We study the cone of moving divisors on the moduli space Ag of principally polarized abelian varieties. Partly motivated by the generalized Rankin–Cohen bracket, we con- struct a non-linear holomorphic differential operator that sends Siegel modular forms to Siegel modular forms, and we apply it to produce new modular forms. Our construction recovers the known divisors of minimal moving slope on Ag for g ≤ 4, and gives an explicit upper bound for the moving slope of A5 and a conjectural upper bound for the moving slope of A6.

Differentiating Siegel modular forms and the moving slope of \A_g / Grushevsky, Samuel; Ibukiyama, Tomoyoshi; Mondello, Gabriele; SALVATI MANNI, Riccardo. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1687-0247. - (2023), pp. 1-45.

Differentiating Siegel modular forms and the moving slope of \A_g

Samuel Grushevsky
Membro del Collaboration Group
;
Gabriele Mondello
Membro del Collaboration Group
;
Riccardo Salvati Manni
Membro del Collaboration Group
2023

Abstract

We study the cone of moving divisors on the moduli space Ag of principally polarized abelian varieties. Partly motivated by the generalized Rankin–Cohen bracket, we con- struct a non-linear holomorphic differential operator that sends Siegel modular forms to Siegel modular forms, and we apply it to produce new modular forms. Our construction recovers the known divisors of minimal moving slope on Ag for g ≤ 4, and gives an explicit upper bound for the moving slope of A5 and a conjectural upper bound for the moving slope of A6.
2023
Moduli of principally polarized abelian varieties; modular forms
01 Pubblicazione su rivista::01a Articolo in rivista
Differentiating Siegel modular forms and the moving slope of \A_g / Grushevsky, Samuel; Ibukiyama, Tomoyoshi; Mondello, Gabriele; SALVATI MANNI, Riccardo. - In: INTERNATIONAL MATHEMATICS RESEARCH NOTICES. - ISSN 1687-0247. - (2023), pp. 1-45.
File allegati a questo prodotto
File Dimensione Formato  
Grushevsky_Differentiating-siegel_2023.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 341.63 kB
Formato Adobe PDF
341.63 kB Adobe PDF
Grushevsky_postprint_Differentiating-siegel_2023.pdf

Open Access dal 16/12/2024

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 634.84 kB
Formato Adobe PDF
634.84 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1692706
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact