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Abstract
We study the zero-temperature stochastic Ising model on some connected planar quasi-
transitive graphs, which are invariant under rotations and translations. The initial spin
configuration is distributed according to a Bernoulli product measure with parameter
p ∈ (0, 1). In particular, we prove that if p = 1/2 and the graph underlying the model
satisfies the planar shrink property then all vertices flip infinitely often almost surely.
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1 Introduction

In this paper, we deal with the zero-temperature stochastic Ising model (σt )t≥0 on some con-
nected planar quasi-transitive graphs with homogeneous ferromagnetic interactions (see e.g.
[17, 27]), i.e. all the interactions are equal to a positive constant. The initial spin configuration
is distributed according to a Bernoulli product measure with parameter p ∈ (0, 1), see e.g.
[16, 26, 27]. The dynamic evolves in the following way: each vertex, at rate 1, changes its
spin value if it disagrees with the majority of its neighbours and determines its spin value
by a fair coin toss in case of a tie between the spins of its neighbours. This process is often
referred to as domain coarsening ormajority dynamics and it is sometimes used as an opinion
model.

A question of particular relevance is whether for each vertex v its spin flips only finitely
many times almost surely, i.e. in other words whether σt has an almost sure limit. We say that
a vertex v fixates if the spin at v flips only finitely many times. According to the classification
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given in [17], a model is of type I if no site fixates almost surely, i.e all sites flip infinitely
often a.s.; a model is of type F if all sites fixate almost surely, i.e. all sites flip only finitely
many times a.s. and it is said of typeM if there are both vertices that fixate and vertices that
do not fixate almost surely.

The literature in the early years focused on the cubic lattice Z
d and mainly with d =

2. It is known that the zero-temperature stochastic Ising model on Z with homogeneous
ferromagnetic interactions is of type I for any initial density p ∈ (0, 1) (see [1, 27]).

The disordered model on Zd , if the interactions {Jx,y} are independent random variables
with continuous distribution, is of typeF (see [13, 27]).Moreover, in d = 2 the homogeneous
ferromagnetic model is of type I (see [27]). In [17], an analysis of the zero-temperature
stochastic Ising model on Z

d with nearest-neighbour interactions distributed according to a
measureμJ (disordered model) is performed. In particular, it is proved that if the interactions
are i.i.d. taking only the values ±J then the two dimensional model is of type M. An
analogous result for d > 2 with a temperature fast decreasing to zero is obtained in [7]. On
the cubic lattice Z

d , if initial configuration is distributed according to a Bernoulli product
measure with parameter p sufficiently close to 1 (i.e. if p > p�

d ), then the model is of type
F , in particular each vertex fixates at the value +1 (see [16]). Moreover in [26] it is shown
that p�

d → 1/2 as d → ∞. For homogeneous trees of degree at least 3 and p sufficiently
close to 1, it has been shown that the model is of type F (see [6, 15]).

In [9, 11], the case in which one or infinitely many vertices are frozen is studied. The main
result of the first paper is that for d = 2 the model, with infinitely many frozen vertices, is
of type F . On the contrary, in the second paper the authors show that the model in d = 2 is
of type I when only one spin is frozen.

For articles on the stochastic Ising model on graphs other than Z
d see for example [5, 7,

8, 10, 12, 18, 19]; in particular in [5] it is shown that the zero-temperature Ising model on the
hexagonal lattice is of type F and in [7] it is proved that it is not of type F if simultaneous
spin flips are allowed. In [18] the authors studied the Dilute Curie-Weiss Model, i.e. the Ising
Model on a dense Erdős–Rényi random graph, and proved that depending on the distribution
of interactions there are different behaviors.

In this paper, we deal with connected planar quasi-transitive graphs. The quasi-transivity
of the graph will be given by the invariance under translations and rotations. We will
show that, under mild assumptions, the only rotations to consider are those of an angle
θ ∈ {

π
3 , π

2 , 2
3π, π

}
(see Lemma 3 and Theorem 1). Such a class of graphs includes, for

instance, the square, the triangular and the hexagonal lattice.
Our first result on the zero-temperature stochastic Ising model (Theorem 2) shows that a

necessary condition for the model to be of type I is that the underlying graph has the shrink
property. For example, the hexagonal lattice does not have the shrink property and the model
on this lattice is of type F (see [27]). Thus, we will focus on a class of graphs having the
shrink property. Actually, for technical reasons, we will use a potentially stronger definition
of the shrink property that is the planar shrink property.

Our main result (Theorem 4) shows that if p = 1/2 and the graph is invariant under
rotations, translations and has the planar shrink property, then the model is of type I.

Here we briefly present the general strategy to prove this achievement. First we show
two preliminary results on general attractive spin systems with initial density p ∈ (0, 1]
(see Lemmas 1-2). More precisely we show that, for an attractive system, if a spin fixates
to +1 with positive probability then the probability that it is constantly equal to +1 for
all times t ∈ [0,∞) is positive. After the general analysis developed in Theorems 1–2 we
specifically study the zero-temperature stochastic Ising model. First we show that, under the
shrink property and the translation-ergodicity, the cardinality of any cluster grows to infinity
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almost surely (Theorem 3). By this preliminary result, we are able to show that the cluster
at the origin will intersect the boundary of any finite region infinitely often for t ∈ [0,∞)

with probability one. As already mentioned, we consider a planar graph that is invariant
under translations and rotations of θ ∈ {

π
3 , π

2 , 2
3π

}
. Then, we construct a planar regular

region centered at the origin that has the same rotation invariance of the graph. By the FKG
inequality and the rotation invariance of the region, the cluster in the origin will intersect all
the sides of the regular region with a positive probability larger or equal to pcross . We stress
that, for t growing to infinity the quantity pcross does not depend on the size of the region.
By these properties and by the previous results we show that any ball centered in the origin
has its spins equal to+1 infinitely often with a probability larger of pcross (see Lemmas 5-9).
Thus, with probability at least pcross no site will be able to fixate at the value −1. Finally,
by considering the initial density p = 1/2 and by Lemmas 2–9, we show that all sites flip
infinitely often almost surely (see Theorem 4).

The plan of the paper is the following. In Sect. 2, we define the zero-temperature stochastic
Ising model, introduce the underlying graph and present some general results on attractive
systems that will be useful for our discussion (see Lemmas 1–3 and Theorem 1). In Sect. 3,
the main result, Theorem 4, is stated and proved through some lemmas and theorems. In
Sect. 4, we present an infinite class of graphs having the planar shrink property (see Theorem
5). We also provide examples of graphs that have and do not have the shrink property, cases
where the Ising model is of type I in the first case, and of type either M or F , in the latter.

2 Preliminaries

In this section,we introduce the graph underlying the zero-temperature stochastic Isingmodel
and present some preliminary results that will be useful for our discussion in the next section.
In particular, in Sect. 2.1 we define the Markov process by the infinitesimal generator and
by the Harris’ graphical representation. Moreover, we state two general lemmas (Lemma 1
and Lemma 2) for Glauber attractive dynamics. In Sect. 2.2, we introduce some notation on
graphs and define the collection of graphs in which we are interested. More precisely we
present in Lemma 3 and Theorem 1 some properties of sets in R

2 that are translation and
rotation invariant. In Sect. 2.3, we describe in detail the zero-temperature stochastic Ising
model I (G, p), where G is the underlying graph and p is the initial density. Moreover, we
prove Theorem 2, which shows that the shrink property is a necessary condition to obtain
that the I (G, p)-model is of type I.

2.1 Attractive Spin Systems

We now introduce the spin systems referring mainly to [24, Chapter 3]. We consider a spin
system (σt )t≥0, which describes ±1 spin flips dynamics on a countable set of vertices V .
The state space is � = {+1,−1}V . The value of the spin at vertex v ∈ V at time t will be
denoted by σt (v). We introduce the usual order relation ≤ on �: given two configurations
σ, σ ′ ∈ �, we say that σ ≤ σ ′ if for each v ∈ V , σ(v) ≤ σ ′(v). The spin system (σt )t≥0

evolves as a Markov process on the state space � with infinitesimal generator Lt , which acts
on local functions f , and defined as

(Lt f )(σ ) =
∑

v∈V
ct (v, σ )

(
f (σ v) − f (σ )

)
, (1)

123



  169 Page 4 of 27 E. De Santis, L. Lelli

where t ≥ 0, ct (v, σ ) is the flip rate of the spin at vertex v, and σv ∈ � is defined in the
following way:

σv(u) =
{

σ(u) if u �= v

−σ(u) if u = v.

We assume that ct (v, σ ) is a uniformly bounded non-negative function, which is continuous
on σ and satisfies the condition

sup
v∈V

∑

w∈V
sup
σ∈�

|ct (v, σ ) − ct (v, σw)| < ∞. (2)

The condition in (2) guarantees the existence of the Markov process with infinitesimal gen-
erator Lt (see [24]). We take the process (σt )t≥0 right continuous.

We say that a spin system is attractive if ct (v, σ ) is increasing in σ when σ(v) = −1 and
decreasing in σ when σ(v) = +1. We are in particular interested to study Glauber dynamics,
for which the relation

ct (v, σ ) = 1 − ct (v, σ v) (3)

holds for each v ∈ V , σ ∈ � and t ≥ 0. If the relation (3) holds, then 0 ≤ ct (v, σ ) ≤ 1. We
write the flip rates in the form

ct (v, σ ) = c̃t (v, (σ (u))u∈Av ), (4)

where Av is a subset of V . Under (3) and the assumption

sup
v∈V

|Av| < ∞, (5)

the process defined in (1) can be constructed by the Harris’ graphical representation (see e.g.
[20, 22–24]), which we now describe.

We consider a collection (Pv)v∈V of independent Poisson processes with rate 1 interpreted
as counting processes. For each v ∈ V , let Tv = (τv,n : n ∈ N) be the ordered sequence of
arrivals of the Poisson process Pv , associated with the vertex v. The probability that there is
a flip at vertex v at time t (conditioning on the event {t ∈ Tv}) is equal to ct (v, σt−), where
σt− := lims→t− σs . For convenience, to describe these events in more detail, we can use a
family of i.i.d. random variables (Uv,n : v ∈ V , n ∈ N) distributed according to a uniform
random variable in [0, 1] and such that if Uv,n < cτv,n (v, στ−

v,n
), then the spin at v flips at

time τv,n (see [22] and [24]).
Lemma 1 below is well known, but we present a proof in order to construct the coupling

that will be used in the proof of Lemma 2.

Lemma 1 Given two Glauber attractive dynamics (σt )t≥0 and (σ ′
t )t≥0 having the same gen-

erator and such that σ0 ≤ σ ′
0, there exists a coupling such that σt ≤ σ ′

t for each t ≥ 0.

Proof By hypothesis the order relation is satisfied at the initial time. Hence, it is sufficient to
consider a single arrival of the Poisson process, i.e. only a possible spin flip, in order to show
that the order relation is maintained, i.e. we will show that στ−

v,n
(v) = +1 > σ ′

τ−
v,n

(v) = −1

does not occur.
Let us explicitly construct the desired coulping.We use the same Poisson processes for the

two systems, but different families of i.i.d. uniform random variables (Uv,n : v ∈ V , n ∈ N)

and (U ′
v,n : v ∈ V , n ∈ N) for (σt )t≥0 and (σ ′

t )t≥0 respectively.
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For each v, v′ ∈ V and n ∈ N, let us consider the stopping time τv,n . Moreover, for
v′ ∈ V \{v} let us define

N (n, v, v′) := sup{� ∈ N : τv′,� ≤ τv,n}.
We notice that N (n, v, v) = n, moreover for v′ �= v one has τv′,N (n,v,v′) < τv,n almost
surely.

If στ−
v,n

(v) = σ ′
τ−
v,n

(v) then we define U ′
v,n = Uv,n , if στ−

v,n
(v) = −1 < σ ′

τ−
v,n

(v) = +1

then we define U ′
v,n = 1 −Uv,n . Hence, the random variable U ′

v,n is a function of

(Uv,1, . . . ,Uv,n−1) (6)

and of the independent sequences (Uv′,� : v′ ∈ V \{v}, � ≤ N (n, v, v′)) and (Pv′(t) : v′ ∈
V , t ≤ τv,n).

If U ′
v,n = Uv,n , by construction, U ′

v,n is independent from U ′
v,1, . . . ,U

′
v,n−1, which alto-

gether are functions of Uv,1, . . . ,Uv,n−2, of {Uv′,� : v′ ∈ V \{v}, � ≤ N (n − 1, v, v′)} and
(Pv′(t) : v′ ∈ V , t ≤ τv,n−1). Otherwise, if U ′

v,n = 1 −Uv,n independence follows by:

P(U ′
v,n ∈ [a, b]|Uv,1 = u1, . . . ,Uv,n−1 = un−1)

= P(Uv,n ∈ [1 − b, 1 − a]|Uv,1 = u1, . . . ,Uv,n−1 = un−1)

= P(Uv,n ∈ [1 − b, 1 − a]) = b − a = P(U ′
v,n ∈ [a, b]),

where 0 < a < b < 1 and u1, . . . un−1 ∈ (0, 1). This implies that the distribution of
U ′

v,n and the conditional distribution of U ′
v,n given U ′

v,1, . . . ,U
′
v,n−1 coincide, hence U ′

v,n
is independent from U ′

v,1, . . . ,U
′
v,n−1 and U

′
v,n is a uniform random variable on [0, 1]. The

independence of different sequences of uniform random variables can be proved in a similar
way.

Whenever there is an arrival of a Poisson process, for example at time t for the vertex v

(i.e. t ∈ Tv ), the following situations can arise:
Case στ−

v,n
(v) = σ ′

τ−
v,n

(v) = −1.

SinceUv,n = U ′
v,n and cτv,n (v, στ−

v,n
) is increasing inσ ,we have the following three situations:

if Uv,n < cτv,n (v, στ−
v,n

) ≤ cτv,n (v, σ ′
τ−
v,n

) then both systems change the spin value at v; if

cτv,n (v, στ−
v,n

) ≤ Uv,n < cτv,n (v, σ ′
τ−
v,n

) then in the system (σt )t≥0 the spin at v does not change

its value, while in (σ ′
t )t≥0 the spin flip occurs at v; if cτv,n (v, στ−

v,n
) ≤ cτv,n (v, σ ′

τ−
v,n

) ≤ Uv,n

then both systems do not have the spin flip at v. In all these three situations the order relation
is maintained.

Case στ−
v,n

(v) = σ ′
τ−
v,n

(v) = +1.

Since Uv,n = U ′
v,n and cτv,n (v, στ−

v,n
) is decreasing in σ , we have the following three situa-

tions: ifUv,n < cτv,n (v, σ ′
τ−
v,n

) ≤ cτv,n (v, στ−
v,n

) then both systems change the spin value at v; if

cτv,n (v, σ ′
τ−
v,n

) ≤ Uv,n < cτv,n (v, στ−
v,n

) then in the system (σt )t≥0 the spin at v change its value,

while in (σ ′
t )t≥0 the spin flip does not occur at v; if cτv,n (v, σ ′

τ−
v,n

) ≤ cτv,n (v, στ−
v,n

) ≤ Uv,n

then both systems do not have the spin flip at v. In all these three situations the order relation
is maintained.

Case στ−
v,n

(v) = −1 < σ ′
τ−
v,n

(v) = +1.

If Uv,n < cτv,n (v, στ−
v,n

) then, since in this case U ′
v,n = 1 − Uv,n , by using the relation (3)

for Glauber dynamics and by attractivity, one has that

U ′
v,n = 1 −Uv,n > 1 − cτv,n (v, στ−

v,n
) = cτv,n (v, σ v

τ−
v,n

) ≥ cτv,n (v, σ ′
τ−
v,n

).
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Thus, in the system (σt )t≥0 the spin at v changes its value, while in (σ ′
t )t≥0 the spin flip does

not occur at v, maintaining the order relation. IfUv,n ≥ cτv,n (v, στ−
v,n

), the spin at v in (σt )t≥0

does not change and therefore the order relation is maintained.
By previous cases and since σ0 ≤ σ ′

0, one deduces that the order relation is maintained at
any time. Hence στ−

v,n
(v) = +1 and σ ′

τ−
v,n

(v) = −1 does not occur. 	


Now, we give the following definition which will be used in the next Lemma 2.

Definition 1 We say that a vertex v fixates if the spin at v flips only finitely many times and
we say that a vertex fixates from time zero if its spin never flips.

In the following Lemma 2, for Glauber attractive systems, we compare the probability that a
spin fixates or fixates from time zero.

Lemma 2 Consider a Glauber attractive dynamics (σt )t≥0 where σ0 has density p ∈ (0, 1].
If a vertex w fixates at the value +1 with positive probability, then the vertex w fixates at

the value +1 from time zero with positive probability.

Proof We define Tw := inf{s ≥ 0 : σt (w) = +1 ∀t ≥ s}, where inf ∅ = +∞. We assume
that P(Tw < ∞) = ρ > 0 and we choose t̄ such that P(Tw < t̄) ≥ ρ/2.

We consider a spin system (σt )t≥0, described through the Harris’ graphical representation
with the independent Poisson processes of rate 1 (Pv : v ∈ V ) and the i.i.d. uniform random
variables (Uv,n : v ∈ V , n ∈ N), with initial configuration σ0 distributed according to a
Bernoulli product measure with parameter p.

Now, we construct another system (σ ′
t )t≥0 with the same distribution. We make a resam-

pling (indipendently by all other random variables already introduced) of the spin at vertex
w in the initial configuration, such that

σ ′
0(w) =

{
+1 with probability p

−1 with probability 1 − p,

and σ ′
0(u) = σ0(u), for each u �= w.

We define a new Poisson process P ′
w that after time t̄ has the same arrivals of Pw . In the

interval [0, t̄], P ′
w is a Poisson process of rate 1 indipendent by Pw . This new process, by

independent increments property, is still a Poisson process of rate 1.With positive probability
one has P ′

w(t̄) = 0. Thus, by independence,
with probability at least ρ

2 pe
−t̄ , the following three events occur:

{Tw < t̄}, {σ ′
0(w) = +1}, {P ′

w(t̄) = 0}. (7)

Whenever these three independent events occur, we define (U ′
v,n : v ∈ V , n ∈ N) as follows:

• for v �= w, U ′
v,n = Uv,n when στ−

v,n
(v) = σ ′

τ−
v,n

(v), otherwise U ′
v,n = 1 −Uv,n ;

• for v = w, U ′
w,n = Uw,n+Pw(t̄) when στ−

w,n+Pw(t̄)
(w) = σ ′

τ−
w,n

(w), otherwise U ′
w,n =

1 −Uw,n+Pw(t̄).

If one of the three events in (7) does not occur, the uniform random variables (U ′
v,n : v ∈

V , n ∈ N) will be defined as U ′
v,n = Uv,n for each v ∈ V and n ∈ N.

Now, we suppose that the three events in (7) occur. By construction, we have that σ0 ≤ σ ′
0.

We show that for t ∈ [0, t̄], one has σt ≤ σ ′
t .

Since P ′
w(t̄) = 0, then in the process (σ ′

t )t≥0 the spin at w remains equal to +1 until time
t̄ ; hence σt (w) ≤ σ ′

t (w) for all t ≤ t̄ . When there is an arrival of a Poisson process Pv with
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v �= w, by using the same coupling of Lemma 1, it follows that the desired order relation is
maintained until time t̄ . In particular, at time t̄ , σt̄ ≤ σ ′̄

t . Now, applying the result of Lemma
1 by considering t̄ as initial time, it follows that σt ≤ σ ′

t for each t ≥ 0. Hence, the vertex w

fixates from time zero with probability at least ρ
2 pe

−t̄ > 0, concluding the proof. 	


2.2 Notations and Basic Properties of Graphs

We begin this subsection by presenting Lemma 3 that applies to subsets of R2 which are
invariant by translations and rotations. with the purpose of applying it to connected planar
infinite quasi-transitive graphs. Later in the subsection, we introduce some definitions and
notation on the graphs (see e.g. [14, 19]) and we present the graphs on which the zero-
temperature stochastic Ising model will be constructed.

Let us denote by ‖ · ‖ the Euclidean norm and by B(x, r) the ball of radius r > 0 centered
in x . For any S ⊂ R

2 and x̄ ∈ R
2, we define the translation of a set as

S + x̄ := {x + x̄ : x ∈ S}.
Given θ ∈ (0, π], we say that S is invariant under rotation of θ if there exists a point O ∈ R

2,
which we assume to be the origin, such that Rθ (S) ⊂ S, where Rθ is the rotation in the plane
with center O and angle θ .

Lemma 3 Let x̄ ∈ R
2 be a non-zero vector and Rθ a rotation in the plane with center O and

angle θ ∈ (0, π].
If S ⊂ R

2 is a non-empty set such that

• S has a finite number of points in any ball;
• S + x̄ ⊂ S;
• Rθ (S) ⊂ S.

Then S + x̄ = S, Rθ (S) = S and θ ∈ {
π
3 , π

2 , 2
3π, π

}
.

Proof By hypothesis S is non-empty. Thus, by S + x̄ ⊂ S, there exists a point v ∈ S, with
v �= O . Regarding the rotation, we write θ = 2πα where α ∈ R. Now, if α ∈ R \ Q the set
{Rn

θ (v) : n ∈ N} ⊂ S is dense in ‖v‖S1 that contradicts the property that each ball in R
2

contains a finite number of points of S. Hence, α necessarily belongs to Q.
Let α ∈ Q, we write α = m

n with m, n ∈ N coprime. By Bézout’s lemma, there exist
a, b ∈ Z such that am + bn = 1. Let us select an integer k ∈ N such that a + kn ∈ N. One
has Ra+kn

θ = R 2π
n −2π(b−km) = R 2π

n
. Thus R 2π

n
(S) ⊂ S. Hence, we can consider only the

angles of the form θ = 2π 1
n , for n ∈ N.

By applying (n − 1) times the rotation R 2π
n

one obtains R− 2π
n

(S) ⊂ S, therefore the
rotations with rational α are surjective onto S and consequently also invertible on S. In
particular, R2πα(S) = S for any α ∈ Q.

Now we define

r := min{||w|| : w ∈ R
2, S + w ⊂ S}

that is well-posed because, by hypothesis, there exists x̄ ∈ R
2 such that S + x̄ ⊂ S and S

has a finite number of points in any ball.
Therefore there exists v̄0 ∈ R

2 such that S + v̄0 ⊂ S with ||v̄0|| = r . Notice that, without
loss of generality, one can assume that r = 1 and v̄0 = (1, 0).
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Let us observe that, by R2π 1
n
(S) = S, it follows

S + v̄k ⊂ S,

where v̄k = (
cos( 2πkn ), sin( 2πkn )

)
for k = 0, . . . , n − 1. From the fact that

−v̄0 =
n−1∑

k=1

v̄k,

one has that S − v̄0 ⊂ S. Therefore the translation with respect to v̄0 is surjective onto S and
being also injective it is invertible on S. Therefore S ± v̄k = S for k = 0, . . . , n − 1.

Hence, one has

S + v̄1 − v̄0 = S.

The norm of v̄1− v̄0 is
√
2 − 2 cos( 2πn ). Since v̄0 is a minimal norm vector such that S+ v̄0 =

S, one has

‖v̄1 − v̄0‖ =
√

2 − 2 cos

(
2π

n

)
≥ 1. (8)

By (8) one obtains that cos
( 2π

n

) ≤ 1
2 , which gives n ∈ {2, 3, 4, 5, 6}.

In order to get the result, we need to show that n = 5 contradicts r = 1. In this regard,
we consider

S + v̄0 + v̄2 = S

where v̄2 = (cos(4π/5), sin(4π/5)). Notice that ‖v̄0 + v̄2‖ =
√
2 + 2 cos

( 4
5π

)
< 1, which

contradicts r = 1. Therefore θ ∈ {
π
3 , π

2 , 2
3π, π

}
and this concludes the proof. 	


Remark 1 We note that a set S satisfying the hypotheses of Lemma 3 must be countable.
Notice that for x̄ = (0, 1) and θ ∈ {

π
3 , π

2 , 2
3π, π

}
there exist examples of sets S such

that S + x̄ = S and Rθ (S) = S. Moreover, there are examples where R2π/3(S) = S but
Rπ/3(S) �= S and examples such that Rπ (S) = S but Rπ/2(S) �= S.

Let us now recall some definitions and notation on graph theory (see e.g. [14, 19]).
Let G = (V , E) be a graph, where V is the set of its vertices (or sites) and E ⊂ V × V

is the set of its edges. The degree of a vertex v ∈ V , denoted by deg(v), is the number
of neighbours of v, i.e. deg(v) := |{u ∈ V : {u, v} ∈ E

}|. The maximum degree of G is
�(G) := sup{deg(v) : v ∈ V }. Given v ∈ V and S ⊂ V , we denote by NS(v) the set of
neighbours of v in S, i.e. NS(v) := {

u ∈ S : {u, v} ∈ E
}
and we define the degree of v in

S as degS(v) := |NS(v)|. Given U ⊂ V , the induced subgraph G[U ] is the graph whose
vertex set is U and whose edge set consists precisely of the edges {u, v} ∈ E with u, v ∈ U .
A path connecting a vertex v to a vertex u is a non-empty graph P = (V (P), E(P)), where
V (P) = {v0 = v, v1, . . . , vm−1, vm = u}, the vertices vi are all distinct and E(P) =
{{vi , vi+1} ∈ E : i = 0, . . . ,m − 1}; m is the length of the path P . If P = (V (P), E(P))

is a path connecting v to u, then the graph C := (V (P), E(P) ∪ {{u, v}}) is called a cycle.
A graph G = (V , E) is said to be connected if for any two vertices u, v ∈ V there exists
a path connecting them. We say that U ⊂ V is connected if the induced subgraph G[U ] is
connected.

We denote by dG(u, v) the distance in G of two vertices u and v defined as the length of a
shortest path connecting u to v. Given a subset U ⊂ V , we define the external boundary of
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U as the set ∂extU := {v ∈ V \U : ∃u ∈ U s.t. {v, u} ∈ E}. Now, we provide the following
definitions (see e.g. [19]).

Definition 2 (Graph automorphism) LetG = (V , E) be a graph. A bijectivemap φ : V → V
is said to be a graph automorphism if {u, v} ∈ E ⇐⇒ {φ(u), φ(v)} ∈ E .

Definition 3 (Transitive graph) A graph G = (V , E) is called transitive if for any u, v ∈ V
there is a graph automorphism mapping u on v.

Definition 4 (Quasi-transitive graph) A graph G = (V , E) is said to be quasi-transitive
if V can be partitioned into a finite number of vertex sets V1, . . . , VN such that for any
i = 1, . . . , N and any u, v ∈ Vi , there exists a graph automorphism mapping u on v.

Now we introduce planar graphs, which play a central role in our paper. An arc is a subset
of R2 that is the union of finitely many segments and is homeomorphic to the closed interval
[0, 1]. The images of 0 and 1 under such a homeomorphism are the endpoints of this arc. If
A is an arc with endpoints x and y, the interior of A is A\{x, y} (see [14]).

A plane graph is a pair G = (V , E) that satisfies the following properties:

(1) V ⊂ R
2 is at most countable;

(2) every edge is an arc between two vertices;
(3) different edges have different sets of endpoints;
(4) the interior of an edge contains no vertex and no point of any other edge.

A graph G = (V , E) is said to be planar if it can be embedded in the plane, i.e. it is
isomorphic to a plane graph G̃. The plane graph G̃ is called a drawing of G or embedding
of G in the plane R2. We can identify a planar graph with its embedding in R

2. Similarly,
we say that G = (V , E) is embedded in Rd if V ⊂ R

d is at most countable and (2)-(4) hold
(see e.g. [12, 14]).

Given a plane graphG = (V , E) and a set S ⊂ V , letConvG(S) := Conv(S)∩V , where
Conv(S) denotes the convex hull of S. We now define the shrink and planar shrink property,
which will be central to our future discussion.

Definition 5 (Shrink property) Given a graph G = (V , E), we say that G has the shrink
property if for each subset S ⊂ V with finite cardinality, there exists u ∈ S such that
degV \S(u) ≥ degS(u).

Given a line � ∈ R
2, we denote by H �

1 ⊂ R
2 and H �

2 ⊂ R
2 the closed half-planes having

� as boundary. Given a non-empty subset S ⊂ V and a line �, we define S�
1 = S ∩ H �

1 and
S�
2 = S ∩ H �

2 ; clearly S = S�
1 ∪ S�

2.

Definition 6 (Planar shrink property) For a plane graph G = (V , E), we say that G has the
planar shrink property when, for any non-empty set S ⊂ V and for any line �, one has:

for i = 1, 2, if S�
i is non-empty and has finite cardinality, then there exists u ∈ S�

i such
that degV \S(u) ≥ degS(u).

We say that a planar graph G has the planar shrink property if there exists an embedding of
G in the plane for which such a property holds.

For a plane graph, it is immediate to note that the planar shrink property implies the shrink
property.

We are interested in a connected planar infinite graph G = (V , E) with a specified
embedding in R

2 such that the following conditions hold:
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(C1) There exists a non-zero vector x̄ such that V + x̄ ⊂ V and for any u, v ∈ V ,

{u, v} ∈ E ⇐⇒ {u + x̄, v + x̄} ∈ E .

Then we say that G is translation invariant with respect to the vector x̄ .
(C2) There exists a point O ∈ R

2 and θ ∈ (0, π ] such that Rθ (V ) ⊂ V and for any u, v ∈ V ,

{u, v} ∈ E ⇐⇒ {Rθ (u), Rθ (v)} ∈ E .

Then we say that G is rotation invariant with respect to Rθ .
(C3) Each ball in R2 contains a finite number of vertices of G.

By Lemma 3, it follows that a graph satisfying conditions (C1), (C2) and (C3) has θ ∈{
π
3 , π

2 , 2
3π, π

}
and the translations and rotations in (C1), (C2) are graph automorphisms. For

reasons that will become clear in the following, we do not deal with θ = π .
The translations and rotations provide a partition of V in classes, in any case the partition

given in Definitions 3 and 4 can be finer than the one given by only translations and rotations.
For θ = π , it is straightforward to exhibit an example where the number of classes is infinite.
For instance, we can consider G = (V , E) where V = Z

2 and the edge set is

E = {{(i, j), (i, j + 1)} : i, j ∈ Z
} ∪ {{(i, 0), (i + 1, 0)} : i ∈ Z

}
.

It is immediate to note that G is invariant under translation with respect to the vector (1, 0)
and is invariant under rotation of π in the origin but not of π/2. Moreover, the classes of G
are Cn = {(i,±n) : i ∈ Z} for n ∈ N0 (see Fig. 9 in Sect. 4).

We present the following result for plane graphs that are translation and rotation invariant.

Theorem 1 If G is a plane graph satisfying the conditions (C1), (C2) and (C3), then θ ∈{
π
3 , π

2 , 2
3π, π

}
. Moreover if θ ∈ {

π
3 , π

2 , 2
3π

}
then the plane graph G is either transitive or

quasi-transive.

Proof The first part of the statement has already been discussed above. It is sufficient to prove
that for θ ∈ {

π
3 , π

2 , 2
3π

}
the number of classes is finite. Let θ ∈ {

π
3 , π

2 , 2
3π

}
, the plane graph

G is translation invariant with respect to the linear independent vectors x̄ and ȳ := Rθ x̄ . The
number of classes is at most the number of vertices belonging to the closed parallelogram
spanned by vectors x̄ and ȳ. By (C3) follows that the number of vertices in this parallelogram
is finite. 	


Now, we introduce the class of plane graphs G(a) with a ∈ {3, 4, 6} that is the collection
of connected infinite graphs (with finite maximal degree) satisfying conditions (C1)-(C3)
with θ = θ(a) = 2π/a. It is immediate to notice that G(6) ⊂ G(3). Let, furthermore,
G := G(3) ∪ G(4). In Sect. 4, we will provide various examples of such graphs.

2.3 The I(G, p)-Model

We consider the stochastic process (σt )t≥0, which describes ±1 spin flips dynamics on an
infinite graph G = (V , E) with �(G) < ∞. The state space is � = {+1,−1}V and the
initial state is distributed according to a Bernoulli product measure with density p ∈ [0, 1]
of spins +1 and 1 − p of spins −1. The process corresponds to the zero-temperature limit
of Glauber dynamics for an Ising model with formal Hamiltonian

H(σ ) = −
∑

u,v∈V :
{u,v}∈E

σ(u)σ (v), (9)

123



Zero-Temperature Stochastic Ising Model on Planar... Page 11 of 27   169 

Fig. 1 The graph on the left belongs to G(4), hence it is invariant under rotation of π/2. The graph on the
right is only invariant under rotation of π

where σ ∈ �. The definition (9) is not well posed for infinite graphs. For this reason, we
introduce the changes in energy at vertex v ∈ V as

�Hv(σ ) = 2
∑

u∈V :{u,v}∈E

σ(u)σ (v).

The process (σt )t≥0 is a Markov process on � with infinitesimal generator having as flip
rates

ct (v, σ ) =

⎧
⎪⎨

⎪⎩

0 if �Hv(σ ) > 0
1
2 if �Hv(σ ) = 0

1 if �Hv(σ ) < 0.

(10)

It is immediate to notice that the stochastic process is well defined, indeed the supremum
in (2) is bounded by �(G) (see [24]). We note that the process is a Glauber attractive
dynamics. Furthermore, since �(G) < ∞, the flip rates in (10) satisfy the condition in
(5) with Av = NV (v). Therefore, this process can be constructed by the Harris’ graphical
representation (see [20, 22–24]).

In the following, we will refer to this model as I (G, p)-model where G is the underlying
graph and p is the density of the Bernoulli product measure for the initial configuration. Now,
in Theorem 2, we show that the shrink property is a necessary condition to obtain that the
I (G, p)-model is of type I.

Theorem 2 Let G = (V , E) be a graph with �(G) < ∞. If G does not have the shrink
property then for any p ∈ [0, 1] the I (G, p)-model is not of type I.

Proof First let us consider the case p ∈ (0, 1]. SinceG does not have the shrink property then
there exists a finite subset S ⊂ V such that degV \S(u) < degS(u) for any u ∈ S. Moreover,
one has

P

(⋂

u∈S
{σ0(u) = +1}

)
= p|S| > 0. (11)

Since degV \S(u) < degS(u) for every u ∈ S, no site in S can change the value of its spin if
σ0(u) = +1 for each u ∈ S.
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Fig. 2 Example of a graph
G ∈ G(4) that does not have the
shrink property and, for
p ∈ (0, 1), the I (G, p)-model is
of type M

This fact implies that

P
(
each vertex in S fixates at the value + 1 from time zero

) ≥ p|S| > 0.

Thus, for any p ∈ (0, 1] the I (G, p)-model is not of type I.
Let us now consider p = 0. In this case, all sites fixate from time 0 at the value −1 almost

surely and the I (G, 0)-model is of type F . 	


Remark 2 Note that Theorem 2 does not imply that the I (G, p)-model is of type F or M.
In fact if the graph G is not invariant under translation it could happen that the model does
not belong to any of the three classes F, M and I.

If G does not have the shrink property, it is possible to show examples in which the
I (G, p)-model is respectively of type F or M. It is known (see [5, 27]) that if G is the
hexagonal lattice then the I (G, p)-model is of type F . Now, we show in Example 1 that if
we consider G ∈ G(4) as in Fig. 2 then for any p ∈ (0, 1) the I (G, p)-model is of type M.

Example 1 Let G ∈ G be the graph in Fig. 2. For any p ∈ (0, 1) the I (G, p)-model is of type
M. Let ui ∈ V with deg(ui ) = 3 for i = 1, . . . , 8 as in Fig. 2. Let S = {u1, . . . , u4}. Since
degV \S(u1) = 1 < 2 = degS(u1), it is immediate to notice that

P
(
u1 fixates at the value + 1

) ≥ P
(∀i = 1, . . . , 4 σ0(ui ) = +1

) = p4 > 0. (12)

Hence, by ergodicity (see [25, 27]), there exist vertices that fixate at the value +1 almost
surely. Now, let z, wi ∈ V be the vertices such that deg(z) = 4 and deg(wi ) = 3 for
i = 1, . . . , 8 as in Fig. 2. Let Ez be the event that the vertices ui and wi fixate respectively
at the value +1 and −1 for each i = 1, . . . , 8. With the same argument used in (12), we
deduce that P(Ez) ≥ p8(1 − p)8 > 0. Moreover, conditioning on the event Ez , whenever
there is an arrival of the Poisson process Pz the spin flip at z occurs with probability 1/2.
Thus, by Lévy’s extension of the Borel–Cantelli Lemmas, z flips infinitely often with positive
probability. By ergodicity (see [25, 27]), it follows that there exist vertices that flip infinitely
often almost surely. Therefore, the I (G, p)-model is of type M.
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3 Main Results

In the following, given σ ∈ � and v ∈ V , we denote by Cv(σ ) the cluster at site v for σ ,
defined as the maximal connected subset of V such that v ∈ Cv(σ ) and for any u ∈ Cv(σ )

one has σ(u) = σ(v).
Now, we present the following theorem, which is an extension of Proposition 3.1 in [4].

Theorem 3 For d ∈ N, take a I (G, p)-model, where p ∈ [0, 1] and G is a graph embedded
in Rd that is translation invariant with respect to d linearly independent vectors. Moreover,
suppose that G has the shrink property and �(G) < ∞.

Then, the size of the cluster at a vertex v ∈ V diverges almost surely as t → ∞, i.e.

∀v ∈ V , lim
t→∞ |Cv(σt )| = ∞ almost surely.

Proof We explicitly use the elements ω of the sample space �.
We prove the theorem by contradiction. Hence, for a vertex v ∈ V , let us define the event

A := {ω ∈ � : lim inf
t→∞ |Cv(σt )| < ∞}.

By contradiction assumption we suppose P(A) > 0. By continuity of the measure there
exists M > 0 such that P(AM ) > 0, where

AM := {ω ∈ � : lim inf
t→∞ |Cv(σt )| < M}.

Then, for any ω ∈ AM , one can define (Tk(ω))k∈N such that

T1(ω) = inf{t ≥ 0 : |Cv(σt )| < M},
and, for k ∈ N, one recursively defines

Tk+1(ω) = inf{t ≥ Tk(ω) + 1 : |Cv(σt )| < M}.
Let Ft be the σ -algebra generated by the process up to time t . It is immediate to note that Tk
is a stopping time with respect to the filtration (Ft )t≥0 for any k ∈ N.

We consider FTk for any k ∈ N. We notice that for ω ∈ AM , since �(G) < ∞ and
|Cv(σTk )| < M , the cluster Cv(σTk ) can be equal only to a finite number of sets of vertices.
For each of these sets of vertices, by the shrink property there is an ordered finite sequence
of clock rings and outcomes of tie-breaking coin tosses inside a fixed finite ball that would
cause the cluster to shrink to a single site w ∈ V with dG(w, v) < M (w could, in principle,
depend onCv(σTk )). Then, since the vertexw would have all neighbours with opposite spins,
it could have an energy-lowering spin flip (with change in energy equal to −2deg(w)) and
the cluster would vanish with positive probability. We define

BM,k :=
⋃

w∈V :
dG (w,v)<M

{
spin at w flips at time t ∈ (Tk, Tk + 1) with �Hw(σt ) ≤ −1

}
.

From the previous statements in this proof, one has that there exists δ > 0 such that

P
(
BM,k |σTk

) ≥ δ.

Now, by the Strong Markov property of the process, for any k ∈ N we have the following
lower bound

ξk(ω) := P
(
BM,k |FTk

)
(ω) = P

(
BM,k |σTk

) ≥ δ,
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for almost every ω ∈ AM . Thus
∑∞

k=1 ξk(ω) = ∞, for almost every ω ∈ AM .
Now, by using the Lévy’s extension of Borel–Cantelli Lemmas (see e.g. [28]) with the

sequence of events (BM,k)k∈N and the filtration (FTk )k∈N, we have that
{

ω ∈ � :
∞∑

k=1

ξk(ω) = ∞
}

⊂
{

ω ∈ � :
∞∑

k=1

1BM,k (ω) = ∞
}

∪ C

where C has measure zero. Then

P
(
lim sup
k→∞

BM,k
) ≥ P

(
AM

)
> 0.

Thus, there exists a vertex w̃ with dG(w̃, v) < M such that energy-lowering spin flips
occur at w̃ infinitely many times with positive probability. By translation invariance with
respect to d linearly independent vectors, v1, . . . , vd , we obtain that the graph G is quasi-
transitive. The classes of the graph are all represented inside the parallelogram spanned by
the d vectors v1, . . . , vd . Now, the translation-ergodicity implies that there exists a positive
density of vertices for which energy-lowering spin flips occur infinitely often almost surely.
This fact contradicts Theorem 3 and related remark in [27] (see also Lemma 5 in [7]).

This concludes the proof. 	

Remark 3 Theorem 3 is a generalization of Proposition 3.2 in [4] for graphs G having the
shrink property. In [4], the result was given only for the cubic lattice Zd that in particular has
the shrink property.

In the following, we consider the I (G, p)-model having G ∈ G(a) for a ∈ {3, 4} and it is
invariant under translation with respect to x̄ . Without loss of generality we take x̄ = (1, 0).
Let us consider a vertex ṽ having minimal Euclidean distance from the origin O . Clearly,
ṽ = O when O belongs to V . In the case ṽ �= O we consider the two distinct vertices
ṽ, Rθ (ṽ); since G is a connected graph, we can select a connected finite set S ⊂ V such that
ṽ, Rθ (ṽ) ∈ S. Finally we define the set of vertices

U =
{ {O} if O ∈ V⋃a−1

k=0 Rkθ(a)(S) otherwise,
(13)

where θ(a) = 2π/a. By construction U is connected and Rθ(a)(U ) = U .
For a ∈ {3, 4} we construct a region of size L ∈ R+ centered in O as follows. Let us

consider the point P1(L, a) = (L tan(θ(a)/2), L) ∈ R
2 and let

Pi+1(L, a) = Riθ(a)(P1),

for i = 1, . . . , a − 1. We define the region of size L ∈ R+ centered in O as follows

TL(a) := Conv({P1(L, a), . . . , Pa(L, a)}).
For a = 3, 4 one respectively obtains that TL(a) is an equilateral triangle or a square.
Now, let us consider the class V1 ⊆ V (see Theorem 1 and Definition 4). If the graph G =

(V , E) is transitive then V1 = V . We write every vertex v ∈ V as v = (vx , vy) ∈ R
2 and let

v0,y := maxv∈V1∩TL (a) vy and v0,x := min{vx ∈ R : (vx , vy) ∈ V1 ∩ TL(a) and vy = v0,y}.
We define v0 = (v0,x , v0,y) ∈ V1 ∩ TL(a). By translation invariance of G with respect to
x̄ = (1, 0), one has v0 + x̄ ∈ V1. Now we can select a connected set of verticesU0 such that
V1 ∩ B(v0, 2) ⊂ U0. Finally we choose r1 ≥ 2 such that U0 ⊂ B(v0, r1). We are ready to
present the following lemma.
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Lemma 4 For any G ∈ G(a) with a ∈ {3, 4} and for any L ∈ R+ there exists a connected
set of vertices WL ⊂ (TL+2r1(a) \ TL−2r1(a)) such that Rθ(a)(WL ) = WL.

Proof For k ∈ N, let

vk := v0 + kx̄ .

We define kmax = max{k ∈ N : vk ∈ TL(a)}. The set of vertices

S =
kmax⋃

k=0

(U0 + kx̄)

is connected because for any k = 0, . . . , kmax − 1 it turns out that G[U0 + kx̄] is connected
and vk, vk+1 ∈ U0 + kx̄ .

We define the set of verticesWL = ⋃a−1
i=0 Riθ(a)(S). Now, we show thatWL is connected.

Since
||v0 − P2(L, a)|| ≤ 1, ||P1(L, a) − vkmax || ≤ 1

and by using the triangular inequality, one obtains

||v0 − Rθ(a)(vkmax )|| ≤ ||v0 − P2(L, a)|| + ||P2(L, a) − Rθ(a)(vkmax )||
= ||v0 − P2(L, a)|| + ||P1(L, a) − vkmax || ≤ 2.

The previous inequality and V1 ∩ B(v0, 2) ⊂ U0 imply that WL is connected. Clearly
WL ⊂ (TL+2r1(a)\TL−2r1(a)) and Rθ(a)(WL) = WL . 	

Let WL as in Lemma 4. One can select a cycle UL ⊂ WL ; we call fL,∞ its outer face and
fL,0 its inner face.

Remark 4 We notice that, by translational invariance with respect to the vectors x̄ = (1, 0)
and ȳ = (cos θ(a), sin θ(a)), one has

|WL | � L and |V ∩ fL,0| � L2,

where we write an � bn to mean that there exist two positive constants c1 and c2 such that
c1 ≤ an

bn
≤ c2 for all n ∈ N.

This implies that G ∈ G(a) is amenable for any a ∈ {3, 4, 6}. Under the assumptions of
amenability of the graph, the translation invariance of the measure μ and finite-energy of the
measureμ, it is known that the infinite cluster is at most one almost surely (see [2, 3, 19]). For
the zero-temperature stochastic Ising model, it is not known whether the measure induced
at time t has finite-energy property. Therefore, we are not able to prove the uniqueness of
the infinite cluster at time t . Instead, if the temperature is positive and decreases to zero, one
has the property of finite-energy (see [7]). In this last case one obtains the uniqueness of the
infinite cluster.

Now, given an integer q ∈ N and δ < 1
2q , we consider T1+δ(a) \ T1−δ(a) and we show

that there exists a collection of balls (B(ci , 4/q) : i = 1, . . . , aq) such that:

a. T1+δ(a)\T1−δ(a) ⊂ ⋃aq
i=1 B(ci , 4/q);

b. for any i = 1, . . . , aq , the center ci belongs to ∂T1(a);
c. for any i = 1, . . . , q and m = 0, . . . , a − 1 one has ci+mq = Rmθ(a)(ci ). In particular,

Rθ(a)(
⋃aq

i=1 B(ci , 4/q)) = ⋃aq
i=1 B(ci , 4/q).

It is clear that such a construction exists, for example by taking the centers of the ball equally
spaced. The chosen balls in this construction will be maintained also in the sequel.

123



  169 Page 16 of 27 E. De Santis, L. Lelli

Fig. 3 The distance between the
segment having u0 ∈ B(ci , 4/q)

and u1 ∈ B(ci+q , 4/q) as its
endpoints and O can decrease at
most of 4/q (the length of the
radius) with respect to the
distance between the segment
having endpoins ci and ci+q and
O

Fig. 4 Example of a realization
of an L-cross

Lemma 5 (Geometric Lemma) Let a ∈ {3, 4}, q ≥ 10 and δ < 1
2q and consider the cover

of T1+δ(a)\T1−δ(a) introduced in items a, b, and c. Then, for any (uk)k=0,...,a−1 such that
uk ∈ B(ci+kq , 4/q) for k = 0, . . . , a − 1, one has Conv({u0, . . . , ua−1}) ⊃ B(O, 1

2 − 4
q ).

Proof For a fixed i = 1, . . . , q , let us consider (ci+kq)k=0,...,a−1. For a = 3, 4, we note that
Conv({ci+kq : k = 0, . . . , a − 1}) is an equilateral triangle or a square. Therefore, since
ci+kq ∈ ∂T1(a) one has Conv({ci+kq : k = 0, . . . , a − 1}) ⊃ B(O, 1

2 ).
Let us now consider the segment having u0 ∈ B(ci , 4/q) and u1 ∈ B(ci+q , 4/q) as its

endpoints. The distance between this segment and the origin O can decrease at most of 4/q
with respect to the distance between O and the segment having endpoins ci , ci+q (see Fig. 3).
Then one obtains that Conv({u0, . . . , ua−1}) ⊃ B(O, 1

2 − 4
q ). 	


As already announced, we do not deal with θ = π . Indeed if we consider a = 2 which
corresponds to θ(a) = π , this statement is false becauseConv({u0, u1})would be a segment
and there is no ball contained in it. From now on we take q ≥ 24 and hence 1

2 − 4
q ≥ 1

3 .
Now, we present the following definition.

Definition 7 (L-Cross) Given G ∈ G(a) with a ∈ {3, 4}, we say that an L-cross of +1
occurs at time t if there exists a cluster C̃(σt ) of G[V ∩ TL+2r1(a)] such that
• σt (v) = +1 for each v ∈ C̃(σt );
• C̃(σt ) ⊃ U , where U is defined in (13);
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• there exists i ∈ {1, . . . , q} such that C̃(σt ) ∩ B(Lci+kq , 4 L/q) �= ∅ for each k =
0, . . . , a − 1.

We denote by Et
L with t ∈ R

+
0 the event that an L-cross of +1 occurs at time t . Moreover,

we define
AL := lim sup

t→∞
Et
L . (14)

We define the set of vertices SL(t) := C̃(σt ) ∩ WL , where the properties of WL are given
in Lemma 4. The previous Lemma 5 shows that for each time t ∈ R

+
0 in which an L-cross

of +1 occurs (see Fig. 4), one has

Conv(SL(t)) ⊃ B (O, rL) where rL = 1

3
L. (15)

In other words, Lemma 5 says that |ConvG(SL(t))| � L2.
We now explain the strategy for proving Lemma 6. Let U ⊂ V as defined in (13). If

the initial density p ≥ 1/2, then U is contained in a cluster of +1 with probability at least
(1/2)|U |, at any time t .

By Theorem 3, the size of this cluster diverges almost surely as t → ∞. Now, by FKG
inequality and by rotation invariance, one obtains that lim inf t→∞ P(Et

L) > 0, i.e. the cluster
satisfies the properties in Definition 7 with positive probability. Note that this lower bound
does not depend on L . By Reverse Fatou Lemma, we obtain the same lower bound on P(AL).
We are now ready to prove the lemma.

Lemma 6 Consider the I (G, p)-model, where p ∈ [ 12 , 1) and G ∈ G. If G has the shrink
property, then

P(AL) ≥ pcross := 1

(aq)a

(
1

2

)a|U |
,

where the event AL is defined in (14).

Proof Let Ut be the event that all vertices in U have spin equal to +1 at time t . By Lemma
1, FKG inequality and Harris’ inequality (see [21]), it follows that

P(Ut ) ≥
(
1

2

)|U |
. (16)

If Ut occurs, then, sinceU is connected, at time t all vertices inU belong to a same cluster, we
call it CU (σt ). Moreover, let C̃(σt ) be the cluster of G[V ∩ TL+2r1(a)] that contains U . We
denote by CWL (t) the event that the cluster C̃(σt ) intersectsWL , i.e. CWL (t) := {C̃(σt )∩WL �=
∅}. By Theorem 3, we have that limt→∞ |CU (σt )| = ∞ almost surely. Thus, by planarity of
G and V ∩ fL,0 has finite cardinality (see Remark 4), we get

lim
t→∞P

(
CWL (t)

) = 1. (17)

By (16) and (17), it follows that

lim inf
t→∞ P

(
CWL (t) ∩ Ut

) = lim inf
t→∞ P(Ut ) ≥

(
1

2

)|U |
. (18)

Now,wewriteWL = ∪q
i=1∪a−1

k=0P
i
L,k where P

i
L,k := WL∩B(Lci+kq , 4L/q) for i = 1, . . . , q

and k = 0, . . . , a − 1.
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Wedefine the eventCL,i,k(t) := {C̃(σt )∩Pi
L,k �= ∅} for i = 1, . . . , q and k = 0, . . . , a−1.

Hence, we have

CWL (t) ∩ Ut =
q⋃

i=1

a−1⋃

k=0

CL,i,k(t) ∩ Ut .

Thus, by rotation invariance and by the union bound, we have

P
(
CWL (t) ∩ Ut

) = P

( q⋃

i=1

a−1⋃

k=0

(
CL,i,k(t) ∩ Ut

)) ≤
q∑

i=1

a−1∑

k=0

P
(
CL,i,k(t) ∩ Ut

)

≤ aqP
(
CL,ī,0(t) ∩ Ut

)
, (19)

where ī ∈ {1, . . . , q} is such that P
(
CL,ī,0(t) ∩ Ut

) = maxi=1,...,q P
(
CL,i,0(t) ∩ Ut

)
.

We note that CL,ī,k(t) ∩ Ut is an increasing event for k = 0, . . . , a − 1; therefore

P

(a−1⋂

k=0

(
CL,ī,k(t) ∩ Ut

)) ≥
(
P
(
CL,ī,0(t) ∩ Ut

))a

≥
(

1

aq
P
(
CWL (t) ∩ Ut

))a

, (20)

where the first inequality follows by FKG inequality and by rotation invariance, and the last
inequality follows by (19).

We also notice that, by definition of Pi
L,k , one has

CL,i,k(t) = {C̃(σt ) ∩ Pi
L,k �= ∅} ⊂ {C̃(σt ) ∩ B(Lci+kq , 4L/q) �= ∅}.

Thus, by Definition 7, we have

Et
L =

q⋃

i=1

a−1⋂

k=0

{
C̃(σt ) ∩ B(Lci+kq , 4L/q) �= ∅} ∩ Ut

⊇
q⋃

i=1

a−1⋂

k=0

CL,i,k(t) ∩ Ut ⊇
a−1⋂

k=0

CL,ī,k(t) ∩ Ut ,

and hence

P(Et
L) ≥ P

(a−1⋂

k=0

CL,ī,k(t) ∩ Ut

)
. (21)

Now, by (18), (20) and (21), we obtain the following lower bound

lim inf
t→∞ P(Et

L) ≥ lim inf
t→∞

(
1

aq
P
(
CWL (t) ∩ Ut

))a

≥ 1

(aq)a

(
1

2

)a|U |
.

Finally, by Reverse Fatou Lemma we get

P(AL) ≥ lim sup
t→∞

P(Et
L) ≥ lim inf

t→∞ P(Et
L) ≥ 1

(aq)a

(
1

2

)a|U |
> 0

that concludes the proof. 	

Now we give a simple definition that will be useful when related to Et

L through Lemma
5. For t ∈ R

+
0 , let F

t
L be the event that all sites belonging to B(O, L

3 ) have spin equal to +1
at some time s ∈ (t, t + 1).
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Lemma 7 Consider the I (G, p)-model, where p ∈ [ 12 , 1) and G ∈ G. If G has the planar
shrink property, then there exists εL > 0 such that

P(Ft
L |σt = σ) ≥ εL

for any σ ∈ � such that {σt = σ } ⊂ Et
L .

Proof Let σ ∈ � and (σs)s≥0 be the I (G, p)-model such that {σt = σ } ⊂ Et
L . We define

another zero-temperature stochastic Ising model (σ ′
s)s≥t with infinitesimal generator having

the flip rates as in (10) and such that

σ ′
t (v) =

{
+1 for each v ∈ C̃(σt )

−1 otherwise,

where C̃(σt ) is the cluster of G[V ∩ TL+2r1(a)] in the configuration σ , as in Definition 7.
By definition of σ ′

t and E
t
L , C̃(σt ) ⊃ U is the unique cluster of+1 sites in the configuration

σ ′
t . In configuration σ ′

t , we have that
(
V ∩TL+2r1(a)

)\C̃(σt ) = D1(σ
′
t )
· · ·
Dk(σ

′
t ), where

Di (σ
′
t ) for i = 1, . . . , k are clusters of−1 sites (we stress that k < ∞ because V ∩TL+2r1(a)

has finite cardinality).
We notice that, by planarity ofG, for each i = 1, . . . , k we have that ∂ext Di (σ

′
t ) ⊂ C̃(σt ).

By planar shrink property, for each i = 1, . . . , k there exists an ordered finite sequence of
updates (i.e. of clock rings and outcomes of tie-breaking coin tosses inside V ∩ TL+2r1(a))
that would cause all sites of Di (σ

′
t ) ∩ ConvG(SL(t)) (see definition above formula (15)) to

have spin equal to +1 in some time s ∈ (t, t + 1) with positive probability. Therefore, we
get an ordered finite sequence of updates inside V ∩ TL+2r1(a) that would cause all sites of
ConvG(SL(t)) to have spin equal to +1 in σ ′

s (with s ∈ (t, t + 1)), but since σ ′
t ≤ σt this

sequence of updates works, by the coupling in Lemma 1, in the same way for the original
process (σs : s ∈ (t, t+1)).Moreover, by Lemma 5, one has V ∩B(O, L

3 ) ⊂ ConvG(SL(t)).
Thus, there exists εL > 0 such that

P(Ft
L |σt = σ) ≥ εL

for any σ ∈ � having {σt = σ } ⊂ Et
L . 	


We recall that AL := lim supt→∞ Et
L . Now, we define BL := lim supt→∞ Ft

L . We are ready
to present the following lemma.

Lemma 8 Consider the I (G, p)-model, where p ∈ [ 12 , 1) and G ∈ G. If G has the planar
shrink property, then P(BL) ≥ pcross > 0.

Proof In the proof we will explicitly use the elements ω of the sample space �. First, let
ω ∈ AL , i.e. an L-cross of +1 occurs infinitely often. Then one can define (Tk(ω))k∈N such
that

T1(ω) = inf{t ≥ 0 : Et
L occurs},

and, for k ∈ N, we recursively define

Tk+1(ω) = inf{t ≥ Tk + 1 : Et
L occurs}.

Let Ft be the σ -algebra generated by the process up to time t . It is immediate to note that Tk
is a stopping time with respect to the filtration (Ft )t≥0 for any k ∈ N. We consider FTk for
any k ∈ N.
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By the Strong Markov property of the process and by Lemma 7, for any k ∈ N we have
the following lower bound

ξk(ω) := P
(
FTk
L |FTk

)
(ω) = P

(
FTk
L |σTk

) ≥ εL > 0,

for almost every ω ∈ AL . Thus
∑∞

k=1 ξk(ω) = ∞, for almost every ω ∈ AL .
Now, by using the Lévy’s extension of Borel–Cantelli Lemmas (see e.g. [28]) with the

sequence of events (FTk
L )k∈N and the filtration (FTk )k∈N, we have that

{

ω ∈ � :
∞∑

k=1

ξk(ω) = ∞
}

⊂
{

ω ∈ � :
∞∑

k=1

1
F
Tk
L

(ω) = ∞
}

∪ C,

where C has measure zero. Then, by Lemma 6,
we get

P
(
BL

) ≥ P
(
AL

) ≥ 1

(aq)a

(
1

2

)a|U |
= pcross > 0.

This concludes the proof. 	

Now, for any time t2 > t1 + 1 we define

D(L; t1, t2) :=
⋃

s∈[t1,t2−1]
Fs
L and D(L; t1,∞) :=

⋃

s≥t1

Fs
L .

Lemma 9 For any L ∈ R+ and t1 ≥ 0, one has

P
(
D(L; t1,∞)

) ≥ pcross .

Moreover, for any ε > 0 there exists a time s > t1 + 1 such that

P
(
D(L; t1, s)

) ≥ (1 − ε)pcross .

Proof We observe that D(L; t1,∞) ⊃ BL . In particular, by Lemma 8,

P
(
D(L; t1,∞)

) ≥ pcross .

Now, we note that for t2 ≤ t ′2 one has D(L; t1, t2) ⊂ D(L; t1, t ′2). Thus, by continuity of
measure

lim
t2→∞P

(
D(L; t1, t2)

) = P

(⋃

s≥t

D(L; t1, s)
)

= P
(
D(L; t1,∞)

) ≥ pcross .

Hence for all ε > 0 there exists a time s > t1 + 1 such that

P
(
D(L; t1, s)

) ≥ (1 − ε)pcross .

	

Let F be the σ -algebra generated by the process (σt )t≥0. All the events introduced belong to
F . Given a non-zero vector v̄ such that G is translation invariant with respect to v̄, we define
the configuration translated with respect to v̄ as

(σ + v̄)(v) := σ(v + v̄) for any v ∈ V .

Let X be aF-measurable random variable. Then X = f ((σt )t≥0)where f is a measurable
function. We define

X + v̄ := f ((σt − v̄)t≥0). (22)
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If X is an indicator function then f takes only the values 0 or 1. Let A ∈ F , one can define

1A + v̄ = f ((σt − v̄)t≥0) =: 1A+v̄ ,

that defines A + v̄ for any A ∈ F .
In the following result we will apply the ergodic theorem. We note that these processes

are ergodic with respect to the translation if the initial conditions are given for instance by a
Bernoulli product measure, see e.g. [20, 24, 25] and references therein. Now, we introduce
some notation, which we will use in the proof of Theorem 4. For v ∈ V and t ∈ R+, let

A+
v (t) := {σs(v) = +1, ∀s ∈ [0, t]}, A−

v (t) := {σs(v) = −1, ∀s ∈ [0, t]}.
We denote by A+

v (∞) (resp. A−
v (∞)) the event that the vertex v fixates at the value+1 (resp.

−1) from time zero. Clearly, A±
v (t) ⊂ A±

v (t ′), for any t ′ ≤ t . We recall that {V1, . . . , VN } is
the partition of the vertex set V that comes from the quasi-transitivity ofG ∈ G, see Theorem
1. We note that, since G is quasi-transitive, P(A±

v (t)) depends only on the class to which the
vertex v belongs and does not depend explicitly on the vertex itself. Thus, for p = 1/2, for
each i = 1, . . . , N , v ∈ Vi , and t ∈ R+ ∪ {∞}, we set

ρi (t) := P(A+
v (t)) = P(A−

v (t)).

The last equality follows by symmetry under the global spin flip for p = 1/2. Now, we are
ready to prove our main result.

Theorem 4 If G = (V , E) ∈ G has the planar shrink property, then the I (G, 1/2)-model is
of type I, i.e., all sites flip infinitely often almost surely.

Proof We will prove the theorem by contradiction. Suppose that there exists j ∈ {1, . . . , N }
such that ρ j (∞) > 0 that by Lemma 2 is equivalent to have a site that fixates with positive

probability. We choose the following constants: ε = 1
3 pcrossρ j (∞), ε1 = ρ j (∞)

5 , ε2 =
1
4 pcross and ε̃ = 1

8 .
We notice that, by continuity of the measure, the limit of ρi (t) as t → ∞ exists and is

equal to

lim
t→∞ ρi (t) = lim

t→∞P(A+
v (t)) = P

( ∞⋂

m=1

A+
v (m)

)
= P(A+

v (∞)) = ρi (∞),

for each v ∈ Vi . This implies that there exists a time tε > 0 such that

0 ≤ ρ j (tε) − ρ j (∞) < ε. (23)

SinceG ∈ G, there exist two linearly independent vectors x̄1 and x̄2 such thatG is translation
invariant with respect to them. We want to construct on the graph G disjoint regions of a
suitable size L0 centered in n1 x̄1 + n2 x̄2 with n1, n2 ∈ Z. By ergodicity (see [20, 25, 27]),
one has

lim
r→∞

1

n(r , j)

∑

v∈B(O,r)∩Vj

1A−
v (tε )

= ρ j (tε) > 0 almost surely, (24)

where n(r , j) := |B(O, r) ∩ Vj |. Thus, (24) implies that there exists r̃ ∈ R+ such that

P

(
1

n(r̃ , j)

∑

v∈B(O,r̃)∩Vj

1A−
v (tε )

/∈ [ρ j (tε) − ε1, ρ j (tε) + ε1]
)

≤ ε2.
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Then, in particular

P

( ∑

v∈B(O,r̃)∩Vj

1A−
v (tε )

< n(r̃ , j)
(
ρ j (tε) − ε1

)) ≤ ε2. (25)

Now, we construct disjoint regions of size L0 on the graph G in the following way. Let
L0 = 3r̃ , where L0 and r̃ play the same role of L and rL in (15). We define the event

G(L; t, η) :=
{ ∑

v∈B(O,L/3)∩Vj

1A−
v (t) ≥ n(L/3, j)

(
ρ j (t) − η

)}
,

where L, t, η > 0. By (25), one has

P
(
G(L0; tε, ε1)

) ≥ 1 − ε2. (26)

Now, let
YL0(t) :=

∑

v∈B(O,L0/3)∩Vj

1A−
v (t).

Let n0 ∈ N such that TL0+2r1(a) ∩ (TL0+2r1(a) + n0 x̄i ) = ∅ for i = 1, 2. We define
YL0,m1,m2(t) := YL0(t) + m1n0 x̄1 + m2n0 x̄2 with m1,m2 ∈ Z (see (22)). By ergodicity, it
follows that for any t ∈ R+

lim
M→∞

1

(2M + 1)2
∑

m1,m2∈Z:
|m1|,|m2|≤M

1

n(L0/3, j)
YL0,m1,m2(t) = ρ j (t), a.s. (27)

We define the translated events

D(L;m1,m2; t1, t2) := D(L; t1, t2) + m1n0 x̄1 + m2n0 x̄2

and
G(L;m1,m2; t, η) := G(L; t, η) + m1n0 x̄1 + m2n0 x̄2.

Now, by Lemma 9 and by translation invariance, there exists a time tε̃ > tε + 1 such that

P
(
D(L0;m1,m2; tε, tε̃ )

) ≥ (1 − ε̃)pcross . (28)

By ergodicity, (26) and (28), it follows that

lim
M→∞

1

(2M + 1)2
∑

m1,m2∈Z:
|m1|,|m2|≤M

1G(L0;m1,m2;tε ,ε1)∩D(L0;m1,m2;tε ,tε̃ )

= P
(
G(L0;m1,m2; tε, ε1) ∩ D(L0;m1,m2; tε, tε̃ )

)

≥ P
(
D(L0;m1,m2; tε, tε̃ )

) − P
(
G(L0;m1,m2; tε, ε1)c

) ≥ (1 − ε̃)pcross − ε2 a.s. (29)

Over the event G(L0;m1,m2; tε, ε1) one has
YL0,m1,m2(tε) ≥ n(L0/3, j)

(
ρ j (tε) − ε1

)
. (30)

By (27), we get

ρ j (tε) − ρ j (tε̃ ) = lim
M→∞

1

(2M + 1)2
∑

m1,m2∈Z:
|m1|,|m2|≤M

1

n(L0/3, j)

[
YL0,m1,m2 (tε) − YL0,m1,m2 (tε̃ )

]
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≥ lim
M→∞

1

(2M + 1)2
∑

m1,m2∈Z:
|m1|,|m2|≤M

1

n(L0/3, j)

YL0,m1,m2 (tε)1G(L0;m1,m2;tε ,ε1)∩D(L0;m1,m2;tε ,tε̃ ). (31)

The inequality in (31) follows by

YL0,m1,m2(tε) − YL0,m1,m2(tε̃ ) ≥ YL0,m1,m2(tε)1D(L0;m1,m2;tε ,tε̃ )
≥ YL0,m1,m2(tε)1G(L0;m1,m2;tε ,ε1)∩D(L0;m1,m2;tε ,tε̃ ).

Indeed if D(L0;m1,m2; tε, tε̃ ) occurs then YL0,m1,m2(tε̃ ) = 0 and one has an equality.
Otherwise, if D(L0;m1,m2; tε, tε̃ ) does not occur then YL0,m1,m2(tε) − YL0,m1,m2(tε̃ ) ≥ 0
since YL0,m1,m2(t) is a decreasing function in t . Now, by (29) and (30), the last term in (31)
is lower bounded by

(
ρ j (tε) − ε1

)
lim

M→∞
1

(2M + 1)2
∑

m1,m2∈Z:
|m1|,|m2|≤M

1G(L0;m1,m2;tε ,ε1)∩D(L0;m1,m2;tε ,tε̃ )

≥ (
ρ j (tε) − ε1

)(
(1 − ε̃)pcross − ε2

)
a.s. (32)

Combining (23) with (31) and (32) and recalling the value of the constants ε, ε1, ε2 and ε̃,
we obtain

1

3
pcrossρ j (∞) = ε > ρ j (tε) − ρ j (∞) ≥ ρ j (tε) − ρ j (tε̃ )

≥ (
ρ j (tε) − ε1

)(
(1 − ε̃)pcross − ε2

) ≥ (
ρ j (∞) − ε1

)(
(1 − ε̃)pcross − ε2

)

= 1

2
pcrossρ j (∞),

which is obviously false when ρ j (∞) > 0.
Thus, for each i ∈ {1, . . . , N } we have that ρi (∞) = 0, i.e., each site fixates at the value

+1 (or −1) from time 0 with zero probability.
This implies, by Lemma 2, that each site fixates at the value +1 (or −1) with zero proba-

bility. Hence, all sites flip infinitely often almost surely, i.e., the model is of type I. 	


4 Construction of a Class of Graphs Having the Planar Shrink Property
and Conclusions

We begin by introducing a class of graphs that have the planar shrink property, as we show
in Theorem 5. Let H be the collection of infinite plane graphs G = (V , E) satisfying the
following properties:

(P1) every edge is a closed line segment, i.e. a line segment which includes its two endpoints;
(P2) for each e ∈ E , let us consider the unique straight line � which contains e. Then for any

x ∈ � there exists f ∈ E such that x ∈ f .
(P3) �(G) < ∞.

Theorem 5 If G ∈ H, then G has the planar shrink property.

Proof Given a non-empty subset S ⊂ V and a straight line �, suppose without loss of
generality that 0 < |S�

1 | < ∞ (see Definition 6). We need to prove that there exists u ∈ S�
1
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Fig. 5 In black the vertices in S and in white those in V \ S. This figure illustrates a graph G ∈ H and the
vertex u used in the proof of Theorem 5

such that degV \S(u) ≥ degS(u). First, we note that by property (P2) every vertex has a degree
that is even. Without loss of generality, we can consider the line � coincident with the axis
x (by applying a translation and a rotation) such that the vertices in S�

1 have a non-negative
ordinate. We write every vertex v ∈ V as v = (vx , vy) ∈ R

2 and let ry := maxv∈S�
1
vy and

rx := max{vx ∈ R : (vx , ry) ∈ S�
1}.

We consider the vertex u = (rx , ry) ∈ V . Given w = (wx , wy) ∈ NS(u), there are
two cases to consider (see Fig. 5). If wy = ry then, by property (P2), there exists a vertex
w′ = (w′

x , w
′
y) ∈ NV \S(u) with w′

y = ry and w′
x > rx . If instead wy < ry then, by property

(P2), there exists a vertex w′ ∈ NV \S(u) with w′
y > ry . In both cases, w′ belongs to the

linear extension of edge {u, w} out of S.
In other words, it is possible to define an injective function

fu : w ∈ NS(u) �→ w′ ∈ NV \S(u),

where the vertices u, w and w′ are aligned. This implies that degV \S(u) ≥ degS(u). 	

Wenote that the shrinkproperty holds even ifwe replaceHwith a class of graphs embedded

inRd having the properties (P1), (P2) and (P3), i.e. they are obtained by intersection of lines.
The proof of this fact is analogous to the proof of Theorem 5.

Now, we provide some explicit examples. The square lattice Z2, the triangular lattice (see
Fig. 7) and the graphs in Figs. 1, 7, 8 and 9 belong to class H therefore, by Theorem 5, all
these graphs have the planar shrink property. In particular, we note that the graph on the right
in Fig. 7 belongs to G(3)\G(6), i.e. it is invariant under rotation of an angle of 2π/3, but not
of π/3. In Fig. 6 we give two examples of graphs that do not have the shrink property. In
Fig. 9 we show a graph G with infinite classes that is invariant by a rotation of π but not
invariant under a rotation of π/2. For this I (G, 1/2)-model we can not apply Theorem 4 but
we have a proof showing that it is of type I. We do not present this proof that would break
the unitary character of our presentation.
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Fig. 6 Examples of graphs in G(4) that do not have the shrink property

Fig. 7 On the left the triangular lattice, example of a graph G ∈ G(6) ∩ H. On the right a double triangular
lattice, example of a graph G ∈ (G(3)\G(6)) ∩ H

Fig. 8 Modified double lattice
Z
2: example of a graph

G ∈ G(4) ∩ H
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Fig. 9 Example of a graph
G ∈ H that is invariant under
translation and rotation of π , but
not of π/2. The number of
classes of G is infinite
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