We study the cone of moving divisors on the moduli space Ag of principally polarized abelian varieties. Partly motivated by the generalized Rankin–Cohen bracket, we con- struct a non-linear holomorphic differential operator that sends Siegel modular forms to Siegel modular forms, and we apply it to produce new modular forms. Our construction recovers the known divisors of minimal moving slope on Ag for g ≤ 4, and gives an explicit upper bound for the moving slope of A5 and a conjectural upper bound for the moving slope of A6.
Differentiating Siegel modular forms and the moving slope of \A_g / Grushevsky, Samuel; Ibukiyama, Tomoyoshi; Mondello, Gabriele; SALVATI MANNI, Riccardo. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1687-0247. - (2023), pp. 1-45.
Differentiating Siegel modular forms and the moving slope of \A_g
Samuel GrushevskyMembro del Collaboration Group
;Gabriele MondelloMembro del Collaboration Group
;Riccardo Salvati ManniMembro del Collaboration Group
2023
Abstract
We study the cone of moving divisors on the moduli space Ag of principally polarized abelian varieties. Partly motivated by the generalized Rankin–Cohen bracket, we con- struct a non-linear holomorphic differential operator that sends Siegel modular forms to Siegel modular forms, and we apply it to produce new modular forms. Our construction recovers the known divisors of minimal moving slope on Ag for g ≤ 4, and gives an explicit upper bound for the moving slope of A5 and a conjectural upper bound for the moving slope of A6.File | Dimensione | Formato | |
---|---|---|---|
Grushevsky_Differentiating-siegel_2023.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
341.63 kB
Formato
Adobe PDF
|
341.63 kB | Adobe PDF | |
Grushevsky_postprint_Differentiating-siegel_2023.pdf
Open Access dal 16/12/2024
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
634.84 kB
Formato
Adobe PDF
|
634.84 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.