We study the zero-temperature stochastic Ising model on some connected planar quasi-transitive graphs, which are invariant under rotations and translations. The initial spin configuration is distributed according to a Bernoulli product measure with parameter $ p\in(0,1) $. In particular, we prove that if $ p=1/2 $ and the graph underlying the model satisfies the planar shrink property then all vertices flip infinitely often almost surely.

Zero-Temperature Stochastic Ising Model on Planar Quasi-Transitive Graphs / De Santis, E.; Lelli, L.. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 190:11(2023). [10.1007/s10955-023-03177-5]

Zero-Temperature Stochastic Ising Model on Planar Quasi-Transitive Graphs

De Santis, E.
;
Lelli, L.
2023

Abstract

We study the zero-temperature stochastic Ising model on some connected planar quasi-transitive graphs, which are invariant under rotations and translations. The initial spin configuration is distributed according to a Bernoulli product measure with parameter $ p\in(0,1) $. In particular, we prove that if $ p=1/2 $ and the graph underlying the model satisfies the planar shrink property then all vertices flip infinitely often almost surely.
2023
coarsening; zero-temperature dynamics; quasi-transitive planar graphs
01 Pubblicazione su rivista::01a Articolo in rivista
Zero-Temperature Stochastic Ising Model on Planar Quasi-Transitive Graphs / De Santis, E.; Lelli, L.. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 190:11(2023). [10.1007/s10955-023-03177-5]
File allegati a questo prodotto
File Dimensione Formato  
De-Santis_Zero-Temperature Stochastic_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1692602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact