We study the zero-temperature stochastic Ising model on some connected planar quasi-transitive graphs, which are invariant under rotations and translations. The initial spin configuration is distributed according to a Bernoulli product measure with parameter $ p\in(0,1) $. In particular, we prove that if $ p=1/2 $ and the graph underlying the model satisfies the planar shrink property then all vertices flip infinitely often almost surely.
Zero-Temperature Stochastic Ising Model on Planar Quasi-Transitive Graphs / De Santis, E.; Lelli, L.. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 190:11(2023). [10.1007/s10955-023-03177-5]
Zero-Temperature Stochastic Ising Model on Planar Quasi-Transitive Graphs
De Santis, E.
;Lelli, L.
2023
Abstract
We study the zero-temperature stochastic Ising model on some connected planar quasi-transitive graphs, which are invariant under rotations and translations. The initial spin configuration is distributed according to a Bernoulli product measure with parameter $ p\in(0,1) $. In particular, we prove that if $ p=1/2 $ and the graph underlying the model satisfies the planar shrink property then all vertices flip infinitely often almost surely.File | Dimensione | Formato | |
---|---|---|---|
De-Santis_Zero-Temperature Stochastic_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.