22).
To prove (4.23) we test (4.28) with (ρε ∗ Tk(u))ϕ where k > 0, 0 ≤ ϕ ∈ C1

c (�) and ρε is a 
sequence of smooth mollifiers. For ε small enough, this takes to

−
∫
�

(ρε ∗ Tk(u))ϕ div z +
∫
�

(ρε ∗ Tk(u))ϕ|D�(u)| =
∫
�

h(u)f (ρε ∗ Tk(u))ϕ.

Now observe that (ρε ∗ Tk(u)) converges HN−1 a.e. to Tk(u)∗ as ε → 0 and Tk(u)∗ ≤ k. Then, 
as it follows from Lemma 4.5 that h(u)f ∈ L1

loc
(�) and �(u) ∈ BV (�), one can take ε → 0

applying the Lebesgue Theorem. This implies that (4.23) holds.
It is left to show (4.25); we take Tk(up)ϕ with 0 ≤ ϕ ∈ C1

c (�) as a test function in the weak 
formulation of (4.7); this takes to

∫
�

|∇Tk(up)|pϕ +
∫
�

|∇up|p−2∇up · ∇ϕTk(up) +
∫
�

|∇�̃p(up)|pϕ =
∫
�

h(up)f Tk(up)ϕ, (4.29)

where �̃p is defined in (4.21). Now observe that an application of the Young inequality gives

∫
�

|∇Tk(up)|ϕ +
∫
�

|∇�̃p(up)|ϕ ≤ 1

p

∫
�

|∇Tk(up)|pϕ

+ 1

p

∫
�

|∇�̃(up)|pϕ + 2(p − 1)

p

∫
�

ϕ.

(4.30)

Hence gathering (4.30) into (4.29) yields to
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∫
�

|∇Tk(up)|ϕ +
∫
�

|∇�̃p(up)|ϕ

≤
∫
�

h(up)f Tk(up)ϕ −
∫
�

|∇up|p−2∇up · ∇ϕTk(up) + 2(p − 1)

p

∫
�

ϕ.

(4.31)

Hence we can take the liminf as p → 1+ in (4.31) using weak lower semicontinuity for the left-
hand. For the first term on the right-hand one can use the Lebesgue Theorem since (δ < s1 < k)

h(up)f Tk(up) ≤ c1δ
1−γ f χ{up≤δ} + k sup

s∈[δ,∞)

h(s)f χ{up>δ},

which is strongly compact in L1(�) with respect to p. The second term on the right-hand passes 
to the limit while the third term degenerates as p → 1+. Hence one has

∫
�

|DTk(u)|ϕ +
∫
�

|D�̃(u)|ϕ ≤
∫
�

h(u)f Tk(u)ϕ −
∫
�

z · ∇ϕTk(u)

(4.23)= −
∫
�

Tk(u)div zϕ +
∫
�

|D�̃(u)|ϕ −
∫
�

z · ∇ϕTk(u)

=
∫
�

(z,DTk(u))ϕ +
∫
�

|D�̃(u)|ϕ,

where we also got advantage of Dju = 0, by writing Tk(u)|D�(u)| = |D�̃(u)| In particular this 
means ∫

�

|DTk(u)|ϕ ≤
∫
�

(z,DTk(u))ϕ,

and, being the reverse inequality trivial, this shows (4.25).
The proof is concluded. �

Remark 4.8. We explicitly remark that the request of positivity on g is needed to deduce that �
is an increasing function. It is worth mentioning that Theorem 4.4 continues to hold in case g is 
only nonnegative but � is still a well defined increasing function.

Finally we deal with the boundary datum.

Lemma 4.9. Let g be positive, bounded and satisfying (3.5), let h satisfy (3.6) and (3.7) and let 
0 < f ∈ L1(�). Moreover, let u be the function found in Lemma 4.5 and let z be the vector field 
found in Lemma 4.6. Then u(x) = 0 HN−1 almost everywhere in �.

Proof. Let up be the solution to (4.7) obtained in Theorem 3.3. Then let us take Tk(up) as test 
function in (4.7), obtaining
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∫
�

|∇Tk(up)|p +
∫
�

Tk(up)g(up)|∇up|p =
∫
�

h(up)f Tk(up).

For the right-hand once again one observes that (k > δ)

h(up)f Tk(up) ≤ δ1−γ f χ{up≤δ} + k sup
s∈[δ,∞)

h(s)f χ{up>δ},

which is strongly compact in L1(�) with respect to p. This allows to apply the generalized 
Lebesgue Theorem for the right-hand. Hence one can take the liminf as p → 1+ in the previous; 
indeed one can use weak lower semicontinuity on the left-hand after an application of the Young 
inequality, recalling also that up is zero on the boundary of �.

This proves that

∫
�

|DTk(u)| +
∫
∂�

Tk(u) dHN−1 +
∫
�

|D�̃(u)| +
∫
∂�

�̃(u) dHN−1 ≤
∫
�

h(u)f Tk(u), (4.32)

where �̃ is defined in (4.21).
Since h(u)f Tk(u) ∈ L1(�) and �(u) ∈ BV (�), one has

∫
�

h(u)f Tk(u)
(4.23)= −

∫
�

Tk(u)div z +
∫
�

|D�̃(u)|

(2.7)=
∫
�

(z,DTk(u)) −
∫
∂�

[Tk(u)z, ν] dHN−1 +
∫
�

|D�̃(u)|

=
∫
�

|DTk(u)| −
∫
∂�

[Tk(u)z, ν] dHN−1 +
∫
�

|D�̃(u)|.

(4.33)

Then gathering (4.33) into (4.32), one yields to

∫
∂�

([Tk(u)z, ν] + Tk(u)) dHN−1 +
∫
∂�

�̃(u) dHN−1 = 0,

which, since |[Tk(u)z, ν]| ≤ Tk(u) on ∂� (recall (2.8)), it gives that �̃(u) (and so u) is identically 
null on ∂�. This concludes the proof. �

As consequence of the previous results we can now prove Theorem 4.4.

Proof of Theorem 4.4. Let up be the solution to (4.7) obtained in Theorem 3.3. Then the proof 
follows from Lemmas 4.5, 4.6, 4.7 and 4.9. �
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5. Some extensions and remarks

5.1. The case of a nonnegative datum f

Up to now we have required the positivity of the datum f . Now we want to consider the case 
of a datum f which is only nonnegative; i.e. we consider

{
−�1u + g(u)|Du| = h(u)f in �,

u = 0 on ∂�,
(5.1)

with f ∈ L1(�) being a nonnegative function, and h, g as before.
Let explicitly underline that the extension of Theorem 4.4 is straightforward in the case h(0) <

∞ and f nonnegative the proof being de facto the one already presented. Hence, without loosing 
generality, here we assume h(0) = ∞.

As we will see the existence of a solution can be obtained with some technical modifications 
both in the definition of solution of (5.1), which needs to be properly intended, and in the proof 
that is a suitable adaptation of the one of Theorem 4.4.

Here is how the notion of solution to (5.1) has to be intended.

Definition 5.1. A nonnegative u ∈ BV (�) is a solution to (5.1) if χ{u>0} ∈ BVloc(�), Dju = 0, 
g(u) ∈ L1

loc(�, |Du|), h(u)f ∈ L1
loc(�), and if there exists z ∈ DM∞

loc(�) with ||z||L∞(�)N ≤ 1
such that

− χ∗{u>0} div z + g(u)|Du| = h(u)f in D′(�), (5.2)

(z,DTk(u)) = |DTk(u)| as measures in � for any k > 0, (5.3)

u(x) = 0 for HN−1-a.e. x ∈ ∂�. (5.4)

Remark 5.2. As one can see the main difference with respect to Definition 4.1 consists in the 
presence of the characteristic function χ{u>0} in (5.2) which is a natural request as, in this case, 
we cannot infer u > 0 from h(u)f ∈ L1

loc(�) as in Remark 4.2

Let us state the existence result for this section.

Theorem 5.3. Let g be positive, bounded and satisfying (3.5) and let h satisfy (3.6) and (3.7)
with h(0) = ∞. Finally let 0 ≤ f ∈ L1(�). Then there exists a solution to (5.1) in the sense of 
Definition 5.1.

Sketch of the proof. Here we only highlight the authentic differences with the proof of Theo-
rem 4.4. We consider up ∈ W

1,p

0 (�), solution to the approximating problems in (4.7) and whose 
existence is proven in Theorem 3.3.

First observe that Lemma 4.5 continues to hold in this case. Therefore, there exists a non-
negative limit function u ∈ BV (�) for up , as p → 1+, such that g(u) ∈ L1(�, |Du|) and 
h(u)f ∈ L1

loc(�). Moreover, reasoning as in the first part of the proof of Lemma 4.6, one gains 
the existence of a bounded vector field z such that |z| ≤ 1 in � with |∇up|p−2∇up ⇀ z weakly in 
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Lq(�)N for all q < ∞. Let also underline that, as −�pup = h(up)f −g(up)|∇up|p is bounded 
with respect to p as measures, so that one deduces that z ∈DM∞

loc(�).
Now we focus on showing both Dju = 0 and (5.2).
Let 0 ≤ ϕ ∈ C1

c (�) and let us take (1 − Vδ(up))ϕ (Vδ is defined in (2.2)) as a test function in 
the weak formulation of (4.7). Then, taking the liminf as p → 1+, one gains χ{u>0} ∈ BVloc(�), 
yielding to

−div(zχ{u>0}) + |Dχ{u>0}| + χ∗{u>0}|D�(u)| ≤ h(u)f χ{u>0}, (5.5)

in D′(�). Moreover, as |z| ≤ 1 in �, one has

−div(zχ{u>0}) + |Dχ{u>0}| ≥ −div(zχ{u>0}) + (z,Dχ{u>0})
(2.5)= −χ∗{u>0} div z,

which, gathered into (5.5), gives

−χ∗{u>0} div z + χ∗{u>0}|D�(u)| ≤ h(u)f χ{u>0}, (5.6)

in D′(�). Let us stress that (5.5) gives that zχ{u>0} ∈ DM∞
loc(�) (recall (2.5)).

Now let 0 ≤ ϕ ∈ C1
c (�) and let us take e−�(up)ϕ as a test function in the weak formulation of 

(4.7). Then, taking the liminf as p → 1+ applying the Fatou Lemma, it allows to deduce

−div(ze−�(u)) ≥ h(u)f e−�(u). (5.7)

One has

(e−�(u))#χ∗{u>0}|D�(u)| (5.6)≤ e−�(u)h(u)f χ{u>0} + (e−�(u))#χ∗{u>0} div z

(5.7)≤ −div(ze−�(u))χ∗{u>0} + (e−�(u))#χ∗{u>0} div z

(2.9)= χ∗{u>0}
(
z,D(−e−�(u))#

)
(2.10)≤ χ∗{u>0}|De−�(u)| = (e−�(u))#χ∗{u>0}|D�(u)|,

where in the last equality we used Lemma 2.2. This proves that

χ∗{u>0}
(
z,D(−e−�(u))#

)
= χ∗{u>0}|De−�(u)|. (5.8)

Now, as in the proof of Lemma 4.7, we want to apply an easy variation of Lemma 2.3. In fact, 
as χ∗{u>0} > 0 HN−1-a.e. on J�(u), then the very same proof is still valid, and then, using both 
(5.6) and (5.8) one deduces that Dju = 0, and that (5.6) is equivalent to

−χ∗{u>0} div z + |D�(u)| ≤ h(u)f χ{u>0}. (5.9)

From now on the proof follows step-by-step the proof of Lemma 4.7; in particular, a suited 
version of (4.27) involving χ∗{u>0} holds allowing us to prove the validity of (5.2). Also as for 
(4.23) one readily gets
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−Tk(u)χ∗{u>0} div z + Tk(u)|D�(u)| = h(u)f Tk(u) in D′(�) for any k > 0.

In particular, this means that Tk(u) ∈ L1(�, div z).
The proof of (5.3) is not affected by the sign of the datum and follows as for (4.25).
Finally one has that Lemma 4.9 applies without any modification in the proof. Indeed, as 

Tk(u) ∈ L1(�, div z), one uses that Tk(u)z ∈DM∞(�) from Lemma 2.1. This shows (5.4). The 
proof is concluded. �
5.2. The case of a nonnegative g possibly blowing-up at infinity

In Section 4 we only dealt with positive bounded functions g; this has been necessary to apply 
Lemma 2.2, i.e. to deduce

|D�(u)| = g(u)|Du|.

By the way one can suitably modify Definition 4.1 in order to gain the existence of a solution in 
a weaker sense. Let explicitly fix the notion of solution in which, due to what we just said, do 
not need to ask for Dju = 0.

Definition 5.4. Let 0 < f ∈ L1(�). A nonnegative u ∈ BV (�) is a solution to (5.1) if �(u) ∈
BVloc(�), h(u)f ∈ L1

loc(�), and if there exists a vector field z ∈ DM∞
loc(�), with ‖z‖L∞(�)N ≤

1 satisfying

−div z + |D�(u)| = h(u)f in D′(�), (5.10)

(z,DTk(u)) = |DTk(u)| as measures in � for any k > 0, (5.11)

and

u(x) = 0 for HN−1-a.e. x ∈ ∂�. (5.12)

In case of a nonnegative g possibly blowing-up at infinity we then have the following result.

Theorem 5.5. Let g satisfy (3.5) and let h satisfy (3.6)-(3.7). Finally let 0 < f ∈ L1(�). Then 
there exists a solution u ∈ BV (�) to problem (5.1) in the sense of Definition 5.4. Moreover, if g
is positive, then Dju = 0.

Proof. The proof is identical to the one of Theorem 4.4 apart from the application of Lemma 2.2
which is not needed in order to get (5.10). �
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